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Consider a non IocaIly convex topological vector space E. Suppose there is 
a non-zero point x in the subset E 1 c E of all points which cannot be separated 
from the origin by any continuous linear form on E. One might ask whether x 
can be separated from the origin by a continuous linear form which is defined only 
on E 1. I t  will be shown by means of examples tha t  this may be the case. Since E 1 
is a linear subspaee -- namely, the intersection N f-l(0) of all closed hyperplanes 

fEE'  
through the origin1 -- this fact gives rise to a more general question: Let E~ be 
the subspace in E 1 of points which cannot be separated from the origin by any 
continuous linear form; and then define recursively subspaces E a ~ E 4 ~ . . .  
In  a natural way we thus get a transfinite decreasing ~>sequencc~) (indexed by the 
ordinals) of closed linear subspaces of E. Obviously, this sequence must become 
stationary at some ordinal ~(E). The observation just mentioned shows tha t  this 
need not happen at once, i.e., we may have E 1 ~= E2, so tha t  ~(E) > 2. Thus we 
ask: Which ordinal values can be assumed by ~(.)? Our aim in I I  below is to answer 
this question by constructing examples to show tha t  even for locally bounded 
spaces, ~(.) may assume any  ordinal value. 

In I below, we investigate some general properties of the transfinite ~>sequence)) 
mentioned above. 

As a by-product of the constructive methods employed in II,  we obtain (Section 
II.3) a certain isometric imbedding of metric spaces into p-normed spaces, which 
has universal and funcforial properties. 

For brevity, we will write tvs for topological vector space(s). Further, E '  will 
denote the (topological) dual of a tvs E, and ~ is as usual the least transfinite 
ordinal. All tvs are supposed to have the same scalar field, which may be the real 
or the complex number field. A linear subspace of a tvs is always topologized by 
the subspace topology. 
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I am most  grateful  to  the  late Professor Hans  Rgds t rSm for his vivid in teres t  
a n d  v e r y  valuable  criticism. 

I. General considerations 

1. Definition. For  a tvs  E we wri te  

A E = N f- l (0)  �9 
feK" 

B y  t ransf in i te  induct ion we define for eve ry  ordinal 
A~E so t h a t  

ArE = A(  [-I A t E )  �9 
v'<~v 

v a closed linear subspace 

1.1. PROPOSITION. Under ~ ,  the class {A~E}~ is well-ordered and has a last 
element. There is a least ordinal vo such that A~oE = A ~~ 1E. 

1.2. Definition. For  a t v s E ,  the  ordinal  Vo of 1.1 is denoted  a(E).  

1.3. .Remark.  To see t ha t  Defini t ions 1 and 1.2 are worth-while,  i t  is of  course 
essential  to  show t h a t  there  are tvs  E wi th  c~(E) ~ 2. As po in ted  out  in the  
in t roduct ion ,  i t  will be seen below t h a t  a(.) m a y  assume any  ordinal value  (see 
II .2.1 and  ef. also Sect ion 7 of  I). 

2. PnoPOSlTIO~. For tvs E and F and a continuous linear mapping  f : E --> F,  

we have, for every ordinal v, that f(A~E) c A'F .  I f  f is open and f-l(O) c A~~ 
for  some ~o, we have f ( A ~ E ) = A ~ F  for v <_v o. 

Proof. We see t h a t  

f ( A E )  = f ( e N  9-1(0)) 

c : f (  17/ -1V-l (0) )  = FI V-l(0) = A F ,  
wEF' ~vEF' 

~rhieh gives the  f i rs t  par~ in the  case v = 1. I f  f is open and f - l (0)  ~ A E ,  ev e ry  
e lement  in E '  is of  the  form ~0 o f  wi th  ~ E F ' ;  hence we m a y  replace the  inclusion 
b y  equal i ty .  

For  a rb i t r a ry  v, the  relat ions are now obta ined  b y  s t ra ight forward  t ransf in i te  
induct ion.  

2.1. COnOLLAI~Y. Let E be a tvs. For every quotient space E /H ,  say, such that 
H C A~(E)E, we have o:(E/H) = o~(E). 
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2.2 COrOLLArY. A tvs E has a quotient space E / H  with ~ ( E / H ) =  v when- 
ever v ~_ a(E). 

Proof. Take  H = AVE. 

3. P~OFOmTm~. A tvs E has precisely one subspace L C E such that 
(i) L'  = { 0 }  and 

(ii) every subspace H c E /L ,  H =/= {0}, has H'  =/= {0}. 

Proof. 1 ~ Uniqueness:  Suppose (i) and (ii) to be satisfied for L = L 1 as well 
as for L = L0, say. I f  L 1 c~ Lo, the  subspace (L 0 + L J / L  o of  E / L  o is dis t inct  
f rom {0} and  has a non-vanishing eont inuoas  l inear form f on account  of  (ii) 
for  L ---- L o. Then  f induces a non-vanishing cont inuous linear form on L a, and  
thus  raises contradic t ion against  (i) for L ~ L r Hence  L 1 c L o, and  similarly 

L o o t 1 .  
2 ~ Existence:  Le t  L 0 be the  linear hull of  all subspaces wi th  dual  (0]. A 

given cont inuous l inear form on L o vanishes on all subspaces wi th  dual  {0], and 
thus  on each of  a class of  sets spanning L 0, and  so on L o. Hence  L0 = {0]. The  
subspaee L o is also the  largest one wi th  dual  {0}. 

Suppose H is any  sub@ace ~: (0} of  E / L  o. I ts  canonical inverse image H 1 
in E has a non-vanishing cont inuous l inear form f b y  the  preceding pa ragraph  
(since H 1 \ L o 4= O). B u t  f(Lo) = O, so f induces a non-vanishing cont inuous 
l inear form on H = H1/L o. Hence  (i) and  (ii) are satisfied when  L ---- L 0. 

The  proof  also gives the  nex t  proposi t ion (same notat ion) .  

3.1. 1)ROrOSITION. The subspace L is the largest one which has dual {0}. 

3.2. THEOREM. When E and L as in 3, we have L = A~(E)E. 

Proof. Since A~'(E)E clearly has dual {0], we get A~(E)E c L f rom 3.1. 
Conversely, we show by  t ransf in i te  induct ion t h a t  L c A~'E for eve ry  v. 

The  assertion is t r iv ia l ly  val id for v = 1; thus  assume t h a t  L C A t E  whenever  
v' < v. B u t  L c N A t E  = P,,  say, cer ta in ly  implies f (L)  = 0 whenever  f E P~. 

Hence  L c AVE b y  Defini t ion 1. 

3.3. PROPOSITION. When E and L as in 3, we have, for every v, that (A"E)/L = 
AV(E/L). Further, ~ ( E ) =  o~(E/L). 

Proof. Follows f rom 3.2, 2, and  2.1. 

3.4. Definition. A tvs  will be called an A-space if  eve ry  subspace dis t inct  f rom 
{0} has dual  dist inct  f rom {0}. 
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3.5. Remarlc. When  E and L as in 3, notice t h a t  (i) E has dual  {0} if  and  
only  if  E-----L, and  t ha t  (ii) E is an A-space if  and  only  i f  L----{0}. 

Fur the rmore ,  L is the  smallest subspace for which E/L is an A-space. (Follows 
f rom 2.) 

We f inal ly  s ta te  ye t  ano ther  character iza t ion of  L. 

3.6. 1)ttOPOSITIO~. When E and L as in 3, every continuous linear mapping 
f : E - * - F  into an A-space may be canonically decomposed according to 

E ~ E/L  h_~ F ,  

where g and h are continuous and linear. ,Moreover, L is the largest subspace for 
which such a decomposition may be accomplished for all f and F. 

_Proof. I f  the  image in F of  L is dist inct  f rom {0}, i t  has a non-vanishing 
cont inuous linear form ~, say. Then  ~ o f does no t  vanish on L, which is contra-  
dictory.  

The  last s t a t emen t  now follows if we take  F ~- E/L  and  let  f be the  canonical 
mapping.  

4. Consider an A-space E.  I f  E is not  locally convex,  a cont inuous l inear 
form m a y  of course no t  always be ex tended  f rom a subspace to E.  However ,  if  E 
has separat ing dual  - -  t h a t  is, i f  a (E)  ---- 1 - -  a cont inuous l inear form def ined on 
a finite-dimensional subspaee m a y  always be ex tended  to  E.  B u t  if  a(E) ~ 2, 
no t  even t h a t  is t rue;  just  let the  given form be def ined  and non-vanishing on a one- 
dimensional  subspace of  AE. The  best  we can accomplish in such a case is to  
examine whether  the  funct ional  m a y  be ex tended  to  cer ta in  subspaces or not .  Thus  
we shall say  t ha t  a class ~r of  subspaces of  E is an extension-class i f  the  following 
condit ion is satisfied: 

F o r  eve ry  subspace K and non-vanishing cont inuous linear form f def ined  on 
it, there  is a space C E<~ such t h a t  

(i) f ( g  [7 C) :4= {0} and 
(ii) for eve ry  f ini te-dimensional  subspace F of  K [7 C, the  res t r ic t ion of  f 

to F can be ex tended  to  C. 
Of course, the  class of  all one-dimensional subspaces forms a v e r y  tr ivial  example  

of an extension-class.  To obta in  something more  significant,  we restr ic t  our  a t t en t ion  
to  extension classes t h a t  are totally ordered under  inclusion. I f  a (E)  is f inite,  the re  
is such an extension-class,  i.e., the  class %~ ---- (A'E}~ O {E}. Namely ,  if  f and  K 
are given, t ake  C ---- An~ when n o is the  least integer  such t h a t  f ( K  rl AnoE) =~ 
(0}. 

Before  t ~ f i n g  to  a more general si tuation,  we in t roduce  another  new notion.  
We say t h a t  E is an AP-space i f  eve ry  0-neighbourhood contains all b u t  f in i te ly  
m a n y  of  the  spaces of  ~:~. - -  Notice  t h a t  E m a y  be an AP-space  only  i f  ~(E) _< 
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and  f'l A~E = {0}; and fur ther ,  the  topo logy  on E m a y  be coarsened to  an AP-  
V<e~ 

space topology  i f  and  only  if  the  la t te r  condit ions are fulfilled. I f  ~(E) is f inite,  
E is t r iv ia l ly  an AP-space .  

Fur the rmore ,  let  us b y  an A'-spaee unde r s t and  an A-space which has a 0-neigh- 
bourhood  base of  which each e lement  U has the  p ro p e r ty  t h a t  I"1 9 U is a l inear 

o > 0  

subspaee. This la t te r  condit ion is no t  au tomat ica l ly  fulfilled in a non locally convex 
tvs;  however,  it  is, for instance,  in the  case of  a supremum topology of locally bounded 
topologies. (In v iew of  7.7 or II .2.2,  i t  is clear f rom the  r e m a r k  of  the  preceding 
paragraph  t h a t  there  are, indeed, AP-spaces of  the  las t -ment ioned k ind  wi th  a = co.) 

4.1. I~ROPOSITm~r _For an A'-space E, the following statements are equivalent: 
(i) E is an AP-space, 

(ii) E has an extension-class that is well-ordered under ~,  and 
(iii) E has an extension-class that is a decreasing sequence under inclusion. 

Proof. (i) implies (iii): The  a rgumen t  above for ~(E) < ~ is applicable also in 
the  case a(E)  = ~. For  suppose f and  K to be given. Then  f is bounded  on the  
intersect ion of  K wi th  some 0-neighbourhood U, say. Since E is an AP-space ,  
U contains An~ for  some n o < w. Then  f ( K  f] A'~ ~ {0}, and  we can 
proceed as before.  So ~=~ is an extension-class.  

(iii) implies (ii): Trivial.  
(ii) implies (i): L e t  (~ be a well-ordered extension-class.  

Aiming a t  a contradict ion,  we assume E no t  to  be an AP-space .  On account  
of  the  well-ordering, the  class ~ has then,  for  each n < oJ, a largest  space Cn 
which does no t  contain A~E. Then  C, contains An+IE; otherwise, the  defining 
condit ions for an extension-class would no t  be fulfilled if  we let  K be a one-dimen- 
sional subspace of  A~+IE no t  in C n. Fo r  if C~ ~ ,  t hen  C O has intersect ion {0} 
wi th  K --  and  thus  we have  f ( K  f3 C o) = 0 for eve ry  f --  except i f  C O ~ Cn # O; 
and  in t h a t  case, we have  C O ~ A~E, so a non-vanishing f on K C A~+IE can 
cer ta inly  no t  be ex t ended  to  C o . 

Since E is an A'-spaee t h a t  is no t  an AP-space ,  we can now f ind  a 0-neigh- 
bourhood  U such t ha t  N = ['1 9U is a l inear subspace which does no t  conta in  

Q > 0  

A"E for a ny  n < ~ .  So we can take  elements  z ~ E A ~ E ~ N ,  n < w ;  t h en  we 
take  for K the  l inear hull of  N U {z,]n < ~}. We m a y  assume t h a t  iV ~ ['1 C~. 

(Otherwise, replace U b y  U + A C~.) Fo r  each n < ~o, we define a cont inuous 
r t  < ~o 

l inear form g~ on K so t h a t  ga(Za) # 0 and  so t h a t  g~(K rl A=+~E) = 0; this is 
possible, since K f'l A"+~E has f ini te  codimension in K.  Fur the r ,  b y  the  choice 
of  U and  z=, we see t h a t  each of  the  g= is bounded  on U [ 3 K ;  so take  Y ~ > 0  
so t h a t  y ,  lg=[ < 1/2 ~ on U fl K.  B y  taking f = Zn~'ng,t on K,  we shall have  our  



284 AI~KIV FOtt MATEIVIA_TIt~. Vol. 9. No 2 

contradic t ion against  the  defining propert ies  of  an extension-class,  l~irst, f is con- 
t inuous,  since [fl --< 1 on U rl K.  Then,  on account  of  f (  N C,) = 0 (seen f rom 

n ~ c o  

f(TV) = 0, which follows f rom If] --< 1 on U Cl K),  i t  is sufficient to  show t h a t  
f cannot  be ex tended  to C O ~ C,, say, f rom the  one-dimensional  subspace spanned 
by  z , + ~ E C ,  f l K .  This is so, for C ~  and  z,+TEA"+TE. 

To i l luminate the  s i tuat ion somewhat ,  we s ta te  the  following simple proposit ion.  

4.2. 1)~OPOSITm~. For a totally ordered extension-class ~ of an A-space E, 
we have card ~ > card min {c~(E), co}. 

4.3. Remar]c. The  not ion of  AP-space  clearly has the  following significance. 
An A-space E is an AP-space  if  and only  if  it  is the  inverse limit of  some A-spaces 
with f ini te  c~-values (namely, E/A"E where n < o); cf. 2 above).  

5. For  a tvs E,  it  is na tura l  to  ask whether  the  A'E-spaces m a y  be character ized 
in te rms no t  involving these spaces. A f i rs t  step in this direct ion was t aken  in 3.2 
above,  where we character ized A~(~)E. Also in 4- -4 .1  our  pursui t  was to  enlighten 
this question; namely ,  the  AP-space  p roper ty ,  which is def ined as a p rope r ty  of  
the  class {AYE},, is t h e r e  re la ted  to  the  existence of  certain extension-classes; 
and the  la t te r  not ion  is def ined otherwise. And  notice t h a t  the  case a(E) = ~o there  
appears  as >>criticab). - -  The  rest  of  the  quest ion we have  to  leave as an open problem.  

6. This is an  auxi l iary  section. 

6.1. Definition. Let  E be a vec tor  space. In  accordance wi th  Landsberg  [3], 
we say t h a t  

a) a funct ional  x --> Ilxll is a T-norm, where 0 < p _~ 1, if  it  satisfies 
(i) I[x + yll -< [[xl[ ~- HyI[, 

(ii) II~xl[ = [~IPtlzII, and  
(iii) Hx[I = 0 implies x = 0, whenever  x , y  E E and  A scalar; 
b) if  a p -no rm [I'll on E is given and  i f  t h e r eb y  E is considered as a tvs  

wi th  0-neighbourhood base {{xllIx H < A}I~ > 0} (this is cer ta in ly  a 0-neighbour- 
hood base of  a vec to r  space topology;  cf. Landsberg  [3]), t hen  E is a p-normed 
8pace. 

6.2. Examples. We remind  of some common  examples  of  p - n o r m e d  spaces: 
a) the  spaces I p of  sequences x ~ (41, 4 2, . . . )  such t h a t  ~ 14k[ P < oo, wi th  

T-norm [IxIl = ~]~ [4kl p. F o r  P < 1, we  here have  simple examples  of  non locally 
convex  spaces t h a t  are dual -separa ted  (Tychonof f  [7]; cf. also Landsberg  [3]). 

b) the  spaces LP(0, 1) of  measurable  funct ions x(~) on (0, 1) such t h a t  
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f l0lx(~ ) led~ < ~- oo (or, properly, equivalence functions) certain classes o f  such 

s with p-norm Iixll-~ The Le(O, i) with p < I are known not to 

have any non-vanishing continuous linear forms (Day [I]). 
e) the quotient  space E/H of a given p-normed space E with p-norm H ,  

say, for a closed snbspace H.  Then the quot ient  space topology is given by  the 
quotient  space p-norm II)ll~ -- inf{lly]]y E x + H}, if  the canonical mapping 

tX 
E --> E /H is wri t ten  x --> x. 

Also, we introduce: 
d) the p-normed direct sum of a class {E,} of p-normed spaces wi th  p-norms 

{l['ll,}, say, as a p-normed space S as follows. Consider the  algebraic direct sum 
(~, E~ of the linear spaces E,, i.e., the linear space of all formal finite sums ~.~ x ,  
such tha t  x~ C E, and all bu t  f ini tely m a n y  of the x, are zero. Then the p-normed 
space S is defined as the linear space 0 ,  E, endowed with the p-norm II']l given 
by  II~, x, lI = ~ IIx,[[~- 

6.3. Example. We also recall the space S(O, 1) of measurable functions on (0, 1) 
wi th  the topology of convergence in measure. This topology is also given by  the metric 

jr1 I x ( ~ ) -  y('r)] dr .  I t  is well this has dual d(x, y) = 1 @ [x(~) --  Y(~)I known t h a t  s p a c e  
0 

{0} (cf. [5]). 

6.4. We now introduce some notat ion to be used henceforth.  By  co X we 
denote the convex hull of a set X in a linear space E; and  lin X will be the linear 

hull. I f  E is a t v s ,  co X and  lin X will s tand  for the closed convex resp. linear 
hull. Fur ther ,  we will make  extensive use of the following simple consequence of 
Hahn-Banach ' s  theorem: 

A point in a tvs E belongs to the convex hull of every O-neighbourhood i f  and only 
i f  it is not separated from 0 by E' (LaSalle [4]). 

Otherwise stated: Le t  9~ he a 0-neighbourhood base in E. Then 

[7 co U---- A E .  
U~B 

In  this connection, notice t h a t  Definit ion 1 above m a y  thus  be rephrased in 
terms of convex hulls of 0-neighbourhoods in subspaces: 

6.5. PROPOSITION. Let E be a tvs. For a class ooi of subsets of E, write iced 
for the intersection of the convex hulls of the sets of d .  Further, let ~ be a O-neigh- 
bourhood base of E;  and define inductively 
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icn 1 = i c ~  

icn ~ : ic{ U f3 icnr l U C ~ 

for all ordinals v. Then 

i e n ' =  A~E 

for every ordinal v. 

, ~ ' < v }  

Proof. By transfinite induction. 

7. We now turn to the problem of finding tvs E with a(E) > 2. First we 
prove a general assertion on sufficient conditions for a given tvs to have a sub- 
space with a-value > 2. 

7.1. T~EOR~. Let E be a metrizable tvs and K c E a closed subspace which 
E ~ is separable. Suppose there is a decreasing sequence { i}i=l of closed subspaees of 

E such that 
co 

(i) f~ E~ = K 
i = l  

(ii) AE~ D K ,  i > l . 

Then E has a closed separable subspace K 1 D K such that A K  1 = K.  
I n  particular, i f  K is dual-separated, we get K 1 with a(K1) = 2; and, more 

generally, i f  a(K)  is f inite,  we get a(K1) = a(K)  -~ 1. 

Proof. Let {Vk}k~=l be a countable 0-neighbourhood base of E and {Zk}k~=l a 
sequence which spans K. By  condition (ii) and 6.4 above, we can take xq E E 
for i _> 1 and 1 < j < k~, say, so tha t  

1~ xq C E~ fl V~ 
k i 2 ~ z, ,Eco(xq}~=l,  1 < n < i ,  

for each i > 1 and suitable kl. 

How t a k e  K 1-~ lin ({xq} U K). By construction, every point of K is in 
the convex hull of every 0-neighbourhood (for {zn} spans K and {Vn} is a base); 
so by 6.4, K C AK1. On the other hand, every point x in K1 ~ K is outside 
AK1; for, by  (i), the point x is outside E~ for some i > 2. By construction, 
Ei/3 K1 has finite codimension in K1; so the dual of K~ separates x from 0, 
as required. 

We will make particular use of a special case: 

7.2. COROLLARY. I f  E is a metrizable tvs and K a closed separable subspace 
which has separating dual and which is intersection of a decreasing sequence of sub- 
spaces E 1 D E 2 D . . . .  each of which has dual {0}, then there is a closed (separable) 
subspace K 1 such that A K  1-~ K (and thus a(K1)~-  2). 
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7.3. COROLLARY. Let E be a metrizable ,tvs such that for every closed subspace 
K which is an A-space, there is an (isomorphic) imbedding i : K - - >  E such that 
E satisfies the conditions of 7.1 with i(K) in the place of K.  Then, for any n < ~o, 
the space E has a closed subspace K~ with A ' K ,  one-dimensional (and thus o~(K~) = 
n +  1). 

Proof. Start with a one-dimensional subspace K and find K1; then take K 1 
in the place of K to find Ks; and then go on step by  step. 

7.4. Example. Consider the space S(0, l) of measurable functions (cf. 6.3 above). 
We can then apply 7.2 in the case when K is the one-dimensional space of all 
constant functions. Namely, let E k be the subspace of all periodic functions with 
period 2 -k (/c ~ 1). Clearly, K is the intersection of all the Ek, and each Ek 
has dual {0} (since E k is essentially S(0, 2-k), which space is isomorphic to S(0, 1) 
and thus has dual {0}). Hence S(O, 1) has a closed subspace K 1 with A K  1 one- 
dimensional (and thus ~(K1) = 2). 

(See also 7.9 below.) 

7.5. Example. Similarly, LP(0, 1) with 0 < p < 1 has a closed subspace K 1 
with A K  1 one-dimensional. 

7.6. Examples (continuation). We will now proceed and show that  also the 
conditions of 7.3 are fulfilled for E = S(0, 1) [resp. LP(0, 1)]. 

To that end, first notice that (0, I) has the same measure space structure as 

12 = (0, 1)X(O, 1); so S(0, 1) [resp. LP(0, 1)] may  be identified vcith the cor- 
responding space S(I  2) [resp. LP(IP)] of measurable functions on 13. Thus, we 
can define the required imbeddings i : K - - > E  of 7.3 as imbeddings S(0, 1) 
K • S(1 ~) [from now on we omit the phrase ~>resp. (corresponding for) Le~> after 
statements like this one]. 

So let K be a closed subspace of S(0, 1). We will f ind i : S(0, 1) --> S(I  2) and 
subspaces E 1 D E 2 D . . .  of S(I  2) such that  their intersection equals i(K) and 
such that  each of them has dual {0}. Consider the elements of S(0, 1) as functions 

f(O) with 0 ranging over (0, 1) and the elements of S(F) as functions f(O1, 02) 
with 01 and 02 ranging over (0, 1). (Thus, we denote the coordinates of 12 b y  
01 and 03 resp.) Whatever K may be, we define the imbedding i by  means of 

S(0, 1) = g ~f(O) J ~  f(01) e S(I2) ; 

thus, we let i range in the subspace of functions that  are constant in the variable 
03. Clearly i is an isomorphic imbedding. I t  remains to give the Ek, which is 
done by  

Ek = lin {g(01) �9 h(02)[g e K ; h is periodic with period 2-k}. 
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Then Ek has dual  {0} (cf. 7.4); we must  show tha t  r lkEk = i (K).  Firs t ,  
by  definitions, the  intersection contains i(K); conversely, an element f0(01, 02) o f  
the intersection will be shown to belong to i (K).  Since any  funct ion of E k has 
period 2 -4 in 02 (for almost all 01-values), the funct ion fo(OD 02) is essentially 
constant  wi th  respect to  02; so write fo(01, 02) = go(01). Then go --  regarded as an 
element of  S(0, 1) --  is to be recognized as an element of K.  I t  can be, for i f  
f(01, 02) belongs to E 1, say, then,  for almost every f ixed 0 ~ the funct ion 01--> 
f(01,0~) --  regarded as an element of S(0, 1) -- belongs to K; in particular,  
g o E K .  

Thus, 7.3 applies and  gives: 

_For every positive integer n, the space S(O, 1) [resp. LP(O, 1)] has a closed sub- 
space K~ with A~K,  one-dimensional (and thus ~ ( K ~ ) =  n + 1). 

7.7. Examples  (continuation).  We call now easily take  one more step: First ,  
notice t h a t  the spaces Sk ~ S(2 -k, 2-~+~), where k > 1, m a y  be regarded as 
subspaees of S(0, 1); further,  there are na tura l  continuous and open projections 
zk : N(0, 1) --> S k (defined as the restrictions of functions in S(0, 1) to (2 -k, :2 -k+l) 
[resp. corresponding for LP]. By  7.6, take  for each /~ > 1 a space K2 ~ Sk such 

k o t h a t  A Kk is one-dimensional; and  let K ~ c S(O, 1) be the closed linear hull of 
the K2. Now, proposit ion 2 --  applied to ~k and to the imbedding Sk-+  S(0, 1) 

says t h a t  ~k(A~K ~ ~ ~ --  ~ A K  k for all v and  k. This gives on one hand  A~K ~ 
{0} for n < co, and  on the other hand  Nn<~ A"K~ C nk  ~k-l(0) = {0}. Thus we 
f ind  t h a t  S(0, 1) [resp. LP(O, 1)] has a closed subspace K ~ with o~(K ~ = co. 

7.8. _Remark. W h y  are we part icular ly  interested in f inding closed subspaces in 
7.1--7.77 --  Because these are complete when we s tar t  wi th  a complete space E 
(such as S(0, 1) or LP(0, 1)); and  in general, ~(.) is not invariant under completion. 
(See II.2.3 below.) 

7.9. Remark. Consider the si tuat ion in 7.4. I t  might  be interesting to see explicitly 
what  the  found subspace K 1 m a y  look like in this part icular  case. To t h a t  end, let 
us go back and  examine the proof  of 7.1. W h a t  we want  is then  to give elements 
xq which are of the kited ment ioned there and  which thus,  together  w i t h  K,  span 

K1. 
Noticing t h a t  K is generated by  the constant  funct ion 1 on (0, 1), we thus  need 

functions xii(~) on (0, 1) which satisfy 
(1') x~ i e El 
(1") Xq-+ 0 ( independently of j)  as i--> ~ (convergence in measure) 
(2) 1 Eco{xii}i for every i ~ l ,  

where the  E~ are as defined in 7.4. Denoting by  
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N + I  
sin 2 - -  v 

1 2 
- -  , N > I  

FN(T)  N + 1 T - -  ' 
sin e -- 

2 

the Fej6r kernel on the unit circle, we claim that  we may take 

, ,  Xq(T)=f~\2~\2 '~ :@ , 1 ~ j  ~ i ,  i 2  1.  

Namely, (1') and (1") follow from well-known properties of the lq'ej6r kernel; 
for (2), notice tha t  we have 1 = (1/i)(xa -[- �9 �9 �9 -]- xu) from the well-known relations 

2 N 

Fs(~) = 1 - 4 - N @  1 ~ ( N +  1 - - n )  cosnT and 

j = l  

We have shown that  the space K 1 found in 7.4 [resp. 7.5] may be the space 

lin 1, F~ 2~ 2~W ~- / ~ l, 1 _~ j _< i .  

I I .  C o n s t r u c t i v e  m e t h o d s  

In this chapter, we shall first give a general method to construct p-normed 
spaces with certain properties. Then we will use this to get the announced example 
which will show tha t  definitions I 1 and I 1.2 are meaningful for all ordinals. The 
constructive method to be employed will be presented in a somewhat stronger 
form than required for our chief purpose. For the sake of completeness it may be 
remarked, that  to fulfil this purpose, we could have got away with a simpler but less 
illuminating device. 

1. Suppose there to be given, for a fixed number p (0 < io < 1) 
(i) a set ~g of p-normed spaces, 

(ii) for each EE~g ,  an element eEEE, 
(iii) a metric space M (with no linear structure), and 
(iv) a function }P:~--->M• such that  d(prl~(E), p r2T(E) )=  ]]e~[l, 

and such that  Im(pr lT  ) U Im(preT ) = M, 
where prk:MxM--->M is the projection onto the first resp. second 
factor and where d(. ,  .) is the distance on M. 
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We in t roduce  the  following nota t ion .  For  (m',m") C M x M ,  we write  
-- (m', m") = (m", m'). Fur the r ,  b y  a cycle we u n d e r s t an d  a f ini te  sequence of  ele- 
ments  in M • M of  the  form 

(m o, ml), (ml, m2), (m2, m3) . . . . .  (m,_l,  mn), (mn, m0). 

We shall now define a space H(Cg, {eE}, M, T), which we also denote  11(~) 
or H when  there  is no risk for confusion. (Fur ther ,  if  ~g' c ~E and  if  M '  = 
Im  (prl T )  U I m  (pr2 ~ ) ,  we denote  also H(~g ', {eE}, M', T)  b y  H ( ~  ') - -  in 
spite of  the  change f rom M to M' . )  

1.1. PROPOSITION. Given the objects of (i) to (iv), there is a unique complete p-normed 
space 11 ~ II(C~, {eE}, M, ~J) such that 

1 ~ for each E C (g, there is an isometric imbedding iE:E--> 171, 
2 ~ there is an injection j : M - - >  I I  related to the iE as 

iE(e~) ---- j(pr2 T(E))  - -  j(prl T(E)) ,  and 

3 ~ i f  111 is an arbitrary complete p-normed space satisfying 1 ~ and 2 ~ with i 1 E 

and j l ,  say, in the places of iE and j resp., there is a linear mapping ~ : 11--> 111 
for which the diagram 

E 

H ) H 1 

is commutative for each E C cc:, and which is continuous with operator p-norm not 
larger than one (i.e., supEl~ll= 1 ll~b(x)ll _~ 1). (Universal property.) 

[Concerning 3 ~ also notice: if  I m  T is connected  as graph (cf. 1.4), the  diagram 

M 

H ~b ) H1 

is commuta t i ve  up to  t rans la t ion  (i.e., jx ~ ~b o j ~- c for some constant  e lement  
c in HX); this follows f rom the  condit ion t h a t  the  i~ and  j l  sat isfy 2~ 

Before proving 1.1, we s ta te  some propert ies  of  / /  which will be consequences 
of  the  construct ion.  
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1.2. I)ROPOSITIO~. With notation and assumptions as in 1--1.1 and with E~, 
E 2 C ~ ,  we have 

~{0} i f  T(E~) =~ T(E2) and =~ -- ~J(E2) 
i(E1) N i(E2) 

[lin {eE,} i f  T (E~)= T(E2) or -~ -- T(E2). 

1.3. 1)~O~OSITIO~. With notation and assumptions as in 1--1.1 (notice especially 
the last paragraph before 1.1), let ~d' be a subset of ~, consisting of all except finitely 
many of the elements of ~ Then there is a canonical imbedding g (which is iso- 
morphic but in general not isometric) of II(C8 ') onto a closed subspace of TI(~8). 

(~)Canonicab) here means tha t  the diagram 

E 

- C C /  

1I( ~, ) > Im Z C 11(~8) 
Z 

is commutative whenever E e ~;'.) 

1.4. Remark. In the sequel, we will not distinguish between E and i(E). Thus, 
the spaces of c~ will be regarded as subspaces of / / .  

Notice tha t  it is an immediate consequence of the universal property (3 ~ of 1.1) 
tha t  

lin {i(E)IE 6 c8} = / / .  

Intuitively, we may think of Im k~ as the set of edges of a graph in M. What 
we intend to do is to paste the spaces of c+~ at this graph by identifying the vectors 
eE with the (oriented) edges T(E). 

Notice tha t  in general the injection j : M -+ H is not isometric; however, we 
know tha t  the distances d(prl T(E), pr~ T(E)) are preserved, since these equal 
the p-norm values Ileal] (of. (iv) of 1 and 1 ~ of 1.1). 

1.5. Proof of 1.1--1.3. To define TI(CS, {eE}, M, T), we start  with the p-normed 
direct sum S (cf. I 6.2.d) of the spaces of c8. Consider the subspace H c S 
given by 

H = lin { ~ ekeEk]elT(E1) , . . . , snT(En) is a cycle for some s k = ~= 1, n _~ 2}. (a) 
k ~ l  

Then we take H as the completion of the p-normed quotient space S/H. 
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To give the p-norm ]I'll~ on S/H more explicitly, we denote by  x the canonical 
image in S/H of an element x E S. (This ti lde nota t ion will not  be used except in 
this proof.) Then I['II_ is defined by  

]]~xk[ I = inf  (~ltyk][ ] ~xk  ~- ~Yk) (b) 

where the xk and yk belong to different spaces of c3, and  where the  in f imum 

is t aken  over all preimages of ~x~  under  the canonical mupping S ----> S/H. (Cf. 
the definitions in I 6.2.) 

F rom this construction, we see at  once how to define the iE of 1~ for each 
E C ~;, let i~ be the composition of the  inclusion map E --> S and  the canonical 
mapping S ~ S/H. Before the somewhat  lengthy verif icat ion t h a t  these iE are 
isometric, we prove the other s tatements .  

First ,  1.2 follows from this definition; for, t h a t  siT(E1), s2T(E~) is a cycle 
means precisely t h a t  sl~rl(E1)= --s2~(E2).  By  the definit ion of H,  it  means 
also precisely t ha t  sle~, = --S2eE. And (a) fur ther  shows tha t  for xk E Ek, we 
can have x l = x 2  only if  x k =  • ~e~ k for k =  1 ,2  and  some ~. 

Second, for 1.3 we consider the  case when ~ ~ ~ '  is a singleton {E0}, say; 
the general assertion then  follows by  induction.  Le t  So be the  snbspace of S which 
is spanned by  the spaces of ~ ' ,  and  let H 0 C So be the subspace defined by  (a) 
wi th  the  spaces El, . . . , E ,  ranging over ~ ' .  Denote  by  q~ : S ~ S /H the cano- 
nical mapping.  Since H 0 = S o n  H,  the ident i ty  mapping S----~S induces a 
bijective linear mapping Zo:So/Ho--~ ~(So) , which will be shown to be an iso- 

morphism. I f  x C S o and  if  7x and  H'H= is the canonical image of x in, resp. the 
quot ient  p-norm on, So/Ho, we have by  (b) 

l lxl l  = inf( ~. ]]Ykl] ]Yk in spaces of ~ )  and 
x ~ -~Yk  rood H 

IIx[I z = inf( ~ ]lYkll I Y~ in spaces of ~ ' ) .  
x ~ X y  k rood//o 

Since the  first  in f imum is t aken  over a larger set, i t  is smaller, so ]]s < [[x][=. 
Conversely, let Yk be vectors in spaces of ~ so t ha t  x ~ ~. Yk mod  H. Two cases 
m a y  occur: (1) all Yk are in spaces of ~g', and then  x ~ ~ y k m o d H  o (since 
H 0 = S  013H); and  (2) ~ Y k = S 0 ~ - A e a ,  where s 0 e S  0 and A 4 0  a scalar. 
In  ease (2), ~v(E0) mus t  be an element of a cycle ~ of which all the other elements 
are in 4- T(~;').  (The last s ta tements  are consequences of the definit ion of  H.)  So 

So 4- ~eE0 ~ So + A ~ ekeE~ rood H ,  
~k w(ED e J. 

E k ~ E 0 

wherein the  second member  is an element in So which is congruent  modulo H o 
to x (since H o = S o 13 H). Le t  the sum in the second member  have the length 
clIeEoll. Then,  for any x C So, and  ~Yk ~ x mod  H the  second member  has length 
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at most c times the length of the first member. So in case (2) as in ease (I), it is 

seen that for every x'~xmodH, there is x"ES O with x"~-xmodH o and 

IIx"II <_ c'[Ix'll for some constant  c ' >  0 (which is independent  of  x); and so 

I1"1I: _< c ' i l l l  �9 
Then  we ex tend  ~/o by  con t inu i ty  to  an imbedding Z : H(cE ') --> H ( ~ ) ;  clearly 

H( ), for is Im  Z is closed in cg H(Cs ') complete.  
Finally,  we ver i fy  l ~  ~ of 1.1. 
For  2~ Take  j(mo) = 0 for some m o C M. To define j for the  other  points  

in M,  we use the  following notat ion:  B y  a T-path f rom m 1 to  mn we unde r s t and  
a sequence 

(ml, m2), (m2, ma) . . . .  , (mn_2, ran_l), (ran_l, ran) 

where all the  (ink, ink+i) belong to I m T U ( - - I m T )  and where n > l .  Le t  
m C M be a ny  element  for which there  is a T - p a t h  f rom m o to  m - -  or, as we can 
say, t ha t  lies in the  same T-path-component of  M as m 0. Le t  e ,T (E1) , . . .  , e~T(E~) 
(ek = i 1, n _> l) be a T - p a t h  f rom m0 to m. Then  we def ine j(m) = ~ = 1  ekeE k. 

This defini t ion is consistent.  For,  let s11T(E~), . 1 1 �9 . ,  s , IT(E, , )  be another  T - p a t h  
f rom n~0 to  m; then  

s i T ( E 1 ) ,  , s n T ( E ~ ) ,  ~ 1 1 - -  - -  s , , , T ( E , , , )  �9 . .  s~T(E~) . . . . .  (c) 

is a cycle, so b y  construct ion (cf. (a) above) we have  

n~ 1 

8 k %  - -  ~ 8neE~ k = 0 . (C') 
1 1 

This relat ion says t ha t  the  def ini t ion of  j (m) is independent  of  the choice of  p a th  
f rom mo to m. So, if  C o is the  T -pa th - co m p o n en t  of  m o in M, we have  con- 
sis tently def ined Jco : Co---> Tl -- the  restr ict ion to  C o of the  required j .  And  jco 
is injective; for if  j(m') = j(m") and  i f  s i T ( E l ) ,  . . . , s~T(E~) and  siT(E1)1 1 . . . .  , 

1 1 tt s,#T(E~) are T -pa ths  f rom m 0 to  m' resp. m ,  relat ion (e') is satisfied. By  
construct ion,  (c) mus t  be a cycle, which means  t h a t  the  two pa ths  go f rom m o to 
the  same point ,  i.e., m ' =  m". 

We have to  ex tend  Jc~ to all of  M. So, for each T-path-component C we 
define an inject ion j c : C - - ~  I I  in precisely the  same manne r  as before�9 Bu t  the  
defini t ion of  / /  (cf. (a)) shows t ha t  for  a suitable class of  subspaces each two of  
which meet  on ly  in {0}, each space of  the  class contains precisely one set I m j c  
as a proper  subset.  So b y  composing each Jc wi th  a suitable t ranslat ion,  we get 
injcct ive mappings  Jc with  disjoint images; these toge ther  define an inject ion j 
on all of M. 

For  3~ The mappings  i~ toge ther  induce a linear mapping ~ : S --> H 1 (defined 

b y  il--(~Xk)=~i~k(Xk) for ~ x k C S ,  xk EEk). F i r s t n o t i e e t h a t  ~ i s con t inuous  

wi th  opera tor  p -no rm at  most  l ,  for 
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where ~x~ C S, wi th  xk E E k and the  spaces Ek distinct.  
Now, if sxT(Ex) . . . .  , s ,T(E~) (sk = ~ 1, n >_ 1) is a cycle, we have  for an y  

m o E M occurring in any  T(Ek) , 

0 = ix(too) --  jl(mo) = ~ ej~k(eEk), 
k = l  

since the  i~ and j l  are supposed to  sat isfy 2 ~ Thus,  an y  e lement  in the  set spanning 

H and  given in the  second member  of  (a) above is mapped  to  0 b y  il; hence 

iX(H) = 0. The mapping  ~b : II----~II 1 is then  def ined  as the  mapping which is 

induced b y  iL F r o m  the  defini t ion of  quot ient  p -norm we see t h a t  ~b has opera tor  

p -no rm at  most  1, for ~-x has. The c o m m u t a t i v i t y  of  the  diagrams, f inal ly,  is an 
immedia te  consequence of the  defini t ion of  r  

For  1 ~ at  last, let x be an e lement  in E 0, say, E 0C~2. B y  definit ion, 
[lxl[_ ~ Ilxl]. To show t h a t  ]]x]l >-- ][x]l, on the  other  hand,  let an a rb i t r a ry  c~nonical 
pre-image of  ~ in S be wr i t t en  

x ' = y ~ - 2 r ,  

where y = x - -  Xe 0 (notice t ha t  y e E0), 2 is a scalar, and r = ~ r e z ~ F e F ~  e o mod  
H,  for a suitable f ini te  subset ~ C ~c~{Eo} and suitable numbers  y~, n. We must  
then  show tha t  ]]x'[] > ][x][. Notice  tha t ,  by  defini t ion,  ][x'[l --~ ]]Yll ~- l ~ l ~ l l r l l  �9 Now, 
by  the  defini t ion of  H,  we know tha t  r is a linear combinat ion  of n, say, sums 

n k 

/ = 1  

such t h a t  

- -  T(Eo), ~klT(Ekl) . . . .  , ~k%T(Ek%) 

is a cycle ~ k  for each k. Or, if T(Eo) = (mo, ml) say, we m a y  express this in te rms 
of the  no ta t ion  of  the  proof  of  2~ for eve ry  k, ~ k l T ( E k l ) , . . . ,  ek%T(E~n k) is a 

T - p a t h  f rom m 0 to m r Also notice t ha t  e 0 = - ~ t  ek~ekt mod  H.  To avoid  tr ivial  
complications,  we exclude the  case when some Ekl equals E o (notice t h a t  E o ~ ~3). 

We f i rs t  t r ea t  the case when there  is only  one such sum (i.e., n = 1) and when 
no two te rms  of  this sum are multiples of  the same vec tor  eE. In  other  words, we 
suppose t h a t  r --~ s 1 and t h a t  T(Ell.  ) # • T(Elt~ ) when l' # l". Assumption 
(iv) and  the  tr iangle inequal i ty  in M give 

n~ 

ILx'II = Ily]L § lXlPllr]l = ]ly/I-~ ]A[P~ II%1tl] 
l = l  

n l  

--~ ]]Yll �9 ]~l p ~ g(Prx T(Ex,), pr~ T(Elt)) 
l = l  
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I t �9 

= Ilyll + I~[P(d(mo, ml) -~ d(m 1, ms) -~ . . .  + 
t 

d(m'n,_l, ml)), suitable ink; mo, m 1 as above  

IJY[I § I~]Pd(m0, rex) = I[YI] § ][~e01l 

[]Y + ~e01l = Ilxll, 

since, b y  assumption,  ~ilT(E11) . . . .  , e lnT(El , , )  is a U-pa th  f rom m o r ml ;  
so the  assert ion follows in this case. 

In  the  general  case (n > 1), we wan t  to  reduce  the  problem to  the  case n = 1. 
T h a t  is, i f  x '  = y ~ ~r is an a rb i t r a ry  canonical  pre- image in S of  x, we w an t  
to  f ind  ano ther  pre- imege x" = y ~- ks', where s' is a sum of  t y p e  (d), such thaV 
]]x'll ~ [Ix'][. Since we always have  ][y -~ 2rl] = IlylI § IAIP]IrI[ (by the  def ini t ion o f  
H'H on S), this means  t h a t  we mus t  f ind  s' wi th  lls'll _< llrII. This is done in five. 
steps. 

F i rs t  step: We show tha t  if  we are given r ~-- e o rood H and  write r = ~ F e F  Y~eF 
as above,  t hen  there is a U-path from m o to ml, consisting of elements in 4- T(~)  
only. This is no t  quite obvious; though  we know - -  f rom defini t ion of  sk - -  t h a t  

there  arre such U-paths  consisting of  e lements  in ~- T({Ekz}~l). For ,  one might  
ask: can i t  happen  t ha t  so m a n y  eEk-terms are cancelled in the  l inear combinat ion  

of  the  s k t h a t  a U-pa th  of  the  required  k ind  is impossible (since we can t ake  
so small t h a t  YF ~= 0 for eve ry  Y)? We will show t h a t  i t  cannot .  

We write  r = ~=10ksk. Then  

~ 0k = 1 ,  (e) 
k = l  

for  r ---~ sk ~ e o mod  H.  To proceed,  we need  a simple graph- theore t ic  device. L e t  
Z be a subset  of  M,  and  t ake  ~ = {(m',m")[m' e Z and  m" E CZ}. (Thus,  

consists of  the  edges connect ing Z and  C Z in the  graph  def ined b y  Im  T 
and  ment ioned  in 1.4 above.  Fur the r ,  the  or ienta t ion  of  the  edges of  ~ is in the  
direct ion out  f rom Z.) Fo r  each cycle ~-5~k (defined in connect ion to  (d)), we in t roduce  
a scalar va lued  funct ion fk def ined on Z. I f  an  e lement  z C ~ occurs r t imes in 
~ k ,  and  if  - - z  occurs s t imes,  we define 

f (z) = (r - s)O  ; 

notice  t h a t  this s i tuat ion m a y  be described in tu i t ive ly  as follows. When  we go 
a round  one round  in ~ k  (in the  na tura l  direction),  we pass s t imes into Z th rough  
z, and  r t imes out  of  Z th rough  z. An e lementa ry  considerat ion shows t h a t  

5fk( ) = 0 
ze2 

(for, loosely spoken,  when we make  our  round  in ~ k ,  we must ,  to ta l ly ,  pass into, 
Z precisely as m a n y  t imes as we pass out  there  of). ~ o w  define f(z) = ~ = l f k ( z ) ;  
summing the  relat ions jus t  s ta ted,  we get  
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f ( z )  = 0 .  (f) 
z e 2  

We will now use this result.  Assume, for  a while, t h a t  k~ is an injection.  Then ,  

i f  T ( E ) =  ~z, wri te  e~ = ees (where E E ~ ,  e = - } - 1 ,  z C Z). B y  definit ions,  
we see t h a t  the  p roduc t  of  Ok and  the  coefficient  of  e', in sk is precisely fk(z); 
and  the  coefficient of  e'= in r is f ( z )  (or more  str ict ly,  r : ~ y~e F • f(z)e:).  

F e F  
eF # :s z 

Also, if  z0 : (too, ml) e Z, we get  f(Zo) = ~k Ok : - -  1, b y  (e), since --  z 0 appears  
exac t ly  once in each ~ k ,  and  z 0 in no ~ k .  Now, let Z be the  set of  points  in 
M which can be reached f rom m o b y  a W-path, all o f  whose elements  are 
in =k W(~). I f  the  assert ion to  be shown were no t  vaIid, m x would be outside Z. 

^ 

Aiming at  a contradict ion,  we assume it  to  be so. Then  z 0 : (m0, zrh) e Z,  and  

f(Zo) ~- - 1, as we jus t  remarked .  Le t  z I e Z be dist inct  f rom %; i f  z x is outside 
• I m  k~, we have def ined f ( z l )  : O, and  if  z 1 belongs to  • Im  T ,  the  def ini t ion 
of  Z says t ha t  e~, is cer ta inly  outside {-~ er}geZ, so the coefficient f ( z l )  of  e:, 
mus t  vanish.  Thus,  f ( z )  -~ 0 whenever  z ~e zo, so t h a t  

f ( z )  -~ f(Zo) = - -  1 ,  

contradic t ing (f). 
Second step: Not ice  t h a t  the  assumpt ion  t h a t  W is inject ive is no t  essential. 

For,  def ine H 1 r- S as H 1 : Iin{eE, - -  eeE~.]T(E1) -= ~T(E2),  e = • 1). Then  
the  canonical  mapping  S ~ S / H  1 is immedia te ly  seen to  preserve length of vec tors  
in spaces of  ~ (regarded as subspaces of  S). We now regard  S / H  as a quo t ien t  
space of S / H  1 - -  ins tead of  regarding i t  as a quot ien t  space of  S. And  now the  
canonical  images of the  es in S / H  1 are in biunivocal  correspondence wi th  the values  
k~(E), so the  a rgumen t  m a y  be carried out  as before.  

Th i rd  step: We show t h a t  either r ~nay be writ ten as j u s t  one s u m  of  type (d), 
or the ~F wi th  F C ~ are l inearly dependent .  B y  what  was shown in the  f irs t  step, 
there  is a p a t h  elT(F1) . . . . .  e,.T(F~.), Fk E ~ ,  ek ~ • l ,  n '  ~ 1, f rom m o 
to  ~n 1. Then  we can form a sum of  t ype  (d), namely  s = ~kek~Fk, all of  whose te rms  

are in {=~eF}FeF. Since now c o =  ~ = s ,  we get  ~ - - s ~ - 0 ,  so t h a t  e i ther  r = s  
or ~ F e / f l ~ F  : 0, for  some fl~ which do not  all vanish.  

F o u r t h  step: We show t h a t  i f  the eF wi th  ~' E ~ are l inearly dependent,  then there 
! ! 

is an  r' ~ ~ e  ~ y~e~ ~- e o rood H such that at least one coefficient y~ vanishes and  
such that [lr'[I ~ [Ir[I. Thus,  more  expressively,  we can change r in such a way  
t h a t  the number  of  t e rms  in the  e~-exl~ansion of  r is reduced b y  one unit ,  and  
t h a t  the  length does no t  increase. 

So let  ~ e F f l ~  = 0 for some fi~ which do no t  all vanish.  For  an y  scalar ~, 
def ine  

F e F  F e F  
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l~otice t h a t  r(0) = r and  t h a t  r(~) ~ e 0 rood H for any  ~. We will show t h a t  
r(~) assumes minimal length when some coefficient ~F -~ vile vanishes; this will 
give the  assertion. B y  defini t ion of the p-norm on S, 

Since the  funct ion z--> lz] p is concave for z r 0 (since p < 1), the  funct ion 
A --> ][r(2)] l is concave in the  domain  where all coefficients are distinct f rom zero; 
so the  min imum must  be assumed in the complement  of this  domain,  as required. 
(For the real case, cf. fig. 1.). 

' llr( )Ll 

T 

Fig. 1. 
( p < l )  

F i f th  step: We conclude: Le t  the  canonical pre-image x' = y + 2r, r = ~.Fe F ?Fer, 
of  ~ be given. I f  the  vectors eF, F E 7, are linearly dependent, we can, by  what  was 
shown in the  four th  step, f ind  another  pre-image Xl ---- y + ~rl, for which rx = 

1 e ~.Fe f~ ~E F wi th  71 consisting of the  elements in 7 except one and such t h a t  ]frill _< 
[[r[[, i.e., [[Xl] ] < [Ix']]. Now we apply  the  same a rgument  to x 1 as we did to x'; 
and  then  we proceed step by  step. Thus,  we get successively new pre-images of  
in such a way  t h a t  7 is replaced b y  smaller and  smaller subsets; and  a new pre- 
image is never longer t h a n  a n y  of the  previous ones. Since 7 is finite,  the  procedure 
mus t  stop some time. So, u l t imately ,  we get x" = y + Xr", where r" is a linear 
combinat ion of linearly independent vectors eE, and  ][x"l] < Nx']]. B y  wha t  was 
shown in the t h i rd  step, r" can be wri t ten  as one sum of type  (d). Since the  terms 
of  this sum are l inearly independent ,  a n y  two of t hem are certainly not  proport ional  
to each other; and  we are back to the case f irst  t reated.  Hence, we know t h a t  ][x"[] ~_ 
[Ixl[, and  a fortiori [[x'[] ~_ ][x]]. 

We state  explicitly ye t  another  proper ty  of / /  to be used in the sequel. 

1.6. P~OPOSITION. With notations and assumptions as in 1--1.1, let El, E 2 
be distinct spaces of ~ such that the pairs ~P(E1) and ~(E~) of elements of 2I  
have one element, m ~ pr~ ~(E1) ---- pr  1 ~(Ez), say, in common, such that it belongs 
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to no other element pair ~(E). Let f~ be continuous linear forms defined on subspaces 
K~ ~ E~ with e~ ~ E~ for Ir = 1, 2. _Further, let ~ be the set obtained by replacing 
E~ by K~ in ~ ,  k ~ - 1 , 2 .  Then, i f  f l ( e E , ) + f 2 ( e s , ) = O ,  the forms f~ have a 
common extension to II(5~). (Notice that by 1.3, II(~X) may be regarded as a subspaca 
of the tvs II(~).) 

Proof. Firs t  ex tend  f l  and  f2 to forms f l  and  f2 on K 1 (~ K 2 which are 0 
on K z resp. K 1. B y  1.3, K a --~ I I ( ~ { K 1 ,  K2} ) can be considered as a closed 
subspace of / / (~.) .  So the  form h = f l  + f 2  on _K 1 G K2 c / / ( ~ )  m a y  be ex- 
t ended  to the  lat ter  space b y  means of an extension ~ which is 0 on K 3. This 
defini t ion is consistent,  since )~(eE, + es,) = fl(eE,) + f2(eE,) = 0 and eE, + e~, 
spans the space (K 1 $ K2) fl K3 if  this is =~ {0). For  first,  L e m m a  1.7 below will 
show t h a t  lin {eEl} D K~ fl K a (k = 1, 2). Fur ther ,  since m is in no other pair  

7t(E) t h a n  ~(E~) and  7t(E2), the  defining relation (a) in the beginning of 1.5 
gives lin {eE., eE,} fl K a ~ lin {e~ + eel}, whence the assertion. 

1.7. LEM~A. With notation and assumptions as in 1.3, we have for any E o C o~,~ ~,, 
that 

I m  (g) rl i s ( G ) =  { 

lin {i~o(eEo)) i f  there is a cycle, one element of which is 
and the others belong to =J= ~(~ ' )  

(0) otherwise. 

~(Eo) 

Proof. B y  1.2 and  1.3, we see t h a t  the intersection is contained in lin (i~o(eEo)). 
Fur ther ,  (a) in the  beginning of  1.5 shows t h a t  iEo(e~o) is outside I m  g0 (notat ion 
as in the  proof of  1.3 in 1.5) if  and  only i f  T(Eo) fails to  be in any  cycle of which 
the  other elements are in =~ ~ ( ~ ' ) .  Bu t  by  construction we clearly have i~o(eE.) 
at  the  same distance from Im go as from lin {iE(eE)[E e ~ ' ) (C  Im  go). Bu t  since 
this space has finite codimension in lin {is(eE)[E e "~}, the vector  i~o(eE,) is seen 
to be outside thereof  --  i.e., outside I m  go --  if  and only if  the ment ioned distance 

is positive, t ha t  is, if  and  only if  iE0(eEo ) is outside I m  20 = Im  g. So the assertion 
follows. 

2. Example. When  given any  ordinal v and  any  number  p,  0 < p < 1, we 
are now ready  for the  actual  construction of a p-normed and complete tvs E such 
that A~E is one-dimensional. 

We use t ransf ini te  induction.  
A. Assume t h a t  v ----- v' + 1 is any  ordinal which is of the f irst  k ind  and  ~ 2, 

and  t h a t  we have a space E ~ for which A~'E ~ is one-dimensional. We are going 
r form E by  means of  the me thod  of 1. Le t  Ekl, 1 ~ / c < l ,  l ~ l ,  be copies 
of  E ~ and  let, for all /c, l, the  vector  ekl be a generator of length 1/l of A"Ekl. 
Fur ther ,  let M be a metric space wi th  points m0, ml, and  mk~ for all k, l wi th  
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l _ _ < k < l .  Wri te  m o=mo~, m ~ = m u ,  l > l ;  then  ff d ( . , . )  is the  distance, 
assume t h a t  d(m~_~ . t ,m~)=l / l  for all k and  1. Define ~ : { E ~ } ~ - - - > M •  
b y  ~(E~) = (m~_~,t, m~). We m a y  describe this  as follows: M is the  set of  nodes 
,of the  infinite graph in fig. 2, and  I m  ~ consists of  those pairs which form end- 
points  of some edge. 

~ig. 2. 

m0 m I 

Notice t h a t  we have not  defined M uniquely.  However,  this is inessential; 
~cf. 1.4. 

We now take  E ~ H({Ekt}, {ekt}, M, T). We want  to  show t h a t  A 'E  is the 
one-dimensional space which is spanned by ell (the vector  corresponding to the  pair 
(m 0, ml) ). First ,  e n ~ (l/l) (lell ~- . . .  -~ letl), wherein I[lekt[I = Ill p .  [[e~lll-= 1P-1--~ 0 
as l--> ~ .  B u t  we also know t h a t  ekl E A t E ,  since AtEkz r  (cf. 1.2). 
Thus  e n E co (U N AtE)  for every 0-neighbourhood U; so ell E A A t E  = AYE. 

Conversely, we have to show t h a t  any  point  outside the linear hull of  e n is 
also outside A~E. First ,  we have EkaN A t E  ~ AtEkt = lin{ekl}. For  the 
f i rs t  equal i ty  is shown by  t ransf ini te  induction; suppose t h a t  we know t h a t  
Nr (Ekt N At"E) ~ Nr A'"'Ekt and want  to show t h a t  Eu N A~'E ~ Ar 
for some v" < v'. Now, any  given point  in nr A k l~A Ekt m a y  be separated 
from A~"Ekt by  a continuous linear form f on Nr A'"Ekt. Since ekt E A~'Ez, 
we have f(ekO = 0; bu t  E~ has intersection lin {ekl} wi th  the  closed linear hull 

of all the  Ek, l, with (k', l') # (k, l). (This follows from L e m m a  1.7.) So we m a y  
�9 ytrs 

,extend f l inearly to f ,  say, on hn (rlr A Ekz, E ~) c E, by  taking f (E  ~) ---- 0. The 
hypothesis  now shows t h a t  the domain of f includes Nr Ar Since thus  any  
poin t  in the  intersection of  the  la t ter  space wi th  Ekz can be separated from A~'Ekt, as 
:soon as it  is outside this space, by  such an f ,  i t  follows t h a t  Ekt ['l A (N , , ,< , ,Ar  
Ekt fl A " E  ~ A~'Ekz. The converse inclusion follows, however, f rom 1.2 applied 
to  the inclusion map. 

Thus,  since now Ek~ N A t E  = lin {ekl}, i t  remains to show t h a t  any  ek~ wi th  
(k, l) # (1, 1) is separated from 0 by  a continuous linear form which is defined 
on some space containing A " E -  i.e., containing all the e~,t, when k' and  l' 
range over all possible values. Bu t  notice t h a t  the  indices (k, l) # (1, 1) are those 



300 ARKIV F()R YIATEMATIK. VOL 9. l~o 2 

for  which the  pair  ~(Ekt ) has a t  least one point  which it  has in common wi th  jus t  
one o ther  pair.  So i t  follows f rom 1.6 t ha t  a n y  l inear form on the  one dimensional  
space spanned b y  ek~ has  a cont inuous extension to  a subspace of  E conta ining 
all the  ek,~,. 

B.  I f  v is a l imit  number ,  we can use a quite  analogous argument .  We just  h av e  
to  t ake  a larger M; having m 0 and  ml, we then  take,  for  each ordinal v' < v, 
points  m~ in jus t  the  same way  as we took  mkz before. Fur the r ,  we take,  for  each 
r ' <  v, spaces E~ such t h a t  A~'E~ are one-dimensional.  The  a rgumen t  in A 
now carries over  ve rba t im  except  for  some obvious t ransla t ions  - -  e.g., this t ime  
we show t h a t  e n E co (U 0 N~,<~ A~'E) (for all 0-neighbourhoods U) r a the r  t h a n  
e n e co (U fl A"E). 

C. F o r  v ~ 1, we can also use the  a rgumen t  in A; b u t  this t ime we take  the  
Ekl one-dimensional.  Fur the r ,  the  role of the  A~'E and  A~'Ek~ in A is now p layed  
by  E resp. Ekt. (So the  assertion of  the  second pa ragraph  fi'om the  end in A now 
becomes trivial.)  

2.1. PROPOSITmN. I f  0 < 19 < 1, then a(') may assume any ordinal value for 
complete p-normed spaces. 

Proof. F r o m  the  example  follows t ha t  a(.) m a y  equal an y  ordinal  value of  t h e  
f irs t  k ind  for such spaces. B u t  if  r is a l imit number ,  consider a complete  p - n o r m e d  
space E 0 wi th  a(E0) = ~ -~ 1. F r o m  1.2 it  follows t h a t  if  we take  E ~ Eo/A'E, 
we get  a ( E ) = v .  

2.2. Remark. The space which we get  in C of  example  2 tu rns  ou t  to be iso- 
morphic  to  a space given by  Peck  [6] as an  example  o f  a space which fails to  h av e  
separat ing dual  though  i t  is quot ient  space of  the  dual  separa ted  space l P. 

2.3. Example. Consider the  subspace lin{e11 ~- ekzl/c _> 2} of  the  space E which 
we get  in C of example  2. Since it  does no t  contain e11, i t  is separa ted  b y  its dual. 
On the  o ther  hand,  e n is in its closure (for ]lekill--7 0 and  so ell ~- ekl--+ e n as 
l --> oo). Then  also all ekl are in the closure, which hence equals E .  Thus,  we h av e  
a simple example  of  a tvs  which is separated b y  its dual  b u t  whose complet ion is not .  
Cf. Klee  [2] and the quest ion of  A. and W. Rober t son  quoted  and answered there.  - -  
This shows t ha t  it  is worthwhile  to  emphasize completeness in the examples  above  
(cf. I 7.8 and  2.1). 

3. Hav ing  carried out  the  p rogram of  this paper, we now devote  this br ief  sec t ioa  
to  ano the r  appl icat ion of  the  const ruct ion  of Section 1. 

3.1. PROPOSITION. For any number p with 0 < p < 1, every metric space 
M (without linear structure) has an isometric imbedding j:M---> J(M) into a 
complete p-normed space J(M) with the following universal property: 
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I f  jI  : M--> E is an arbitrary isometric, imbedding into a complete p-normed 
space, then there is a linear mapping ~ : J(M) --> E for which the diagram 

M 

J(~l) >' E 

is commutative up to translation [cf. the remark just after 1.1] and which is continuous 
with operator p-norm not greater than one. 

(Notice that J(M) is unique up to isometric isomorphisml) 

Proof. This is a simple special case of 1.1. Namely, let N be a subset of M •  
such that  for each element (m', m") of this product,  precisely one of the elements 
(m', m") and (m", m') belongs to ~V; and then, let T be a bijective mapping from 
a set c@ of one-dimensional spaces. Let  each of these spaces be metrized by  means 
of a p-norm so that  condition (iv) is fulfilled for suitable generators (eL)L e v of the 
spaces of 6 .  Then J(M) = II(~,  (eL), M, T)  is the required space; for, to say 
that  j is isometric is the same as to say tha t  each of the spaces of ~ is isometrically 
imbedded in J(M) (by the metrization of these spaces); since this argument is 
valid for j l  as well as for j ,  we get the universal proper ty  of J(M) from 3 ~ of 1.1. 

Now, the space / /  of 1.1 does, indeed, satisfy a somewhat stronger universal 
property than the one given in 3 ~ of 1.1; for instance, for the special case considered 
in the preceding proof, the very  same argument as tha t  for 3 ~ in 1.5 gives the fol- 
lowing. I f  ~ : M - - >  iV is a contraction (i.e., a mapping tha t  is never length-in- 
creasing) into another metric space N, there is a linear mapping ~b : J(M) --> J(N) 
for which the diagram 

M ~ N ). 

J(M) ) J(N) 

is commutat ive up to translation and which has operator p-norm at most one. 
Thus we get: 

3.2. PnOPOS~TION. For fixed p, the map M --> J(M) is a functorial map from 
the category of metric spaces and contractions to the category of p-normed spaces and 
linear mappings with p-norm at most one. 
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