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1. Introduction

1. Let E be a closed set in the complex plane and f a meromorphic function
outside £ omitting a set F. We shall consider the following problem: If £ is
thin, under what conditions is F thin, too? In Chapter 2 we consider the case
when H and F are of Hausdorff dimension less than one. In Chapter 3 £ and F
are countable sets with one limit point, and in Chapter 4 E is a countable set
whose points converge to infinity, f is entire, and F is allowed to contain at
most one finite value.

2. Sets of dimension less than one

2. Let f be meromorphic and non-constant outside a closed set E in the
complex plane. It is known that if the logarithmic capacity of E is zero then f
cannot omit a set of positive capacity, and if E has linear measure zero then f
cannot omit a set of positive (1 + ¢)-dimensional measure. If the dimension of
E is greater than one then there exists a non-constant function f which is regular
and bounded outside E. Carleson [1] has proved that there exists a set E of
positive capacity such that if f omits 4 values outside E then f is rational. We
consider the following problem: Let E be of dimension less than one. Can f omit
a set whose dimension is greater than the dimension of KE?

We denote by Dim (4) the Hausdorff dimension of a set 4, and let dim (A4)
be the dimension of 4 obtained by using coverings consisting of discs with equal
radii. For example for usual Cantor sets these dimensions are equal. We have the
following answer to our question:

THEOREM 1. Let E be a closed set with dim (E) < 1. If [ is meromorphic
and non-constant outside E and omits F then Dim (F) < dim (£).

The proof will be given in 3 and 4.

1 This research was done at the Institut Mittag-Leffler. The author takes pleasure in thanking
Professor Lennart Carleson for helpful suggestions.
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3. It does not mean any essential restriction to assume that o €F,
Ec{z: 2] <1}, and that f is non-rational. In order to prove Theorem 1 it is
sufficient to prove that for any «, dim () <« <1, and any R, 0 < R < o0,
we have Dim (B) <« where B=FN{w: |w| <R}. Let these « and R be
chosen. We define

Ua,r)={z:]z—a| <r}.

Then we can choose a sequence r, with limr, = 0 and coverings

Nn
Ua,,r,) D E
y=1
such that lim N, 7*=0. (1)
For any a € B we define
dl
fal?) = i ) ==

J, is regular in |z| <4 and therefore f,(z) == 1/(f(z) — a). We set G =
{z:3 < |z| < 4}. Because f,(z) and 1/(f(z) — @) are continuous functions of a
(¢ € B) for any fixed 2z € ¢ and B is compact, there exists f, > 0 such that

sup
2€6

> p1 (2)

1
e = s
for any o € B.

We assume that 7, << 1/2 for any xn. Let n be fixed in the following con-
siderations. Let D be the component of the complement of

N,

U U(a,, 2r)
y=1

which contains the point at infinity. The boundary of D consists of simple closed
curves. These can be divided into continuous curves y,, v=1,2,...,N,, such
that the length of any y, is at most 4ar,. Then we get for z € G, a € B,

1
f@) —a

R / dt <2 5 1
2mi v; FO—aC—2] =72 o

where o, (a) = min [f(z) — a|. It follows from (2) that there exists a constant
€y,

f > 0 mnot depending on the choice of % such that

fa(z) -

> 1o a) > B, | @
for any a € B.
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We need the following

LemMA. There exists an absolute constant K > 4 such that if oa) < (0 > 0}
Jor some a € B then w,(b) > Kp for any b€ B — U(a, 2Kp).

Proof. The length of 9, is at most 4mr, and U({,r,)NE =@ for any
£ €y, The lemma follows from Schottky’s theorem.

4. Let A, « < A2 <1, be chosen. We choose a positive integer k such that

A>a(l 4+ 24, (b)

Yet gg=N, For m=1,2,...,k we set
Om = 2"TuGm B (c)
T = (0mlTa)" (d)

and let p, be the integer defined by ¢, <p, <¢.+ 1. Let g, be defined
by (¢)and ¢, = piy1 = 1. It follows from these definitions that for 1 <m <k 41

on = My N (e)

where M, 1is a positive constant depending only on f. It does not mean any
essential restriction to assume that N,-—> oo as n — o because otherwise K
consists of a finite number of points. Therefore it follows from (e) that we can
assume that ¢, , <, for any m.

Let m, 1 <m <k -+ 1, be fixed. If possible, we choose b, ; € B such that
the inequality ,(b,, ;) < po,, is satisfied at least for p,, different values of »v. We
set O, ,= U(,,,2Kp,) where K is the constant of the lemma. In the same
manner, starting with the set

s—1

B—-UC,,
p=1

(8>1) we define the disc C, , Let this method yield the dises C,_,.
s=1,2,...,8, Then it follows from the lemma that S, < N,/q..
Let us suppose that there exists
krl S,
beB—U UC.,,,-

m=1 p=1
Then w,(0) > g4, foreach » and ¢, <) <o, (1 <m < k) is satisfied at-
‘most for p, — 1 different values of ». Therefore it follows from (c) that

p»—1 pe— 1kl
+ ...+ < — < Bfr,.
Q2 Qk+1 m§=:1 2"r, Al

This is a contradiction to (a) and so

N, Nn
> lw®,) < — +
=1 o1

k+1 S

BcU UOC,,.
1

m=1 p=
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It follows from (d) and (e) that the radii of C,, , satisfy the inequality

»P

k41 k+1 N"an

mzlsm(2K@m)l S Almzl qm

k
< Aerl;-H 7'5'.

where A4, and A4, are positive constants not depending on the choice of n. From
(1) and (b) it follows that

N < (N 0

as n— . Therefore Dim (B) < 1. This is true for any 1>« and so
Dim (B) <. This completes the proof of Theorem 1.

3. Countable sets

5. Let A and B be two countable sets whose points converge to infinity.
If B is given then it is always possible to construct 4 such that there exists a
meromorphic function omitting B outside 4. In fact, we take an entire function
J and set A = f~'(B). In this manner, it is easy to construct 4 such that there
exists a countable family of entire functions omitting B outside A. Then the
following question arises: Is the family of transcendental entire functions omitting
B outside 4 always at most countable? Theorem 2 gives a negative answer.

THEOREM 2. Gliven any countable set B = {b,} with limb, = o then we can
construct o countable set A = {a,} with lim a, = o such that there exists a non-
countable family of transcendental entire functions omitting B ouiside A.

Proof. Let ay, #0 and a, ¢ B. We shall choose inductively a sequence {f,.}
of polynomials such that the product

oo

a, [T (fu(2)) ()

n=1
(6.(1 — &,) = 0) converges uniformly in bounded domains for any choice of the
sequence {s,}.
Let fi(z) =2 and r, =1+ [b]. Let f, and r, be defined for » =
1,2,...,n—1 (n>1). We denote by G, the family of the polynomials

g@=%ﬁmww

where ¢(1 —¢) =0 for any ». We choose r, > 27, , such that ¢(z) ¢ B on
jz| = r, for any ¢ € G,. Then there exists §, > 0 such that |g(z) — b| > 6, on
|2 =7, forall b€ B and g €G,. We set

M, = max {max |g(z)|}

8€G, s =r,
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and A, =U{z:9(z) €B and |z] <r,}.

gEG,

Because limb, = co and @, consists of finitely many polynomials, 4, contains

a finite number of points. We define

hoz) = TT (z — a)'

a€A,

n

where ¢, is the largest multiplicity of the root a of the equations g(z) = b for all

g€G, and b€B. We set f.(2) =1 — p,h,(z) where p,>0. Let b€ B and

g€G, On |z| =r, we have

9(2) fal2) — 9(2)
g(z) — b

Now we see that we can choose the sequence {p,} such that

M ,0.1hn(2)]
—_— 6 .

n

96 TT ()" — 962

g(z) — b

on [z =7, forall b€ B and g €(G,, and any sequence {¢} (n > 2).
Let F be the family of entire functions defined by (1). We define

A=U{z:fz) €B}.
FEF

<1 (2)

Let f€EF and b€ B. We choose n > 2. We write

16) = 9 TT (e (3)

where g € G,. It follows from (2) and Rouché’s theorem that the functions f and
g have the same number of b-points in |z| << r,. It follows from the construction
of the sequence {f,} that the b-points of g lying in |z| < r, are b-points of f,
and not of smaller multiplicity. Therefore in [z] < r,, f can take a value of B
only at the points of A4, and we see that

AcUA,.

n=2

If we choose f such that f€G,,, we get
(An+1 - An) n {z : [zl < Tn} = ﬂ

and we see that co is the only limit point of 4. Clearly F contains a non-countable
set of transcendental entire functions. Theorem 2 is proved.
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4. Picard sets for entire funections

6. Following Lehto, we call a set E in the complex plane a Picard set for entire
functions if every non-rational entire function omits at most one finite value outside
E. Lehto [3] has proved that a countable set E = {a,} whose points converge to
infinity is a Picard set for entire functions if the points a, satisfy the condition

Ian/an+1[ = 0("’12) .
Matsumoto [5] has proved the same assertion under the condition

. exp (K/log |a,./a,|)
lim sup < @
n—ow log ‘an+1[

(K a positive constant) when {|a,|},_, . ... is strictly increasing. Winkler [6] has
proved this assertion in the case that £ is a finite union of sets whose points satisfy
the condition |a,,,/a,| >¢>1 and

{z:e < z—al< @ PINE=0

(¢ >0, p > 0) for all sufficiently large |a|, a € E. We shall give an essentially
best possible density condition under which a countable set is a Picard set for
entire functions.

7. We shall need the following results in our considerations. We define

RG]
BRI

and by k(r) we denote an arbitrary positive function of the positive variable r,
with the property A(r) = O(r) as r-— co. Lehto [4] has proved the following
- THEOREM A. Let f be meromorphic in a neighbourhood of the singularity z = oo.
If for a sequence {z,}, limz, = oo and

n->

e(f(2))

lim h(]z,[) ¢(f(z,)) = o

n—> o0

then Picard’s theorem holds for f in the union of any infinite subsequence of the discs

On = {Z : Iz - Zril < Eh(lzn“}

for each &> 0.
Clunie and Hayman [2] have proved the following
THEOREM B. If f is an entire non-rational function then

i 2lo(f(2))
T Tlog ] T
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8. Now we prove the following
THEOREM 3. A countable set E = {a,} whose points converge to infinity is o
Picard set for entire functions if there exists & > 0 such that

alanl

{z:0<]z—a,,]< }ﬂE:Q (1)

log [,
Sfor all sufficiently large n.

Proof. Contrary to our assertion, let us suppose that there exists an entire non-
rational function f omitting two finite values outside E. Then we can assume
that f omits the values 0 and 1 in the complement of E.

From Theorem A and Theorem B it follows that we can choose a sequence {z,}
such that lim z, = co and Picard’s theorem holds for f in the union of any infinite
subsequence of the dises C, = U(z,,r,) where

&|2a|
"= 8log Iz, °
Then C, contains at least one zero or 1-point of f for sufficiently large n, say
for n > n,. It follows from (1) that U(z,, 4r,) contains at most one point of E
if n is large enough, say if n > n, > n,. Let n > n,. Let us suppose that O,
contains a 1-point of f. Because f has no zeros in U(z,, 2r,), it follows from the
maximum principle that there exists a point ¢ on |2 — 2z, = 2r, such
that |f({)] < 1. Because f has neither zeros nor 1l-points in the ring domain
7, < |z — 2,| << 4r,, it follows from Schottky’s theorem that [f(z)| < M on
|z — z,] = 2r, where M is an absolute constant. Then |f(z)| <M in C,. If C,
contains a zero of f we consider the function 1 — f(z), and we see that
fz)] <M + 1 in C, for n > n, This is a contradiction because f omits at
most one finite value in the union of these discs. Theorem 3 is proved.

9. We now prove that the condition (1) is best possible.

THEOREM 4. Corresponding to each real-valued function h(r) satisfying the
condition h(r) — oo as r— co, there exists a countable set E = {a,} whose points
converge to infinity, which is not a Picard set for entire functions, and which satisfies
the condition
{z-0<|z——a|<——&l——}nlf7=@ (2)
' "7 b(lag)) log la,|
for all sufficiently large n.

Proof. In order to prove our assertion, we shall show that the set of the zeros
and 1-points of the entire function

=1

f@) =T @1 — z/e)»

ff
-

n



8 ARKIV FOR MATEMATIK. Vol. 9 No. 1

(t, being positive integers, ¢, , > 4#,) satisfies the condition (2) if ¢, tends to
infinity with a sufficient rapidity.
Let n>3. We define D, = {2: |z-¢"| <exp(t, —1t,_,)} and

n—1
g(z) = (L — 2fe)n TT (1 — efev) .
y=1
It is easy to see that if ¢, tends to infinity sufficiently rapidly then

f2) — 9(2)] < 1 19(2)] (3)

in D,. On the boundary of D, we have |f(z)| > 1ig(z)| > 2. Therefore f has only
a finite number of 1-points outside the union of the dises D,, » > 3.
Let ¢, v=1,2,...,%, be the 1-points of g. We set

o { z— én | T 1
= e ] < g U2< R <2
Then C, c D,. On the boundary rays of C, we have Reg(z) = 0. Then it is
easy to see that lg(z)| < 2|1 — g(z)| at the boundary points of D, and C,, v =

1,2,...,%,. Now it follows from (3) and Rouché’s theorem that f has exactly
t, l-pointsin D,, each C, containing one 1-point of f. Then the distance between

n—1

two different 1-points of f in D, is at least r =f;'exp (t, — > ¢,). Because
v=1

n—1

the term > #, does not depend on ¢,, we can assume that f, is chosen so large
that =t
rs ||
h(|z}) log |2|
for any z € D,. Therefore if E = {a,} is the set of the zeros and 1l-points of f
then E satisfies the condition (2) for all sufficiently large n. Theorem 4 is proved.
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