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Consider a non locally convex topological vector space E. Suppose there is
a non-zero point x in the subset F, c £ of all points which cannot be separated
from the origin by any continuous linear form on E. One might ask whether z
can be separated from the origin by a continuous linear form which is defined only
on E,. It will be shown by means of examples that this may be the case. Since E;

is a linear subspace — namely, the intersection [ f~(0) of all closed hyperplanes
feE
through the origin — this fact gives rise to a more general question: Let E, be

the subspace in F, of points which cannot be separated from the origin by any
continuous linear form; and then define recursively subspaces Hs D E;D ...
In a natural way we thus get a transfinite decreasing »sequence» (indexed by the
ordinals) of closed linear subspaces of K. Obviously, this sequence must become
stationary at some ordinal «(Z). The observation just mentioned shows that this
need not happen at once, i.e., we may have K, &= E,, so that «(#) > 2. Thus we
agk: Which ordinal values can be assumed by «(+)? Our aim in IT below is to answer
this question by constructing examples to show that even for locally bounded
spaces, «(-) may assume any ordinal value,

In I below, we investigate some general properties of the transfinite »sequence»
mentioned above.

As a by-product of the constructive methods employed in IT, we obtain (Section
11.3) a certain isometric imbedding of metric spaces into p-normed spaces, which
has universal and functorial properties.

For brevity, we will write tvs for topological vector space(s). Further, £’ will
denote the (topological) dual of a tvs B, and o is as usual the least transfinite
ordinal. All tvs are supposed to have the same scalar field, which may be the real
or the complex number field. A linear subspace of a tvs is always topologized by
the subspace topology.
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I. General considerations

1. Definition. For a tvs E we write
AE = f40).
fEE
By transfinite induction we define for every ordinal v a closed linear subspace
A'E  so that
AE = A( N A'E) .

v <y

1.1. ProrosirioN. Under 2, the class {A’E}, is well-ordered and has a last
element. There is a least ordinal v, such that A"E = A**'E.

1.2. Definition. For a tvs K, the ordinal », of 1.1 is denoted ().

1.3. Remark. To see that Definitions 1 and 1.2 are worth-while, it is of course
essential to show that there are tvs ¥ with «(F) > 2. As pointed out in the
introduction, it will be seen below that «(-) may assume any ordinal value (see
II.2.1 and cf. also Section 7 of I).

2. PROPOSITION. For tvs £ and F and a continuous linear mapping f: E — F,
we have, for every ordinal v, that f(A’E)c A’F. If f is open and f71(0) c A*E
Jor some v, we have f(NE)= A'F for v <,

Proof. We see that

JAEB) = f( N ¢7(0))

c/( NSy 0) = N y7(0) = 4F,

which gives the first part in the case » = 1. If f is open and f~(0) c AE, every
element in E’ is of the form vy o f with ¢ € F’; hence we may replace the inclusion
by equality.

For arbitrary v, the relations are now obtained by straightforward transfinite
induction.

2.1. CoROLLARY. Let E be a tvs. For every quotient space E[H, say, such that
Hc A®E, we have «(E/H) = x(E).
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2.2 CoroLLARY. A ftvs B has a quotient space E[H with «(E/H) =y when-
ever v < (). :

Proof. Take H = XK.

3. ProrosiTioN. A tvs B has precisely one subspace L c E such that
() L' = {0} and
(ii) every subspace H c E{L, H # {0}, has H' # {0}.

Proof. 1° Uniqueness: Suppose (i) and (ii) to be satisfied for L = L, as well
as for L = L,, say. If L, d L, the subspace (L, -+ L)L, of E/L, is distinct
from {0} and has a non-vanishing continuous linear form f on account of (ii)
for L = L, Then f induces a non-vanishing continuous linear form on Z,;, and
thus raises contradiction against (i) for L = L,. Hence L,cC L, and similarly
Lyc L.

2° Existence: Let L, be the linear hull of all subspaces with dual {0}. A
given continuous linear form on L, vanishes on all subspaces with dual {0}, and
thus on each of a class of sets spanning L, and so on L, Hence L, = {0}. The
subspace L, is also the largest one with dual {0}.

Suppose H is any subspace 3= {0} of E/L, Its canonical inverse image H,
in E has a non-vanishing continuous linear form f by the preceding paragraph
(since H;\ L, #+ J). But f(Ly) =0, so f induces a non-vanishing continuous
linear form on H = H /L, Hence (i) and (ii) are satisfied when L = L,

The proof also gives the next proposition (same notation).

3.1. ProprosiTION. The subspace L is the largest one which has dual {0}.

3.2. THEOREM. When E and L as in 3, we have L = A*BR.

Proof. Since A*PE clearly has dual {0}, we get A“PE c L from 3.1.

Conversely, we show by transfinite induction that L < A’E for every w.
The assertion is trivially valid for » = 1; thus assume that L c A”E whenever
v <wv. But Lc | A”E = P,, say, certainly implies f(L) = 0 whenever f € P,.

v <

Hence L c A’E by Definition 1.

3.3. ProrostTioN. When E and L asin 3, we have, for every v, that (A’E)|L =
A(E|L). Further, x(E) = x(E|L).

Proof. Follows from 3.2, 2, and 2.1.

3.4. Definition. A tvs will be called an A-space if every subspace distinct from
{0} has dual distinct from {0}.
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3.5. Remark. When E and L as in 3, notice that (i) F has dual {0} if and
only if £ = L, and that (ii) E is an A-space if and only if L = {0}.

Furthermore, L is the smallest subspace for which E/L is an A-space. (Follows
from 2.)

We finally state yet another characterization of L.

3.6. ProrosiTioN. When E and L as in 3, every continuous linear mapping
[ E—F into an A-space may be canonically decomposed according to

E:s E/L"> F,

where g and h are continuous and linear. Moreover, L is the largest subspace for
which such a decomposition may be accomplished for all f and F.

Proof. If the image in F of L is distinct from {0}, it has a non-vanishing
continuous linear form ¢, say. Then ¢ o f does not vanish on L, which is contra-
dictory.

The last statement now follows if we take F = E/L and let f be the canonical
mapping.

4. Consider an A-space K. If E is not locally convex, a continuous linear
form may of course not always be extended from a subspace to E. However, if #
has separating dual — that is, if «(F) = 1 — a continuous linear form defined on
a finite-dimensional subspace may always be extended to K. But if «(E) > 2,
not even that is true; just let the given form be defined and non-vanishing on a one-
dimensional subspace of AE. The best we can accomplish in such a case is to
examine whether the functional may be extended to certain subspaces or not. Thus
we shall say that a class € of subspaces of E is an extension-class if the following
condition is satisfied:

For every subspace K and non-vanishing continuous linear form f defined on
it, there is a space C €€ such that

@) IKNCO) = {0} and

(ii) for every finite-dimensional subspace F of K N C, the restriction of f

to F can be extended to C.

Of course, the class of all one-dimensional subspaces forms a very trivial example
of an extension-class. To obtain something more significant, we restrict our attention
to extension classes that are fotally ordered under inclusion. If «(#) is finite, there
is such an extension-class, i.e., the class £ = {A’F}, U {E}. Namely, if f and K
are given, take C = A™E, when n, is the least integer such that f(K N A™E) ==
{o}.

Before turning to a more general situation, we introduce another new notion.
We say that E is an AP-space if every 0-neighbourhood contains all but finitely
many of the spaces of <£. — Notice that £ may be an AP-space only if x(f) <o
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and () A’E = {0}; and further, the topology on E may be coarsened to an A4P-

v <

space topology if and only if the latter conditions are fulfilled. If «(E) is finite,
I is trivially an A4 P-space.
Furthermore, let us by an A’-space understand an A-space which has a 0-neigh-
bourhood base of which each element U has the property that () oU is a linear
>

>0
subspace. This latter condition is not automatically fulfilled in a non locally convex

tvs; however, it is, for instance, in the case of a supremum topology of locally bounded
topologies. (In view of 7.7 or I1.2.2, it is clear from the remark of the preceding
paragraph that there are, indeed, AP-spaces of the last-mentioned kind with « = w.)

4.1. ProrosITION. For an A'-space H, the following statements are equivalent:
(i) & is an AP-space,

(il) £ has an extension-class that is well-ordered under O, and

(i) £ has an extension-class that is a decreasing sequence under inclusion.

Proof. (i) implies (iii): The argument above for «(F) < w is applicable also in
the case «(F) = w. For suppose f and K to be given. Then f is bounded on the
intersection of K with some O-neighbourhood U, say. Since X is an AP-space,
U contains A™E for some mn, <<w. Then f(K N A™E)={0}, and we can
proceed as before. So <£ is an extension-class.

(iii) ¢mplies (ii): Trivial.

(il) smplies (i): Let € be a well-ordered extension-class.

Aiming at a contradiction, we assume E not to be an AP-space. On account
of the well-ordering, the class € has then, for each n < w, a largest space C,
which does not contain A"E. Then C, contains A™'E; otherwise, the defining
conditions for an extension-class would not be fulfilled if we let K be a one-dimen-
sional subspace of A"*'E notin C,. Forif C° € €, then C° has intersection {0}
with K — and thus we have f(K N 0% = 0 for every f — exceptif C°\\ C, + ©;
and in that case, we have C° D A"E, so a non-vanishing f on K c A™'E can
certainly not be extended to C°.

Since K is an A’-space that is not an AP-space, we can now find a 0-neigh-

bourhood U such that N = (] ¢U is a linear subspace which does not contain
o>0
AE for any n < w. So we can take elements z, € A”E \ N, n < w; then we
take for K the linear hull of N U {z,|n < w}. We may assume that N D ) C,.
n<w
(Otherwise, replace U by U + N C..) For each » < o, we define a continuous
n<<w

linear form g, on K so that ¢a(z.) == 0 and so that ¢.(K N A™'E) = 0; this is
possible, since K N A™'E has finite codimension in K. Further, by the choice
of U and 2, we see that each of the ¢, is bounded on U N K; so take y, > 0
so that y.lgs] < 1/2" on U N K. By taking f= 2,.y.9. on K, we shall have our
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contradiction against the defining properties of an extension-class. First, f is con-

tinuous, since [f| <1 on U N K. Then, on account of f( M C.) =0 (seen from
n<w

f(N) = 0, which follows from [f] <1 on U N K), it is sufficient to show that
f cannot be extended to C° D (., say, from the one-dimensional subspace spanned
by 2,., €C.N K. This is so, for ¢°D(, D A™'E and z2,,, € A"P’E.

To illuminate the situation somewhat, we state the following simple proposition.

4.2. PROPOSITION. For a totally ordered extension-class € of an A-space E,
we have card € > card min {x(E), »}.

4.3. Remark. The notion of AP-space clearly has the following significance.
An A-space E isan AP-space if and only if it is the inverse limit of some A-spaces
with finite «-values (mamely, H/A"E where n << w; cf. 2 above).

5. For a tvs £, it isnatural to ask whether the A’E-spaces may be characterized
in terms not involving these spaces. A first step in this direction was taken in 3.2
above, where we characterized AY®)E. Also in 4—4.1 our pursuit was to enlighten
this question; namely, the AP-space property, which is defined as a property of
the class {A’E},, is there related to the existence of certain extension-classes;
and the latter notion is defined otherwise. And notice that the case x(Z) = w there
appears as »criticaly. — The rest of the question we have to leave as an open problem.

6. This is an auxiliary section.

6.1. Definition. Let E be a vector space. In accordance with Landsberg [3],
we say that

a) a functional x— |jz| is a p-norm, where 0 <<p <1, if it satisfies

() lle + gl < Il - [yll,

(i) [|[Az]| = [AP|lz]l, and

(iii) |lz[| = 0 implies x =0, whenever =,y € E and A1 scalar;

b) if a p-norm ||| on E is given and if thereby K is considered as a tvs
with 0-neighbourhood base {{x||jz|| < 2}|4 > 0} (this is certainly a 0-neighbour-
hood base of a vector space topology; cf. Landsberg [3]), then E is a p-normed
space.

6.2. Examples. We remind of some common examples of p-normed spaces:

a) the spaces P of sequences x = (£, &, ...) such that >7 |&P < o, with
p-norm |lzf] = > [&P. For p < 1, we here have simple examples of non locally
convex spaces that are dual-separated (Tychonoff [7]; cf. also Landsberg [3]).

b) the spaces LP(0,1) of measurable functions x(tr) on (0, 1) such that
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f ]x 7)|Pdr << + o (or, properly, certain equivalence classes of such functions)
Wlth p-norm x| = f]x (v)fPdv. The L?(0,1) with p << 1 are known not to

have any non-vanishing continuous linear forms (Day [1]).

¢) the quotient space E/H of a given p-normed space £ with p-norm [,
say, for a closed subspace H. Then the quotient space topology is given by the
quotient space p-norm (2] = inf{|lyl|ly € - H}, if the canonical mapping
E —E|H is written z— 2.

Also, we introduce:

d) the p-normed direct sum of a class {£,} of p-normed spaces with p-norms
{IIIl}, say, as a p-normed space S as follows. Consider the algebraic direct sum
®, B, of the linear spaces B, i.e., the linear space of all formal finite sums >, x,
such that z, € B, and all but finitely many of the z, are zero. Then the p-normed
space S is defined as the linear space @, £, endowed with the p-norm ||| given

by 12, @)l = 2., k.-

6.3. Example. We also recall the space S(0, 1) of measurable functions on (0, 1)
with the topology of convergence in measure. This topology is also given by the metric

d(x, y) = ' 1e(e) — (o)l dr. It is well known that this space has dual
= T (e — gl 7 T ell e P

{0} (cf. [5]).

6.4. We now introduce some notation to be used henceforth. By co X we
denote the convex hull of a set X in a linear space. E; and lin X will be the linear
hull. If F isa tvs, co X and lin X will stand for the closed convex resp. linear
hull. Further, we will make extensive use of the following simple consequence of
Hahn-Banach’s theorem:

A point in a tws B belongs to the convex hull of every 0-neighbourhood if and only
if it is not separated from 0 by E' (LaSalle [4]).

Otherwise stated: Let 93 be a 0O-neighbourhood base in E. Then

NcolU = AE .
Uep
In this connection, notice that Definition 1 above may thus be rephrased in
terms of convex hulls of 0-neighbourhoods in subspaces:

6.5. ProposITION. Let E be o tvs. For a class A of subsets of E, write icA
for the intersection of the convex hulls of the sets of A. Further, let B be a O-neigh-
bourhood base of K; and define inductively
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ien' = icPB
ien’ = ic{U Nicn” | U € B, v <}
for all ordinals v. Then
ien” = A’H

for every ordinal .
Proof. By transfinite induction.

7. We now turn to the problem of finding tvs £ with «(E) > 2. First we
prove a general assertion on sufficient conditions for a given tvs to have a sub-
space with «-value > 2.

7.1. THEOREM. Let E be a metrizable tvs and K C E a closed subspace which
ts separable. Suppose there is a decreasing sequence {E;}>, of closed subspaces of
E such that

i) OB =K

(i) AE,D K, i>1.

Then E has a closed separable subspace K, D K such that AK, = K.

In particular, if K is dual-separated, we get K, with «(K,) = 2; and, more
generally, if «(K) is finite, we get «(K;) = x(K) + 1.

Proof. Let {V,};, be a countable 0-neighbourhood base of E and {z.};io, a
sequence which spans K. By condition (ii) and 6.4 above, we can take w; € K
for ¢ >1 and 1 <j <k, say, so that

1° 2, €E,N TV,

2° 2z, € co {xij};‘;l, 1<n<zq,
for each ¢ > 1 and suitable k..

Now take K, = h_n({xu} U K). By construction, every point of K is in
the convex hull of every 0-neighbourhood (for {z,} spans K and {V,} is a base);
so by 6.4, K c AK;. On the other hand, every point # in K, \ K is outside
AKy; for, by (i), the point x is outside E; for some ¢ > 2. By construction,
E;N K, has finite codimension in Kj; so the dual of K, separates z from 0,
as required.

We will make particular use of a special case:

7.2. COROLLARY. If E is a metrizable tvs and K a closed separable subspace
which has separating dual and which is intersection of a decreasing sequence of sub-
spaces Ky D E,D ..., each of which has dual {0}, then there is a closed (separable)
subspace K, such that AK; = K (and thus «(K,) = 2).
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7.3. CoroLrARrY. Let E be a metrizable tvs such that for every closed subspace
K which is an A-space, there is an (isomorphic) imbedding i : K — E such that
E satisfies the conditions of 7.1 with i(K) in the place of K. Then, for any n < w,
the space B has a closed subspace K, with A"K, one-dimensional (and thus «(K,) =
n-+ 1)

Proof. Start with a one-dimensional subspace K and find K,; then take K,
in the place of K to find K, and then go on step by step.

7.4. Example. Consider the space 8(0, 1) of measurable functions (cf. 6.3 above).
We can then apply 7.2 in the case when K is the one-dimensional space of all
constant functions. Namely, let E, be the subspace of all periodic functions with
period 27% (k> 1). Clearly, K is the intersection of all the E,, and each E,
has dual {0} (since E, is essentially S(0, 27%), which space is isomorphic to 8(0, 1)
and thus has dual {0}). Hence S(0,1) has a closed subspace K, with AK, one-
dimensional (and thus «(K;) = 2).

(See also 7.9 below.)

7.5. Hxample. Similarly, LF(0,1) with 0 <p <1 has a closed subspace K,
with AK, one-dimensional.

7.6. HExamples (continuation). We will now proceed and show that also the
conditions of 7.3 are fulfilled for £ = S(0, 1) [resp. LF(0, 1)].

To that end, first notice that (0, 1) has the same measure space structure as
12 = (0, 1)x (0, 1); so 8(0,1) [resp. LP(0,1)] may be identified with the cor-
responding space S(I2) [resp. LP(I%?)] of measurable functions on I2. Thus, we
can define the required imbeddings ¢: K —>FE of 7.3 as imbeddings S(0,1)D
K iy 8(I%) [from now on we omit the phrase sresp. (corresponding for) LP» after
statements like this one].

So let K be a closed subspace of 8(0,1). We will find < :§(0, 1) — S(I?) and
subspaces K, D B, D ... of S(I?) such that their intersection equals ¢(K) and
such that each of them has dual {0}. Consider the elements of 8(0, 1) as functions
f(0) with 6 ranging over (0,1) and the elements of S(I?) as functions f(6;, 6,)
with 6; and 0, ranging over (0,1). (Thus, we denote the coordinates of I? by
6; and 0, resp.) Whatever K may be, we define the imbedding 4 by means of

8(0, 1) D K 3 f(6) -> f(60:) € S(I?) ;

thus, we let ¢ range in the subspace of functions that are constant in the variable
B,. Clearly 4 is an isomorphic imbedding. It remains to give the E,, which is
done by

B, = E{g(@l) - h(0,)lg € K; h is periodic with period 27%}.



288 ARKIV FOR MATEMATIK. Vol. 9. No 2

Then K, has dual {0} (cf. 7.4); we must show that ), E, = #(K). First,
by definitions, the intersection contains #(K); conversely, an element fy(6;, 6,) of
the intersection will be shown to belong to i(K). Since any function of E, has
period 27* in 6, (for almost all 6;-values), the function f,(6,,6,) is essentially
constant with respect to 0,; so write f4(0;, 0,) = ¢o(0;). Then ¢, — regarded as an
element of S(0,1) — is to be recognized as an element of K. It can be, for if
f(01,8,) belongs to E,, say, then, for almost every fixed 63, the function 6; —
f(6,.05) — regarded as an element of S(0,1) — belongs to K; in particular,
go € K.

Thus, 7.3 applies and gives:

For every positive integer n, the space S(0, 1) [resp. LP(0, 1)] has a closed sub-
space K, with A"K, one-dimensional (and thus «(K,) =n + 1).

7.7. Examples (continuation). We can now easily take one more step: First,
notice that the spaces 8, = S(27% 27%*!) where k> 1, may be regarded as
subspaces of 8(0, 1); further, there are natural continuous and open projections
m : 8(0, 1) — 8, (defined as the restrictions of functions in S(0, 1) to (27%, 27F+1)
[resp. corresponding for LP]. By 7.6, take for each k& > 1 a space K, c S, such
that A*K, is one-dimensional; and let K° c 8(0, 1) be the closed linear hull of
the K,. Now, proposition 2 — applied to 7, and to the imbedding S, — S(0, 1)
— says that m(A’K°) = A’K,, for all » and k. This gives on one hand A"K° =+
{0} for n < w, and on the other hand N,., 4"K° c M 7 '(0) = {0}. Thus we
find that 8(0,1) [resp. L?(0,1)] has a closed subspace K° with «(K°) = w.

7.8. Remark. Why are we particularly interested in finding closed subspaces in
7.1—7.7t — Because these are complete when we start with a complete space E
(such as 8(0,1) or L*(0, 1)); and in general, «(-) is not invariant under completion.
(See II.2.3 below.)

7.9. Remark. Consider the situation in 7.4. It might be interesting to see explicitly
what the found subspace K; may look like in this particular case. To that end, let
us go back and examine the proof of 7.1. What we want is then to give elements
2 which are of the kind mentioned there and which thus, together with K, span
K.

Noticing that K is generated by the constant function 1 on (0, 1), we thus need
functions x;;(t) on (0, 1) which satisfy

(1) xy € E;

(1) 2 — 0 (independently of j) as 7> oo (convergence in measure)

(2) 1€co{xy}; for every i >1,
where the E; are as defined in 7.4. Denoting by
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N1
2
:N—!—l T

sin2 —
2

sin2 T

Fy(7) , N>1,

the Fejér kernel on the unit circle, we claim that we may take
S L
zij(7) = Fi| 2n 21—|—; , 1 <j <4, 1>1.

Namely, (1') and (1”) follow from well-known properties of the Fejér kernel;
for (2), notice that we have 1 = (1/d)(z;; + . .. -F 2;;) from the well-known relations

2 N
FN(1)=1+N+1§(N+1—n)cosn1: and

> cos 2ak (0 + %) = 0 for integer k£ == 0 and any 6.
=1

We have shown that the space K, found in 7.4 [resp. 7.5] may be the space

Tiﬁ{l, Fi<2n<2ir + %))} i>1, 1<j<i.

II. Constructive methods

In this chapter, we shall first give a general method to construct p-normed
spaces with certain properties. Then we will use this to get the announced example
which will show that definitions I 1 and I 1.2 are meaningful for all ordinals. The
constructive method to be employed will be presented in a somewhat stronger
form than required for our chief purpose. For the sake of completeness it may be
remarked, that to fulfil this purpose, we could have got away with a simpler but less
illuminating device.

1. Suppose there to be given, for a fixed number p (0 < p < 1)

(i) a set € of p-normed spaces,

(ii) for each K €6, an element ej € E,

(i) a metric space M (with no linear structure), and

(iv) a function ¥:%-—>MxM such that d(pr,P(E), pr,P(E)) = ezl
and such that Im(pr,?)U Im(pr,¥) = M,
where pr,: M XM — M is the projection onto the first resp. second
factor and where d(-,-) is the distance on M.
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We introduce the following notation. For (m',m") € M XM, we write
— (m', m") = (m", m'). Further, by a cycle we understand a finite sequence of ele-
ments in M XM of the form

(Mg, my), (My, My), (Mg, Mg), . . ., (My_1, M), (M, M)

We shall now define a space II(€,{ez}, M, ¥), which we also denote II(€)
or II when there is no risk for confusion. (Further, if €' ¢ ¢ and if M’ =
Im (pr; ¥)U Im (pr, ¥), we denote also I1(E',{eg}, M', V) by II(¢') — in
spite of the change from M to M')

1.1. ProrosiTioN. Given the objects of (i) to (iv), there is a unique complete p-normed
space IT = II(°€, {eg}, M, W) such that

1° for each E € €, there is an isometric imbedding iy : E — II,

2° there is an injection j: M — II related to the ig as

ig(es) = jpr, ¥(H)) — j(pr, ¥(H)), and

3° if IT* is an arbitrary complete p-normed space satisfying 1° and 2° with iy
and j', say, in the places of iy and j resp., there is a linear mapping @ : I — II*

for which the diagram

AHI

is commutative for each E €&, and which is continuous with operator p-norm mnot
larger than ome (t.e., supy_, @) <1). (Universal property.)

[Concerning 3°, also notice: if Im ¥ is connected as graph (cf. 1.4), the diagram

M
/ \fl
n i NIV

is commutative up to translation (i.e., j1 = @oj 4 ¢ for some constant element
¢ in II'); this follows from the condition that the iy and j' satisfy 2°.]

Before proving 1.1, we state some properties of II which will be consequences
of the construction.
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1.2, ProposiTiON. With notation and assumplions as in 1—1.1 and with E,,
E, €€, we have

(0} if PE)+ V) and + — V(B

(. . —
o(By) N i(By) {lin ten,y if W(E) =Y(E,) or = —Y(H,).

1.3. ProrosIiTiON. With notation and assumptions as in 1—1.1 (notice especially
the last paragraph before 1.1), let &' be a subset of € consisting of all except finitely
many of the elements of €. Then there is a canonical imbedding y (which is iso-
morphic but in general mnot isometric) of II(€’) onto a closed subspace of II(°E).

(»Canonical» here means that the diagram

B

&y —s Im y = 17(6)
x

is commutative whenever K € €’.)

1.4. Remark. In the sequel, we will not distinguish between E and ¢(#). Thus,
the spaces of ‘€ will be regarded as subspaces of II.

Notice that it is an immediate consequence of the universal property (3° of 1.1)
that

lin {i(E)|E € €} = IT.

Intuitively, we may think of Im ¥ as the set of edges of a graph in M. What
we intend to do is to paste the spaces of ‘€ at this graph by identifying the vectors
ez with the (oriented) edges Y(&).

Notice that in general the injection j: M — IT is not isometric; however, we
know that the distances d(pr, P(E), pr, P(EF)) are preserved, since these equal
the p-norm values |eg) (cf. (iv) of 1 and 1° of 1.1).

1.5. Proof of 1.1—1.3. To define II(°€, {eg}, M, ¥), we start with the p-normed
direct sum 8 (cf. I 6.2.d) of the spaces of €. Consider the subspace H c S
given by

H=1n{} geg, 6P (H), - - ., &, P(E,) is a cycle for some g = 4-1, n > 2}. (a)
k=1

Then we take I/ as the completion of the p-normed quotient space S/H.
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To give the p-norm ||| on S/H more explicitly, we denote by z the canonical
image in S/H of an element z € S. (This tilde notation will not be used except in
this proof.) Then ||| is defined by

» ”Zxk” = inf (ZHZ/k” | Zxk = Zyk) (o)
where the 2, and y; belong to different spaces of &, and where the infimum

is taken over all preimages of 276,9 under the canonical mapping S — S/H. (Cf.
the definitions in I 6.2.)

From this construction, we see at once how to define the iy of 1° for each
E €€, let iy be the composition of the inclusion map K — S and the canonical
mapping S — S/H. Before the somewhat lengthy verification that these ¢z are
isometric, we prove the other statements.

First, 1.2 follows from this definition; for, that & V(#,), &P(¥#,) is a cycle
means precisely that & ¥(H,) = — &V(H,). By the definition of H, it means
also precisely that geg = — &eg. And (a) further shows that for z, € B, we
can have ¥; =, only if @ = + ley, for k= 1,2 and some 2

Second, for 1.3 we consider the case when & (€’ is a singleton {E,}; say;
the general assertion then follows by induction. Let S, be the subspace of S which
is spanned by the spaces of €', and let H, c S, be the subspace defined by (a)
with the spaces K, ..., E, ranging over ¢’. Denote by ¢ : 8 — S8/H the cano-
nical mapping. Since H, = S,N H, the identity mapping §-—§ induces a
bijective linear mapping y,: So/H, — ¢(S,), which will be shown to be an iso-
morphism. If €8, and if % and -l is the canonical image of x in, resp. the
quotient p-norm on, Sy/H, we have by (b)

][55[]~ = inf{( Z lyxll |y, in spaces of <€) and

x =Xy mod H

Iz, = inf( 2 el |y in spaces of &).
x = Xy mod Hy
Since the first infimum is taken over a larger set, it is smaller, so |z|_ < [&]|..
Conversely, let y, be vectors in spaces of € so that z = > y, mod H. Two cases
may occur: (1) all g, are in spaces of €', and then = > y, mod H, (since
Hy= 8N H); and (2) >y, =S8 + Aeg, where 5 €8, and 40 a scalar.
In case (2), ¥(H,) must be an element of a cycle < of which all the other elements
are in + Y(&’). (The last statements are consequences of the definition of H.) So
S+ degy =8+ 4 >  geg modH,
s w(ER) €L
By + Eg
wherein the second member is an element in 8, which is congruent modulo H,
to x (since Hy= S,N H). Let the sum in the second member have the length
clleg,|l. Then, for any z €8, and >y, = xmod H the second member has length
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at most ¢ times the length of the first member. So in case (2) as in case (1), it is
seen that for every &' = axmod H, there is 2" € 8, with 2" = 2 mod H; and
le"] < ¢'||’|| for some constant ¢’ > 0 (which is independent of z); and so
Mo < -

Then we extend y, by continuity to an imbedding y : I1(€') — II(€); clearly
Im y is closed in [1(€), for II(¢’) is complete.

Finally, we verify 1°—3° of 1.1.

For 2°; Take j(my) = 0 for some m, € M. To define j for the other points
in M, we use the following notation: By a ¥-path from m,; to m, we understand
a sequence

(mla mz): (mz’ m3)’ cery (mn»25 mn_l), (mn—17 mn)

where all the (my, my,,) belong to Im YU (— Im ¥) and where » > 1. Let
m € M be any element for which there is a ¥-path from m, to m — or, as we can
say, that lies in the same Y-path-component of M as my. Let &V(H,), ..., Y(E,)
(¢, = &+ 1, > 1) bea P-pathfrom m, to m. Then we define j(m) = > ;_, TR
This definition is consistent. For, let &;¥(E}), ..., enP(EL) be another ¥-path
from m, to m; then

P&y, ..., P(E), —aP(B,..., — L P(EL) (c)

is a cycle, so by construction (cf. (a) above) we have
21: €keEk — z 8,1L6E1k = 0. (CI)
1

This relation says that the definition of j(m) is independent of the choice of path
from m, to m. So, if €, is the ¥-path-component of m, in M, we have con-
sistently defined j¢, : Cp—> I — the restriction to C, of the required j. And jc,
is injective; for if j(m') = j(m”") and if &¥W(E,),...,eP(E,) and e¥P(£),...,
eLW(EL) are W-paths from m, to m’' resp. m”, relation (¢’) is satisfied. By
construction, (¢) must be a cycle, which means that the two paths go from m, to
the same point, ie., m' = m’.

We have to extend j. to all of M. So, for each ¥-path-component C we
define an injection j¢:C — Il in precisely the same manner as before. But the
definition of II (cf. (a)) shows that for a suitable class of subspaces each two of
which meet only in {0}, each space of the class contains precisely one set Im j
as a proper subset. So by composing each j. with a suitable translation, we get
injective mappings j. with disjoint images; these together define an injection j
on all of M. _

For 3°: The mappings i}, together induce a linear mapping *: 8 — IT* (defined
by () = i (%) for >, €8, x, €H,). First notice that i1 is continuous
with operator p-norm at most 1, for
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ISl = 15k @l < Slik @l = 3l = 13

where >, €S, with 2, € E, and the spaces E, distinct.
Now, if VY(£)),...,e,P(EH,) (5 = 41, n>1) is a cycle, we have for any
my € M occurring in any W(&,),

n

0 = j'(mg) — j'(my) = Z k@Ek(eEk

since the iy and 4! are supposed to satisfy 2°. Thus, any element in the set spanning
H and given in the second member of (a) above is mapped to 0 by #; hence
i—l(H) = 0. The mapping @:I]— II' is then defined as the mapping which is
induced by 7. From the definition of quotient p-norm we see that @ has operator

p-norm at most 1, for ¢1 has. The commutativity of the diagrams, finally, is an
immediate consequence of the definition of @.

For 1°, at last, let a be an element in K, say, E,€ 6. By definition,
lz] < |lz|l. To show that [zl > ||/, on the other hand, let an arbitrary canonical
pre-image of x in S be written

=y -+ I,

where y = x — ¢, (notice that y € E,), A is a scalar, and r= ZFGF yrer== ¢, mod
H, for a suitable finite subset ¥ ¢ €\ {E,} and suitable numbers yi, n. We must
then show that [2’| > |#|. Notice that, by definition, ||| = |jy|| + |A[P]lr]. Now,
by the definition of H, we know that 7 is a linear combination of 7, say, sums

L3
Sk == Z gkleEkla 1 S k S n, (d)
=1

such that
— VY(Ey), emP(Eun),... ,sk,.kT(Ek,,k)

is a cycle £ for each k. Or,if ¥(E,) = (my, m,) say, we may express this in terms
of the notation of the proof of 2° for every k, en¥W(Ewu), ..., em P(Bm) is a
W-path from m, to m,. Also notice that e, == >, enew mod H. To avoid trivial
complications, we exclude the case when some Eu equals E, (notice that E, & 7).

We first treat the case when there is only one such sum (i.e., » = 1) and when
no two terms of this sum are multiples of the same vector ez, In other words, we
suppose that r=s, and that Y(E;) == -4 Y(&,;,) when I’ 4=1". Assumption
(iv) and the triangle inequality in M give

&l = Nyl + 14Plrl] = Tigll + Ml"éllezl,ll

= Iyl + 141 3, domy P(En), iy PEL)
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= [yl + |A[P(d(mq, m1) 4 d(my, mg) + . .. +

-+ d(m,, _1, my)), suitable m;; m, m; as above
= |yl + |A[Pd(my, my) = [lyl] 4 || Aey]l
= |ly + 2l = izl ,

since, by assumption, &,¥(By),..., s, VY(H,,) is a ¥-path from m, to m,;
so the assertion follows in this case.

In the general case (n > 1), we want to reduce the problem to the case n = 1.
That is, if 2" =y -+ Ar is an arbitrary canonical pre-image in S of z, we want
to find another pre-image 2" = y -+ As’, where s’ is a sum of type (d), such that
lle”ll < lle’||l. Since we always have |y + Al = |ly|l - |A]P|lr]] (by the definition of
[l on 8), this means that we must find s’ with ||| < |lrl. This is done in five
steps.

First step: We show that if we are given 7 = ¢y mod H and write r = z Fe 7 VFlr
as above, then there is a Y-path from my to my, consisting of elements in + ¥(7F)
only. This is not quite obvious; though we know — from definition of s, — that
there are such ¥-paths consisting of elements in + P({E,},*,). For, one might
ask: can it happen that so many eg, -terms are cancelled in the linear combination
of the s, that a ¥-path of the required kind is impossible (since we can take F
so small that yr == 0 for every F)? We will show that it cannot.

We write r = >p_; Oesi. Then

ké@k =1, (e)

for r = s, = ¢ymod H. To proceed, we need a simple graph-theoretic device. Let
Z be a subset of M, and take Z = {(m’,m")im’' €Z and m" €(C Z}. (Thus,
Z consists of the edges connecting Z and CZ in the graph defined by Im¥
and mentioned in 1.4 above. Further, the orientation of the edges of % is in the
direction out from Z.) For each cycle <£; (defined in connection to (d)), we introduce
a scalar valued function fi defined on Z. If an element z € 7 occurs 7 times in
Ly, and if — 2z occurs s times, we define

7ile) = (r — )3
notice that this situation may be described intuitively as follows. When we go
around one round in ;. (in the natural direction), we pass s times into Z through
2, and r times out of Z through z. An elementary consideration shows that
2 filz) =0
zEZ‘
(for, loosely spoken, when we make our round in <£,, we must, totally, pass into

Z precisely as many times as we pass out there of). Now define f(z) = D1 ful2);
summing the relations just stated, we get
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S fe)=o. (£)

i€Z

We will now use this result. Assume, for a while, that ¥ is an injection. Then,
if W(B) = ez, write ¢, = se; (where E €%, ¢ = -4 1, z €Z). By definitions,
we see that the product of 6, and the coefficient of e, in s, is precisely f.(2);
and the coefficient of e; in r is f(z) (or more strictly, r = > yrep + f(2)e.).

) Lo

Also, if 2y = (my, my) € Z, we get f(z,) = >, — 0, = —1, by (e), since — z, appears
exactly once in each £,, and z, in no <£,. Now, let Z be the set of points in
M which can be reached from m, by a W-path, all of whose elements are
in 4+ Y(¥). If the assertion to be shown were not valid, m; would be outside Z.

Aiming at a contradiction, we assume it to be so. Then z, = (my, m,) €7, and

f(z) = —1, as we just remarked. Let z; € Z be distinct from 2 if 2, is outside
+ Im ¥, we have defined f(z;) = 0, and if z; belongs to - Im ¥, the definition
of Z says that e, is certainly outside {- ex}res 50 the coefficient f(z) of e
must vanish. Thus, f(z) = 0 whenever z 7= z;, so that

Zf(z) =f(20) =-1,

z€Z
contradicting (f).

Second step: Notice that the assumption that ¥ is injective is not essential.
For, define H,c S as H; = lin{eg — ceg|V(H,) = ¢¥(H,), ¢ = + 1}. Then
the canonical mapping 8§ — S/H; is immediately seen to preserve length of vectors
in spaces of € (regarded as subspaces of 8). We now regard S/H as a quotient
space of S/H, — instead of regarding it as a quotient space of 8. And now the
canonical images of the ez in S/H,; are in biunivocal correspondence with the values
Y(E), so the argument may be carried out as before.

Third step: We show that either r may be written as just one sum of type (d),
or the er with F €7 are linearly dependent. By what was shown in the first step,
there is a path %P (F,),...,e, P(F,), F, €7, g =+1, ' >1, from m,
to m;. Then we can form a sum of type (d), namely s = > ep, all of whose terms
arein {4 ep}pep Sincenow g, =7 =3, we get ¥ — 5 = 0, so that either r = ¢
or > pesPrep =0, for some B, which do not all vanish.

Fourth step: We show that if the ey with F € 7 are linearly dependent, then there
isan 1 = D pe Fy}eF == e, mod H such that at least one coefficient y vanishes and
such that |’} < |lr]. Thus, more expressively, we can change r in such a way
that the number of terms in the eg-expansion of 7 is reduced by one unit, and
that the length does not increase.

So let > ye7Prér = 0 for some By which do not all vanish. For any scalar T,
define

rt)=r-+7 Z Brer = Z (yr - tBrier -
FefF FeF
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Notice that 7(0) = r and that 7(7) =e¢,mod H for any r. We will show that
r{t) assumes minimal length when some coefficient 9z 4 7fr vanishes; this will
give the assertion. By definition of the p-norm on 8,

(@)l = 2, lvr + wBellesl -

Since the function 7— [7|? is concave for 7z 0 (since p < 1), the function
A—|r(4)] is concave in the domain where all coefficients are distinct from zero;
so the minimum must be assumed in the complement of this domain, as required.
(For the real case, cf. fig. 1.).

.

M lir ()]

Fig. 1.
(p<<1)

Fifth step: We conclude: Let the canonical pre-image @' =y + Ar, r = > pe 7 Vser,
of z be given. If the vectors ey, F' €7, are linearly dependent, we can, by what was
shown in the fourth step, find another pre-image x; =y -+ A, for which r =
> rez Yrer With 7 consisting of the elementsin & except one and such that [jr,|| <
Irll, i.e., [zy]] <l«']. Now we apply the same argument to z; as we did to 2';
and then we proceed step by step. Thus, we get successively new pre-images of 2
in such a way that 7 is replaced by smaller and smaller subsets; and a new pre-
image is never longer than any of the previous ones. Since 7 is finite, the procedure
must stop some time. So, ultimately, we get z” = y -+ Ar", where #’ is a linear
combination of linearly independent vectors ez, and |z"|| < |jz’l. By what was
shown in the third step, 7 can be written as one sum of type (d). Since the terms
of this sum are linearly independent, any two of them are certainly not proportional
to each other; and we are back to the case first treated. Hence, we know that [z"]| >
l[z]l, and a fortiori |'[] > |-

We state explicitly yet another property of I7 to be used in the sequel.

1.6. ProposiTioN. With notfations and assumptions as in 1—1.1, let E,, E,
be distinct spaces of & such that the pairs W(E,) and P(E,) of elements of M
have one element, m = pry, Y(E,) = pr; Y(E,), say, in common, such that it belongs
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to no other element pair W(E). Let fi be continuous linear forms defined on subspaces
Ki.c B with ex € By for k= 1,2. Further, let X be the set obtained by replacing
E. by Ki in 6, k=1,2. Then, if fi(eg) -F foleg,) = 0, the forms fi have &
common extension to IT(K). (Notice that by 1.3, I1(K) may be regarded as a subspace
of the tvs I1(€).)

Proof. First extend f, and f, to forms f; and f, on K; ® K, which are 0
on K, resp. K;. By 1.3, Ky= II(E\{K,, K,}) can be considered as a closed
subspace of II(X). So the form kA =jf 4 f, on K; ® K, c II(X) may be ex-
tended to the latter space by means of an extension % which is 0 on K, This
definition is consistent, since h(eg, + eg) = fileg) + fales) =0 and ez + e,
spans the space (K; @ K,)N K, if this is 5 {0}. For first, Lemma 1.7 below will
show that lin{eg}D KiN K; (k= 1,2). Further, since m is in no other pair
Y(E) than Y(E,) and Y(&,), the defining relation (a) in the beginning of 1.5
gives lin {eg, e5} N K, C lin {ez, - g}, whence the assertion.

1.7. LemMa. With notation and assumptions as in 1.3, we have for any E, € E\E’
that

lin {ig (e5,)} if there is a cycle, one element of which is W(H,)
Im (x) N ig (B = and the others belong to -+ P('&€')

{0} otherwise.

Proof. By 1.2 and 1.3, we see that the intersection is contained in lin {ig (eg)}
Further, (a) in the beginning of 1.5 shows that g (eg) is outside Im g, (notation
as in the proof of 1.3 in 1.5) if and only if W(&,) fails to be in any cycle of which
the other elements are in -+ ¥(€’). But by construction we clearly have tg,(ex,)
at the same distance from Im y, as from lin {iz(ez)|Z € E€'Hc Im y,). But since
this space has finite codimension in lin {ig(eg)|E € €}, the vector ig(es) is seen
to be outside thereof — i.e., outside Im y, — if and only if the mentioned distance
is positive, that is, if and only if iz (eg) is outside Im y, = Im y. So the assertion
follows.

2. Example. When given any ordinal » and any number p, 0 <<p << 1, we
are now ready for the actual construction of a p-normed and complete tvs E such
that A’E is one-dimensional.

We use transfinite induction.

A. Assume that » = »" 4- 1 is any ordinal which is of the first kind and > 2,
and that we have a space E° for which A”E° is one-dimensional. We are going
to form E by means of the method of 1. Let Eu, 1 <k <, 1 > 1, be copies
of E° and let, for all %, 1, the vector eu be a generator of length 1/I of A" Ej.
Further, let M be a metric space with points my, m,, and mu for all %,1 with
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1<k<l Write my=my, my=my, |>1; then if d(.,.) is the distance,
assume that d(my,_,,;, mu) =1/l for all £ and I. Define ¥ :{Eulu-—>MXM
by W(Eu) = (my_y,;, mu). We may describe this as follows: M is the set of nodes
of the infinite graph in fig. 2, and Im ¥ consists of those pairs which form end-
points of some edge.

TFig. 2.

Notice that we have not defined M wuniquely. However, this is inessential;
<f. 1.4.

We now take H = II({Eu}, {en}, M, ¥). We want to show that A’E s the
one-dimensional space which is spanned by ey, (the vector corresponding to the pair
{mgy, my)). First, ey = (1fI) (ley -+ . . . + len), wherein [lew| = |I|F - |len|| = P21 —0
as l-—>oco. But we also know that ey € A”E, since A”Euc A'E (cf. 1.2).
Thus e €co (UN A”E) for every 0-neighbourhood U; so e, € AAX'E = A'E.

Conversely, we have to show that any point outside the linear hull of ey is
also outside A’E. First, we have EuN A”E = A”Ey = lin{eq}. For the
first equality is shown by transfinite induction; suppose that we know that
Ny BN A E) = N, re,. A Eu and want to show that EyN A”E = A" By,
for some »" <»’. Now, any given point in ., 4 Ey\ A" Ey may be separated
from A”Eu by a continuous linear form f on (.., A" Eu. Since ey € A” By,
we have f(ew) = 0; but Eu has intersection lin {en} with the closed linear hull
Bt of all the K\, with (k',1') == (k, ). (This follows from Lemma 1.7.) So we may
extend f linearly to f, say,on lin (0,  4*" Eu, E') C E, by taking f(E') = 0. The
hypothesis now shows that the domain of f includes (., 4" E. Since thus any
point in the intersection of the latter space with By can be separated from A" By, as
soon as it is outside this space, by such an f, it follows that EuN A(), ., A" E) =
E,N A"E c A"E,. The converse inclusion follows, however, from I.2 applied
to the inclusion map.

Thus, since now E, N A”E = lin {¢,;}, it remains to show that any e, with
(k, 1) # (1, 1) is separated from 0 by a continuous linear form which is defined
on some space containing A”E — i.e., containing all the e, when k' and U
range over all possible values. But notice that the indices (k, 1) 5% (1, 1) are those
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for which the pair ¥(E,,) has at least one point which it has in common with just
one other pair. So it follows from 1.6 that any linear form on the one dimensional
space spanned by e, has a continuous extension to a subspace of Z containing
all the e,,.

B. If » is a limit number, we can use a quite analogous argument. We just have
to take a larger M; having m, and m,, we then take, for each ordinal »" <,
points mj; in just the same way as we took my,, before. Further, we take, for each
v <, spaces K such that A”E}; are one-dimensional. The argument in A
now carries over verbatim except for some obvious translations — e.g., this time
we show that ey €co (U NN, ., A"E) (for all 0-neighbourhoods U) rather than
e € co (U N AE).

C. For » =1, we can also use the argument in A; but this time we take the
E,, one-dimensional. Further, the role of the A”E and A*'E, in A is now played
by E resp. Ej;. (So the assertion of the second paragraph from the end in A now
becomes trivial.)

2.1. ProposITION. If 0 < p <1, then «() moay assume any ordinal value for
complete p-normed spaces.

Proof. From the example follows that «() may equal any ordinal value of the
first kind for such spaces. But if » is a limit number, consider a complete p-normed
space H, with «(H,) =» 4+ 1. From L2 it follows that if we take K = EJA'E,
we get () =1».

2.2. Remark. The space which we get in C of example 2 turns out to be iso-
morphic to a space given by Peck [6] as an example of a space which fails to have
separating dual though it is quotient space of the dual separated space IP.

2.3. Example. Consider the subspace lin{e;, + e,|k > 2} of the space E which
we get in C of example 2. Since it does not contain e,,, it is separated by its dual.
On the other hand, e, is in its closure (for |ey|— 0 and so e + ¢, —>¢; as
I — o). Then also all ¢, are in the closure, which hence equals E. Thus, we have
a simple example of a tvs which is separated by its dual but whose completion is not.
Cf. Klee [2] and the question of A. and W. Robertson quoted and answered there. —
This shows that it is worthwhile to emphasize completeness in the examples above
(c¢f. T 7.8 and 2.1).

3. Having carried out the program of this paper, we now devote this brief section
to another application of the construction of Section 1.

3.1. ProroSITION. For any number p with 0 <<p <1, every meilric space
M (without linear structure) has an isometric imbedding j: M — J(M) into a
complete p-normed space J(M) with the following universal property:
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If %: M —E {is an arbitrary isometric imbedding into a complete p-normed
space, then there is a linear mapping @ :J(M)~—>E for which the diagram

M
/N
@

JM) —— E

18 commutative up to translation [cf. the remark just after 1.1] and which is continuous
with operator p-norm not greater than one.
(Notice that J(M) is unique up fo isometric isomorphism.)

Proof. This is a simple special case of 1.1. Namely, let N be a subset of M XM
such that for each element (m’, m”) of this product, precisely one of the elements
(m', m") and (m”, m’) belongsto N; and then, let ¥ be a bijective mapping from
a set @ of one-dimensional spaces. Let each of these spaces be metrized by means
of a p-norm so that condition (iv) is fulfilled for suitable generators {e,} o of the
spaces of ¥. Then J(M)= (@, {e.}, M, ¥) is the required space; for, to say
that j is isometric is the same as to say that each of the spaces of €@ is isometrically
imbedded in J(M) (by the metrization of these spaces); since this argument is
valid for j* as well as for j, we get the universal property of J(M) from 3° of 1.1.

Now, the space II of 1.1 does, indeed, satisfy a somewhat stronger universal
property than the one given in 3° of 1.1; for instance, for the special case considered
in the preceding proof, the very same argument as that for 3° in 1.5 gives the fol-
lowing. If »: M — N 1is a contraction (i.e., a mapping that is never length-in-
creasing) into another metric space N, there is a linear mapping @ : J(M) — J(N)
for which the diagram

M_* N

lj J
0i3 Y

J(M)— J(N)

is commutative up to translation and which has operator p-norm at most one.
Thus we get:

3.2. ProrosiTioN. For fized p, the map M — J(M) is a functorial map from
the category of metric spaces and contractions to the category of p-normed spaces and
linear mappings with p-norm at most one.
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