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Aronson-Bénilan type estimate and the
optimal Hölder continuity of weak
solutions for the 1-D degenerate

Keller-Segel systems

Yoshie Sugiyama

Abstract

We consider the Keller-Segel system of degenerate type (KS)m
with m > 1 below. We establish a uniform estimate of ∂2

xum−1 from
below. The corresponding estimate to the porous medium equation
is well-known as an Aronson-Bénilan type. We apply our estimate
to prove the optimal Hölder continuity of weak solutions of (KS)m.
In addition, we find that the set D(t) := {x ∈ R;u(x, t) > 0} of
positive region to the solution u is monotonically non-decreasing with
respect to t.

1. Introduction

We consider the following Keller-Segel system of degenerate type:

(KS)m

⎧⎨
⎩

∂tu = ∂x

(
∂xu

m − uq−1∂xv
)
, x ∈ R, t > 0,

0 = ∂2
xv − γv + u, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

where m > 1, γ > 0, q ≥ 2m. The initial data u0 is a non-negative function
and in L1 ∩ L∞(R) with um−1

0 ∈ W 1,∞(R). This equation is often called
as the Keller-Segel model describing the motion of the chemotaxis molds.
See e.g., Childress–Percus [8] and Keller–Segel [15].

As we have seen in Sugiyama–Kunii [22], our equation (KS)m has a local
weak solution (u, v) under the assumption that m > 1 and q ≥ 2. In
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addition, (KS)m has a global weak solution (u, v) on [0,∞) with the decay
property as t→ ∞ if q ≥ m+ 2 and if ‖u0‖

L
q−m

2 (R)
is small enough.

Concerning the regularity of the weak solution u, it is proved in [23] that
∂xu

m−1 is uniformly bounded on R×(0, T ). See also Luckhaus–Sugiyama [19]
and Sugiyama–Velázquez [25].

The aim of this paper is to show more regularity for um−1 so that
∂2

xu
m−1 is uniformly bounded from below on the region DT := {(x, t) ∈

R× (0, T ); u(x, t) > 0} of positive part of solution u. Such an estimate was
first obtained by Aronson–Bénilan [4] for the porous medium equation:

(PM)m ∂tU(x, t) = ∂2
xU

m(x, t).

So far, there have been a lot of applications of the Aronson–Bénilan type
estimate to investigation of solutions of (PM)m. See e.g., Aronson [1] and
Vázquez [26]. (PM)m may be regarded as the principal part of (KS)m.
As for (KS)m, we shall establish our Aronson–Bénilan type estimate with
its applications. Indeed, we show that u(x, t) is Hölder continuous not only
in the space variable x but also in the space and time variables (x, t). More
precisely, um−1(x, t) is Hölder continuous with the exponents 1 in x and 1

2

in t, respectively. We expect that this is the optimal Hölder exponent since it
coincides with the same optimal one as (PM)m. On the other hand, we show
that ∂xu

m−1+δ is continuous in both space and time variables for all δ > 0.
Our result makes it clear that the power m− 1 to u exhibits the borderline
in the sense that ∂xu

m−1 ∈ L∞(R× (0, T )), while ∂xu
m−1+δ ∈ C(R× (0, T ))

for all δ > 0.

Next, we find that if u(x0, t0) > 0 for some (x0, t0) ∈ R × (0, T ), then x0

has the property that u(x0, t) > 0 for all t0 ≤ t < T . This implies that the
support of the weak solution u(t) is monotonically increasing with respect
to t. Namely, for D(t) := {x ∈ R; u(x, t) > 0}, it holds

D(t0) ⊂ D(t1) for every 0 < t0 < t1 < T.(1.1)

In other words, the interface curve ξ(t) has the property of monotonicity in
t ∈ (0, T ), where ξ(t) is an expression of the boundary of D(t).

Further application of the Aronson-Bénilan estimate stems from the con-
crete characterization of the interface curve of (KS)m. We see that (KS)m

can be rewritten to the following differential equation of the first order:

∂tu+ ∂x(uV ) = 0,(1.2)

where

V = − m

m− 1
∂xu

m−1 + uq−2∂xv.(1.3)
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As is well-known, if V ∈ C1(R × (0, T )), then the interface curve ξ(t)
of (KS)m is determined by the ordinary differential equation

ξ′(t) = V (ξ(t), t).(1.4)

Indeed, we can solve (1.4) with ξ(s) = x uniquely for an arbitrary x ∈ R,
provided V ∈ C1(R × (0, T )). Hence the mapping Xt,s(x) : x ∈ R 
→
Xt,s(x) ≡ ξ(t) ∈ R is well-defined, which yields the explicit representation
of u as

u(x, t) = u0(X0,t(x)) exp

(
−

∫ t

0

∂xV (Xs,t(x), s)ds

)
.

This is the well-known method of characteristics for the linear hyper-
bolic equations of the first order. So, from this representation we see that
u(x, t) = 0 and u(x, t) > 0 hold if and only if u0(X0,t(x)) = 0 and u0(X0,t(x))
> 0 hold, respectively. This implies that the mapping X0,t(x) gives the in-
terface curve of (KS)m. However, C1-regularity of V cannot be expected in
the same way as for (PM)m. Indeed, ∂xU

m−1 belongs to L∞(R× (0, T )), but
not even to C(R × (0, T )) in general. Therefore, it is not obvious whether
limx→ξ(t)−0 ∂xU

m−1(x, t) does exist or not.

To overcome such a difficulty, for (PM)m, both Aronson [3, page 6]
and Knerr [16, Theorem7.2] introduced the Aronson-Bénilan type estimate,
which states a uniform estimate of ∂2

xu
m−1 from below, and proved that

limx→ξ(t)−0 ∂xU
m−1(x, t) does exist. See Remark 2 (ii) below. For (KS)m,

our approach to assure the existence of limx→ξ(t)−0 ∂xu
m−1(x, t) is similar

to that of them and makes it clear that, so far as the case q ≥ 2m, their
method is applicable to (KS)m. It does not seem to be obvious whether
the case of q ≥ 2m can be treated as the perturbation from (PM)m, and it
may be an interesting question whether the case q = 2m exhibits a critical
phenomena or not. As a result, we can characterize the interface curve ξ(t)
as the solution of the ordinary differential equation (1.4) in the following
sense:

ξ′(t) = lim
x→ξ(t)−0

V (x, t).(1.5)

See [24, Theorem 2.4] for more details.

Throughout this paper, we impose the following assumption:

Assumption. Let the exponents m > 1, q ≥ 2m and γ > 0. The initial
data u0 is a non-negative function satisfying

u0 ∈ L1 ∩ L∞(R) with um−1
0 ∈W 1,∞(R).
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Our definition of a weak solution to (KS)m now reads:

Definition 1 Let the Assumption hold. A pair (u, v) of non-negative func-
tions defined in R × [0, T ) is called a weak solution of (KS)m on [0, T ) if

(i) u ∈ L∞(0, T ;L1 ∩ L∞(R));

(ii) ∂xu
m ∈ L2(0, T ;L2(R));

(iii) v ∈ L∞(0, T ;H1(R));

(iv) (u, v) satisfies the following identities:∫ T

0

∫
R

(
∂xu

m · ∂xϕ− uq−1∂xv · ∂xϕ− u · ∂tϕ
)
dxdt =

∫
R

u0(x)ϕ(x, 0) dx,∫
R

(∂xv · ∂xψ + γvψ − uψ) dx = 0 a.a. t ∈ [0, T )

for all ϕ ∈ H1(0, T ;L2(R)) ∩ L2(0, T ;H1(R)) with ϕ(·, T ) = 0, and all
ψ ∈ H1(R).

2. Main Results

Concerning the time local existence of the weak solution to (KS)m, the
following result was obtained by the author [22], [23, Proposition 1.1, Theo-
rem1.2].

Proposition 2.1 ([22],[23]) Let the Assumption hold. There exist T0 and a
weak solution (u, v) of (KS)m on [0, T0) with the mass conservation law:

‖u(t)‖L1(R) = ‖u0‖L1(R) for all 0 ≤ t < T0,(2.1)

and with the additional properties:

um ∈ C((0, T0);L
2
loc(R));(2.2)

(∂xu
m)(·, t) ∈ C(R) for almost all t ∈ (0, T0);(2.3)

sup
0<t<T0

‖∂xu
m−1(t)‖L∞(R) ≤ C <∞,(2.4)

where C = C(m, γ, q, u0). Such an interval T0 of local existence can be taken

as T0 =
(‖u0‖L∞(R) + 2

)−q
, and the weak solution u(t) above satisfies the

following estimate:

‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) + 2 for all t ∈ [0, T0).

Our first result is on the Hölder continuity of the weak solution u and
the continuity of ∂xu

m−1+δ for all δ > 0.
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Theorem 2.1 (Hölder continuity) Let the Assumption hold. In addition,

we assume that u
m−1

2
0 ∈ W 2,∞(R) for 1 < m < 2 and u0 ∈ W 2,∞(R) for

m ≥ 2, respectively. Suppose that (u, v) is the weak solution of (KS)m on
[0, T ) given by Proposition 2.1 with T = T0. Then, we have the following
properties (1) and (2):

(1) There exists a positive constant C depending only on u0, m, q, γ such
that

|u(x2, t2) − u(x1, t1)| ≤ C(|x2 − x1|μ + |t2 − t1|
µ
2 )(2.5)

for all x1, x2 ∈ R and 0 < t1, t2 < T , where μ := min{1, 1
m−1

};
(2) For every δ > 0, ∂xu

m−1+δ is a continuous function on R × (0, T ) and
satisfies the property that ∂xu

m−1+δ(x, t) = 0 at the point (x, t) ∈ R × (0, T )
such that u(x, t) = 0. Furthermore, in the case of 1 < m < 2, we have
∂xu(x, t) = 0 at the point (x, t) ∈ R × (0, T ) such that u(x, t) = 0.

Remark 1. (i) In our previous paper [23], we found that for each fixed
0 < t < T , u(·, t) is a Hölder continuous function in the space variable with
the same exponent μ as Theorem 2.1(1) by the fundamental inequality:

|u(x, t)−u(y, t)|≤
{

21/m−1

m−1
‖u‖2−m

L∞(R×(0,T ))|um−1(x, t)−um−1(y, t)|, 1<m<2,

|um−1(x, t) − um−1(y, t)| 1
m−1 , m≥2

for all x, y ∈ R and almost all 0 < t < T. From Theorem 2.1, we obtain
more regularity in such a way that u is the Hölder continuous with respect to
both space and time variables. Theorem 2.1 says that um−1(·, t) is Lipshitz
continuous in R with ∂xu

m−1 ∈ L∞(R× (0, T )). On the other hand, it holds
that ∂xu

m−1+δ ∈ C(R × (0, T )) for all δ > 0.

(ii) The restriction on q such as q ≥ 2m stems from the technical hypothesis
for application of the maximum principle to ∂2

xu
m−1. Indeed, to obtain a

lower bound of ∂2
xu

m−1, we derive from (KS)m a certain non-linear parabolic
equation of the second order with respect to ∂2

xu
m−1, which includes the term

∂xu
q
2
−1 as its coefficient. The application of the maximum principle requires

that the coefficients are uniformly bounded in R× (0, T ). Since we have the
only information that ∂xu

m−1 ∈ L∞(R × (0, T )), it is necessary to assume
that q

2
− 1 ≥ m− 1. This is the technical reason why we impose q ≥ 2m.

(iii) The Hölder continuity of solution of (PM)m has been studied intensively
for the last 30 years. In this direction, see Aronson [2], Kruzhkov [17],
Caffarelli–Friedman [7], Gilding–Peletier [14], Gilding [13], DiBenedetto [10],
Bénilan [6], Aronson–Caffarelli [5] and DiBenedetto–Friedman [11].
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Our second result is on the uniform estimate of ∂2
xu

m−1 from below in a
generalized sense.

Theorem 2.2 (Aronson-Bénilan type estimate) Let the Assumption hold.

In addition, we assume that u
m−1

2
0 ∈ W 2,∞(R) for 1 < m < 2 and u0 ∈

W 2,∞(R) for m ≥ 2, restrictively. Suppose that (u, v) is the weak solution
of (KS)m on [0, T ) given by Proposition 2.1 with T = T0. There exists a
positive constant β depending only on u0, m, q, γ such that∫ T

0

∫
R

(
βϕ− ∂xu

m−1 · ∂xϕ
)
dxdt ≥ 0(2.6)

for all ϕ ∈ C1
0(R × (0, T )) with the property ϕ(x, t) ≥ 0 for all (x, t) ∈

R × (0, T ).

Remark 2. (i) Our estimate (2.6) implies that if ∂xu
m−1(x, t) is differen-

tiable in x for some sub-domain KT ⊂ R × (0, T ), then it holds

∂2
xu

m−1(x, t) > −β for all (x, t) ∈ KT .

On the other hand, there is a solution U of (PM)m such that

lim
h→0

1

h

(
∂xU

m−1(x0 + h, t0) − ∂xU
m−1(x0 − h, t0)

)
= +∞.

This example of (PM)m inspires us that there exists no upper bound of
∂2

xu
m−1 for weak solutions u of (KS)m. Hence, such an estimate from below

as (2.6) may be reasonable.

(ii) For weak solutions u of (KS)m, it is well-known that u ∈ C∞(DT ), where
DT := {(x, t) ∈ R×(0, T ); u(x, t) > 0}. Since ∂xu

m−1 ∈ L∞(R×(0, T )), it is
an interesting question whether or not the limit limx→ξ(t)−0 ∂xu

m−1(x, t) does
exist, where ξ(t) denotes the interface curve of u, i.e., that the expression
of the boundary ∂DT of DT so that ∂DT = {(ξ(t), t); 0 < t < T}. Based
on (2.6), we see that the function

∂xu
m−1(x, t) + 2βx

is monotonically increasing along x → ξ(t) − 0, which guarantees the exis-
tence of the limit

lim
x→ξ(t)−0

∂xu
m−1(x, t) for all 0 < t < T.

This plays an important role in characterization of the interface curve ξ(t)
as in (1.5). See Aronson [3, Proof of Theorem, page 6] and Knerr [16,
Theorem 7.2] for (PM)m.

(iii) Our method for the Aronson–Bénilan type estimate is based on the
comparison principle, which is rather technical compared with that in [4].
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Our third purpose is to show growing-up of the support of the solution
u(t) as the time t increases. More precisely, we prove that once the solution
u(x0, t0) of (KS)m becomes positive at some (x0, t0) ∈ R×(0, T ), then u(x0, t)
never vanishes after t0.

Theorem 2.3 Let the Assumption hold. In addition, we assume that u
m−1

2
0 ∈

W 2,∞(R) for 1 < m < 2 and u0 ∈W 2,∞(R) for m ≥ 2, respectively. Suppose
that (u, v) is the weak solution of (KS)m on [0, T ) given by Proposition 2.1
with T = T0. If u(x0, t0) > 0 for some (x0, t0) ∈ R × (0, T ), then the point
x0 has the property that

u(x0, t) > 0 for all t0 < t < T.(2.7)

An immediate consequence of Theorem 2.3 is the following corollary.

Corollary 2.4 Under the same hypothesis of Theorem 2.3, the support of the
weak solution u(t) given by Proposition 2.1 is monotonically non-decreasing
with respect to t. Namely, for D(t) := {x ∈ R; u(x, t) > 0}, it holds

D(t0) ⊂ D(t1) for every 0 < t0 < t1 < T.

Furthermore, the interface curve ξ(t) of u is either monotone non-decreasing
or monotone non-increasing function of t ∈ (0, T ), where ξ is defined in
Remark 2 (ii).

Remark 3. In (PM)m, a similar property of growing-up of the support
of U(t) was obtained, for instance, by Dahlberg–Kenig [9, Theorem 3]. In
comparison with (PM)m, even in 1-D case, (KS)m posses a solution which
blows up in a finite time. Hence our Corollary 2.4 seems to be useful to
investigate the mass concentration phenomena of blow-up solutions, which
will be discussed in a forthcoming paper.

3. Proof of Theorem 2.1

3.1. Approximate equations

We introduce the following approximating equations of (KS)m:

(KS)ε

⎧⎪⎨
⎪⎩
∂tuε(x, t)= ∂x

(
∂x(uε+ε)

m−(uε+ε)
q−2uε ·∂xvε

)
, (x, t) ∈ R × (0, T ),

0 = ∂2
xvε − γvε + uε, (x, t) ∈ R × (0, T ),

uε(x, 0)= u0ε(x), x ∈ R,

where ε > 0 is a positive parameter. Let us impose the following assumption
on the initial data u0ε with ε > 0.
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(A.1) u0ε(x) ≥ 0 for all x ∈ R and u0ε ∈ Lp(R) with

sup
0<ε<1

‖u0ε‖Lp(R) ≤ ‖u0‖Lp(R) for all p ∈ [1,∞],

(i) For 1 < m < 2,

‖u0ε − u0‖Lp(R) → 0 as ε → 0 for all p ∈
[ 2

m− 1
,∞);

(ii) For m ≥ 2,

‖u0ε − u0‖Lp(R) → 0 as ε→ 0 for all p ∈ [1,∞);

(A.2) (i) For 1 < m < 2, u
m−1

2
0ε ∈W 2,∞(R) with

sup
0<ε<1

‖u
m−1

2
0ε ‖W 2,∞(R) ≤ ‖u

m−1
2

0 ‖W 2,∞(R);

(ii) For m ≥ 2, u0ε ∈W 2,∞(R) with

sup
0<ε<1

‖u0ε‖W 2,∞(R) ≤ ‖u0‖W 2,∞(R).

Remark 4. We can concretely construct u0ε satisfying the above (A.1)–
(A.2)(i) (resp. (A.1)–(A.2)(ii) ) by taking

u0ε = (u
m−1

2
0 ∗ ρε)

2
m−1 (resp. u0ε = u0 ∗ ρε)

with the standard mollifier ρε.

When the weak derivatives ∂xu, ∂
2
xu and ∂tu are in Lp(QT ) for some

p ≥ 1, we say that u ∈W 2,1
p (QT ), i.e.,

W 2,1
p (QT ) :=

{
u ∈ Lp(0, T ;W 2,p(R)) ∩W 1,p(0, T ;Lp(R));

‖u‖W 2,1
p (QT ) := ‖u‖Lp(QT ) + ‖∂xu‖Lp(QT )

+ ‖∂2
xu‖Lp(QT ) + ‖∂tu‖Lp(QT ) <∞

}
,

where QT = R × (0, T ).

Definition 2 We call (uε, vε) a strong solution of (KS)ε if it belongs to
W 2,1

p ×W 2,1
p (QT ) for some p ≥ 1 and (KS)ε is satisfied almost everywhere

in QT .
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For the strong solution, we consider the case p = 3 and introduce the
space W(QT ) defined by

W(QT ) := W 2,1
3 ×W 2,1

3 (QT ).

The existence of strong solution of (KS)ε was proved in [20]–[22]. The mass
conservation law of uε was established in [21, Proposition 7.1].

Proposition 3.1 (local existence of approximating solution) Let m ≥ 1,
γ > 0, q ≥ 2. We take T0 := (‖u0‖L∞(R) + 2)−q. Then, for every ε > 0
and every initial data u0ε satisfying the hypothesis (A.1)–(A.2), (KS)ε has
the unique non-negative strong solution (uε, vε) in W(QT0). Moreover, uε(t)
satisfies the following a priori estimate

(3.1) ‖uε(t)‖L∞(R) ≤ ‖u0‖L∞(R) + 2 and

∫
R

uε(x, t)dx =

∫
R

u0ε(x)dx

for all t ∈ [0, T0) and all ε ∈ (0, 1].

It is important to deal with the velocity potential wε of (KS)ε, where

wε :=
m

m− 1
(uε + ε)m−1.

We first obtain a uniform L∞-bound of ∂xwε.

Lemma 3.1 ([23, Lemma 8.1]) Let the Assumption hold and let q ≥ 2m.

We assume that u
m−1

2
0 ∈ W 2,∞(R) for 1 < m < 2 and u0 ∈ W 2,∞(R) for

m ≥ 2. For every ε > 0, we take u0ε so that the hypothesis (A.1)–(A.2) are
satisfied. Then the strong solution uε of (KS)ε on [0, T0) given by Proposi-
tion 3.1 has the following property:

sup
0<ε<1

(
sup

0<t<T0

‖∂xwε‖L∞(R)

)
≤ C,(3.2)

where C = C(u0, m, q, γ).

Remark 5. (i) It should be noted that the time interval [0, T0) of the
existence of the strong solution (uε, vε) can be taken uniformly with respect
to ε > 0.

(ii) The weak solution (u, v) of (KS)m on [0, T0) given by Proposition 2.1
can be constructed as the weak limit of (uε, vε) as ε → 0, where (uε, vε)
is the strong solution in Proposition 3.1. More precisely, by choosing a
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subsequence of (uε, vε) which we denote by (uε, vε) itself for simplicity, we
have

uε ⇀u weekly − star in L∞(0, T0;L
2(R)),

um
ε →um weekly in L2(0, T0;H

1(R)) and strongly in C([0, T0);L
2
loc(R)),

vε ⇀v weekly − star in L∞(0, T0;H
2(R))

as ε → 0. In what follows, we assume that the sequence of approximating
solutions (uε, vε) satisfies the above convergence.

(iii) The strong solution (uε, vε) ∈ W(QT0) is more regular. Indeed, for
every ε > 0, it can be shown that uε, vε ∈ C∞(R × (0, T0)).

We next establish a uniform L∞-bound of ∂2
xwε from below.

Lemma 3.2 (Aronson-Bénilan type estimate) Let the Assumption hold

and let q ≥ 2m. We assume that u
m−1

2
0 ∈ W 2,∞(R) for 1 < m < 2 and

u0 ∈W 2,∞(R) for m ≥ 2. For every ε > 0, we take u0ε so that the hypothesis
(A.1)–(A.2) are satisfied. Then the strong solution uε of (KS)ε on [0, T0)
given by Proposition 3.1 has the following property:

There exists a positive constant β depending only on u0, m, q, γ but not
on ε such that

∂2
xwε(x, t) ≥ − β(3.3)

for all x ∈ R and 0 < t < T .

Proof of Lemma 3.2. Firstly, multiplying the first equation of (KS)ε by
m(uε + ε)m−2 and then rewriting the result identity by wε, we have

∂twε = (m−1)wε ·∂2
xwε+|∂xwε|2−

(
(q−2)(uε+ε)

q−3uε+(uε+ε)
q−2

)
·∂xvε ·∂xwε

− (m− 1)(uε + ε)q−3uε · ∂2
xvε · wε.(3.4)

Differentiating (3.4) once and twice with respect to x, we have by (3.2) that

∂t∂xwε = (m− 1)wε · ∂3
xwε + (m+ 1)∂xwε · ∂2

xwε

−
(
(q − 2)(uε + ε)q−3uε + (uε + ε)q−2

)
· ∂xvε · ∂2

xwε + b1,(3.5)

∂t∂
2
xwε = (m− 1)wε · ∂4

xwε + 2m∂xwε · ∂3
xwε

−
(
(q − 2)(uε+ε)

q−3uε+(uε+ε)
q−2

)
·∂xvε ·∂3

xwε+ (m+1)(∂2
xwε)

2

+ b2 · ∂2
xwε + b3(3.6)
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with the estimates

sup
0<ε<1

sup
(x,t)∈R×[0,T )

|bi(uε, vε, ∂xvε, ∂xwε)| ≤ C, i = 1, 2, 3(3.7)

for some positive constant C=C(u0, m, q, γ), where bi =bi(uε, vε, ∂xvε, ∂xwε)
(i = 1, 2, 3) are functions depending only on uε, vε, ∂xvε, ∂xwε.

Let R be an arbitrary positive number, and let us take the cut-off func-
tion η such as

η(x) :=

⎧⎨
⎩

1 for − 2R+ δ ≤ |x| < 2R− δ,
exp(1 − δ

2R−x
) for 2R− δ ≤ |x| < 2R,

0 for |x| ≥ 2R,

where δ is sufficiently small constant. Then, it holds that

(3.8)
|∂xη(x)| ≤ c

2δ
· η(x)1−�, |∂2

xη(x)| ≤ c

4δ2 · η(x)1−�,

|∂3
xη(x)| ≤ c

6δ3 · η(x)1−�

for all x ∈ R and all 0 <  < 1, where c is an absolute positive constant,
which yields that

(3.9)

(∂xη)
2

η ≤ c

4δ2 · η1−2�,
∂xη · ∂2

xη
η ≤ c

�6δ3 · η1−2�,

∂xη · ∂3
xη

η ≤ c

8δ4 · η1−2�

for all x ∈ R and all 0 <  < 1, where c is an absolute positive constant.

Using the above cut-off function η, we obtain from (3.5), (3.6) and (3.7)
that

∂t∂
2
x(wεη) = (∂t∂

2
xwε)η + 2(∂t∂xwε)∂xη + (∂twε)∂

2
xη

= (m− 1)wε(∂
4
xwε)η + 2(m− 1)wε(∂

3
xwε)∂xη

+
(
2m∂xwε −

(
(q − 2)(uε + ε)q−3uε + (uε + ε)q−2

)
∂xvε

)
∂3

xwε · η
+ (m+ 1)(∂2

xwε)
2η +

[
b2η + 2(m+ 1)(∂xwε)∂xη

− 2
(
(q − 2)(uε + ε)q−3uε + (uε + ε)q−2

)
∂xvε · ∂xη

+ (m− 1)wε∂
2
xη

]
∂2

xwε + b0∂
2
xη + 2b1∂xη + b3η(3.10)

with the estimate

sup
0<ε<1

sup
(x,t)∈R×[0,T )

|b0(uε, vε, ∂xvε, ∂xwε)| ≤ C

for some positive constant C = C(u0, m, q, γ), where b0 = b0(uε, vε, ∂xvε, ∂xwε)
is a function depending only on uε, vε, ∂xvε, ∂xwε.
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On the other hand, it holds that

(∂3
xwε)η = ∂3

x(wεη) − 3(∂2
xwε)∂xη − 3(∂xwε)∂

2
xη − wε∂

3
xη,

(∂4
xwε)η = ∂4

x(wεη) − 4(∂3
xwε)∂xη − 6(∂2

xwε)∂
2
xη − 4∂xwε∂

3
xη − wε∂

4
xη

= ∂4
x(wεη) − 4

∂xη

η

(
∂3

x(wεη) − 3(∂2
xwε)∂xη − 3(∂xwε)∂

2
xη − wε∂

3
xη

)
− 6(∂2

xwε)∂
2
xη − 4∂xwε∂

3
xη − wε∂

4
xη.

Combining the above identities with (3.10), we have

∂t∂
2
x(wεη) = (m− 1)wε∂

4
x(wεη) + 2(m− 1)wε∂

3
x(wεη) · ∂xη

η

+
(
2m∂xwε −

(
(q − 2)(uε + ε)q−3uε + (uε+ε)

q−2
)
∂xvε

− 4(m− 1)wε · ∂xη

η

)
∂3

x(wεη)

+ J1 + J2∂
2
xwε + b0∂

2
xη + 2b1∂xη + b3η

+ 12(m− 1)wε∂xwε
∂xη∂

2
xη

η
+ 4(m− 1)w2

ε

∂xη∂
3
xη

η
,(3.11)

where

J1 := (m+ 1)(∂2
xwε)

2η,

J2 := (m− 1)wε

(
− 5∂2

xη + 6
(∂xη)

2

η

)
+

(
(−4m+2)∂xwε+

(
(q−2)(uε + ε)q−3uε+(uε+ε)

q−2
)
∂xvε

)
∂xη+ b2η.

By (3.1), (3.2) and (3.9), it holds that there exists a positive constant M0

depending only on u0, m, q, γ such that

J2 ≤ M0

(η 1
2
−�

4δ2
+
η

1
2
−2�

4δ2
+
η

1
2
−�

2δ
+ η

1
2

)
η

1
2 ≤ 4M0 · 1

4δ2
· η 1

2

provided 0 <  ≤ 1
4
, which together with the Young inequality yields that

J2∂
2
xwε ≤ m+ 1

4
(∂2

xwε)
2η +

(4M0

4δ2

)2

.(3.12)

Thus, from (3.11) together with (3.1), (3.2), (3.9) and (3.12), we find that
there exists a positive constant M1 depending only on u0, m, q, γ, δ,  such
that

∂t∂
2
x(wεη) > (m− 1)wε∂

4
x(wεη) −M1 +

(
2m∂xwε −

(
(q − 2)(uε + ε)q−3uε

+ (uε + ε)q−2
)
∂xvε − 2(m− 1)wε · ∂xη

η

)
∂3

x(wεη).
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Now let us define the parabolic operator P by

P (h) := −∂th+ (m− 1)wε · ∂2
xh−M1 +

(
2m∂xwε

− (
(q − 2)(uε + ε)q−3uε + (uε + ε)q−2

)
∂xvε − 2(m− 1)wε · ∂xη

η

)
∂xh.

We choose a comparison function fδ∗(t).

fδ∗(t) := −M1(t+1)+ inf
x∈(−2R,2R)

∂2
x(wεη)(x, 0) + inf

s∈(0,T )
∂2

x(wεη)(−2R+ δ∗, s)

+ inf
s∈(0,T )

∂2
x(wεη)(2R− δ∗, s), 0 < t < T.

Here, for a small number δ∗ with 0 < δ∗ < R, we consider the following
domain:

Dδ∗,T := Iδ∗,R × [0, T ), Iδ∗,R :=
{
x ∈ R; −2R+ δ∗ < x < 2R− δ∗

}
.

Then, we have

P (∂2
x(wεη)) < 0 = P (fδ∗(t)) for all (x, t) ∈ Dδ∗,T .

In addition, since it holds that

∂2
x (wεη)(x, t) > fδ∗(t)

for all (x, t) ∈ ∂Dδ∗,T\{(y, T );−2R+ δ∗ ≤ y ≤ 2R− δ∗},

by applying the comparison principle to the parabolic operator P , e.g., Fried-
man [12, Theorem 16, page 52] or Lieberman [18, Lemma 9.4], we have

∂2
x(wεη)(x, t) > fδ∗(t) for all (x, t) ∈ Dδ∗,T ,

which yields that

∂2
xwε(x, t) > fδ∗(t) for all − R < x < R.(3.13)

Now, letting δ∗ tend to 0 in (3.13), we have

∂2
xwε(x, t) ≥ −M1(T + 1) + inf

y∈(−2R,2R)
∂2

x(wεη)(y, 0)(3.14)

for all −R < x < R, and 0 < t < T.
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We estimate the term infy∈(−2R,2R) ∂
2
x(wεη)(y, 0) independently of ε from

below. Indeed, it holds by (3.8) that

inf
x∈(−2R,2R)

∂2
x

(
wε(x, 0)η(x)

) ≥
≥ inf

x∈(−2R,2R)
(∂2

xwε(x, 0))η(x)

+ inf
x∈(−2R,2R)

2(∂xwε(x, 0))∂xη(x) + inf
x∈(−2R,2R)

wε(x, 0)∂2
xη(x)

≥ inf
x∈(−2R,2R)

(∂2
xwε(x, 0))η(x) − c

4δ2

(
‖wε(·, 0)‖L∞(R) + ‖∂xwε(·, 0)‖L∞(R)

)
for all 0 <  < 1, where c is is an absolute positive constant. Since it holds
that

‖(u0ε + ε)m−1‖L∞(R) ≤ 2m−1‖um−1
0ε + εm−1‖L∞(R) ≤ 2m−1(‖u0‖m−1

L∞(R) + 1),

and since it holds by (A.2) that

‖∂x(u0ε + ε)m−1‖L∞(R) = (m− 1)‖(u0ε + ε)m−2∂xu0ε‖L∞(R)

≤
{

(m− 1)‖um−2
0ε ∂xu0ε‖L∞(R) for 1 < m < 2,

(m− 1)2m−2‖(um−2
0ε + εm−2)∂xu0ε‖L∞(R) for m ≥ 2,

≤
{ ‖∂xu

m−1
0ε ‖L∞(R) for 1 < m < 2,

(m− 1)2m−2
(
‖um−2

0ε + 1‖L∞(R)

)
‖∂xu0ε‖L∞(R) for m ≥ 2,

≤
{ ‖∂xu

m−1
0 ‖L∞(R) for 1 < m < 2,

(m− 1)2m−2
(
‖um−2

0 + 1‖L∞(R)

)
‖∂xu0‖L∞(R) for m ≥ 2,

we obtain a positive constant M2 depending only on u0, m such that

(3.15) inf
x∈(−2R,2R)

∂2
x

(
wε(x, 0)η(x)

) ≥ inf
x∈(−2R,2R)

(∂2
xwε(x, 0))η(x) − c

4δ2
M2

for all 0 <  < 1, where c is is an absolute positive constant.

In addition, for 1 < m < 2, it holds that

∂2
x(u0ε + ε)m−1 =(3.16)

= −(m− 1)(2 −m)(u0ε + ε)m−3(∂xu0ε)
2 + (m− 1)(u0ε + ε)m−2∂2

xu0ε

≥ −(m− 1)(2 −m)um−3
0ε (∂xu0ε)

2 + min{0, (m− 1)um−2
0ε ∂2

xu0ε}.
Since it holds that

(m− 1)um−2
0ε ∂2

xu0ε = 2u
m−1

2
0ε · ∂2

xu
m−1

2
0ε +

(m− 1)(3 −m)

2
um−3

0ε (∂xu0ε)
2,
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and since −(m−1)(2−m)+ (m−1)(3−m)
2

> 0, we have by (3.16) and (A.2)-(i)
that

∂2
x(u0ε + ε)m−1 ≥ −(m− 1)(2 −m)um−3

0ε (∂xu0ε)
2

+ min
{

0,
(
2u

m−1
2

0ε · ∂2
xu

m−1
2

0ε +
(m−1)(3−m)

2
um−3

0ε (∂xu0ε)
2
)}

≥ −4(2−m)

(m−1)
‖∂xu

m−1
2

0ε ‖2
L∞(R) − 2‖u

m−1
2

0ε ‖L∞(R)‖∂2
xu

m−1
2

0ε ‖L∞(R)

≥ −4(2−m)

(m−1)
‖∂xu

m−1
2

0 ‖2
L∞(R) − 2‖u

m−1
2

0 ‖L∞(R)‖∂2
xu

m−1
2

0 ‖L∞(R).

Thus we obtain that

inf
x∈(−2R,2R)

∂2
x

(
wε(x, 0)

)
η(x) ≥(3.17)

≥ − m

m−1

(4(2−m)

(m−1)
‖∂xu

m−1
2

0 ‖2
L∞(R) + 2‖u

m−1
2

0 ‖L∞(R)‖∂2
xu

m−1
2

0 ‖L∞(R)

)
.

As for the case of m ≥ 2, we have by (A.2)-(ii) that

inf
x∈(−2R,2R)

∂2
x

(
wε(x, 0)

)
η(x) ≥ inf

x∈(−2R,2R)
m(m− 2)(u0ε + ε)m−3(∂xu0ε)

2η(x)

+ inf
x∈(−2R,2R)

m(u0ε + ε)m−2∂2
xu0εη(x)

≥ −m‖(um−2
0ε + 1)‖L∞(−2R,2R)‖∂2

xu0ε‖L∞(−2R,2R)

≥ −m‖(um−2
0 + 1)‖L∞(R)‖∂2

xu0‖L∞(R).(3.18)

Thus we find by (3.15), (3.17) and (3.18) that there exists a positive con-
stant M3 depending only on u0, m such that

inf
x∈(−2R,2R)

∂2
x

(
wε(x, 0)

)
η(x) ≥ −M3 − c

4δ2
M2(3.19)

for all 0 <  < 1, where c is is an absolute positive constant. Combin-
ing (3.14) with (3.19) and taking  = 1

4
, we have

∂2
xwε(x, t) ≥ −M1(T + 1) −M3 − 44c

δ2
M2 =: β(3.20)

for all −R < x < R, and 0 < t < T , where β is a positive constant
independent of 0 < ε < 1. Since β is independent of R, we establish (3.3).
Thus we complete the proof of Lemma 3.2.
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3.2. Proof of Theorem 2.1

Proof of Theorem 2.1 (1). We apply a similar argument to that in
Caffarelli–Friedman [7, page 111, Remark 1]. Using (3.1), (3.2) and (3.3),
we shall show (2.5). We have by (KS)ε that

(3.21) ∂t

(
(uε(x, t) + ε)m−1

) ≥ −C(uε(x, t) + ε)m−1

for all x ∈ R and 0 < t < T with some positive constant C = C(u0, m, q, γ)
independent of 0 < ε < 1. Indeed, it holds that

∂t(uε + ε)m−1 =(m− 1)(uε + ε)m−2∂tuε

=(m−1)(uε+ε)
m−2

(
∂2

x(uε + ε)m−∂x

(
(uε+ε)

q−2uε ·∂xvε

))
.(3.22)

It is easily seen that

∂2
x(uε + ε)m =

m

m− 1
(uε + ε) · ∂2

x(uε + ε)m−1 + m(uε + ε)m−2(∂xuε)
2

≥ − m

m− 1
(uε + ε) · ∂2

x(uε + ε)m−1

≥ − mβ

m− 1
(uε + ε),(3.23)

−∂x

(
(uε + ε)q−2uε · ∂xvε

)
= − q − 2

m− 1
(uε+ε)

q−m−1uε · ∂xvε · ∂x(uε + ε)m−1

− 1

m− 1
(uε + ε)q−m · ∂xvε · ∂x(uε + ε)m−1

− (uε + ε)q−2uε · γvε + (uε + ε)q−2(uε)
2

≥ −C(uε + ε)(3.24)

for some positive constant C = C(u0, m, q, γ) independent of 0 < ε < 1,
where β is the same one as in (3.3). Substituting (3.23) and (3.24) into (3.22),
we obtain (3.21).

We now integrate (3.21) with respect to the time variable, which with
the aid of (3.1) yields that

(uε(x, t2) + ε)m−1 ≥ (uε(x, t1) + ε)m−1 − C1|t2 − t1|(3.25)

for all x ∈ R and 0 < t1 < t2 < T with some positive constant C1 =
C1(u0, m, q, γ) independent of 0 < ε < 1. On the other hand, it holds
by (3.2) with T = T0 that

(3.26) |uε(x1, t1) + ε)m−1 − (uε(x2, t1) + ε)m−1| ≤ C2|x2 − x1|
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for all x1, x2 ∈ R and 0 < t1 < T with some positive constant C2 =
C2(u0, m, q, γ) independent of 0 < ε < 1. As a result, combining (3.25)
with (3.26), we obtain that

(3.27) (uε(x2, t2)+ε)
m−1 ≥ (uε(x1, t1)+ε)

m−1−(C1+C2)
(|t2−t1|+|x2−x1|

)
for all x1, x2 ∈ R and 0 < t1 < t2 < T .

Next, taking c∗ as c∗ =
1

2m‖uε + ε‖m−1
L∞(QT )

, we have

∂2
x(uε + ε)m−1 − c∗∂t(uε + ε)m−1 =

= ∂2
x(uε + ε)m−1

(
1 − c∗m(uε + ε)m−1

)
− c∗

m

m− 1

(
∂x(uε + ε)m−1

)2

+ c∗(m− 1)(uε + ε)m−2∂x

(
(uε + ε)q−2uε∂xvε

)
.(3.28)

As for the first term in the above, noting that 1
2
≤ 1 − c∗m(uε + ε)m−1 ≤ 1,

we have by (3.23) that

∂2
x(uε + ε)m−1

(
1 − c∗m(uε + ε)m−1

)
≥

{
0 for ∂2

x(uε + ε)m−1 ≥ 0;
−β for ∂2

x(uε + ε)m−1 < 0,

which together with (3.28) implies that there exists a positive constant C3

depending only on u0, m, q and γ such that

(3.29) ∂2
x(uε(x, t) + ε)m−1 − c∗∂t(uε(x, t) + ε)m−1 ≥ −C3

for all x ∈ R and 0 < t < T .

Let us now chose R ≥ 1 arbitrary large and take the cut-off function η̂
such as

η̂(x) :=

⎧⎨
⎩

1 for |x| < R,
exp(1 − R

2R−x
) for R ≤ |x| < 2R,

0 for |x| ≥ 2R
(3.30)

for all 0 ≤ t < T . Then, it holds that

|∂xη̂(x)| ≤ c

R
, |∂2

xη̂(x)| ≤ c

R2
for all x ∈ R,(3.31)

where c is an absolute positive constant. We have by (3.29) and (3.31) that

(3.32) ∂2
x

(
(uε(x, t) + ε)m−1η̂(x)

)− c∗∂t

(
(uε(x, t) + ε)m−1η̂(x)

) ≥ −C3 − C4

R

for all x ∈ R and 0 < t < T with some positive constant C4 = C4(u0, m, q, γ).
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Let us take t1 in (0, T ) and introduce the following semi-linear equation
with the initial time t1:

(H)

{
∂2

xz(x, t) − c∗∂tz(x, t) = −2C3 − C4

R
, x ∈ R, t > t1,

z(x, t1) = (uε + ε)m−1(x, t1), x ∈ R.

Then, it holds by (3.26) that

|z(x, t) − z(x1, t1)| ≤ C5(|x− x1| + |t− t1| 12 )(3.33)

for all x ∈ R and t1 < t < T with some positive constant C5 =C5(u0, m, q, γ).

Now let us define the parabolic operator P̂ on the domain DR,t1 by

P̂ (h) := −c∗∂th+ ∂2
xh+ 2C3 +

C4

R
,

where

DR,t1 :=
{

(x, t) ∈ R × (t1, T ); −2R < x < 2R
}
.

By (3.32) and (H), we have

P̂ ((uε + ε)m−1η̂)) > 0 = P̂ (z) for all (x, t) ∈ DR,t1 .

In addition, noting that z(x, t1) = (uε + ε)m−1(x, t1) of (H) and z(x, t) > 0
for all (x, t) ∈ R × (t1, T ), we have that

((uε+ε)
m−1η̂)(x, t)<z(x, t) for all (x, t)∈∂DR,t1\{(y, T );−2R ≤ y ≤ 2R}.

Hence, applying the comparison principle to the parabolic operator P̂ , e.g.,
Friedman [12, Theorem 16, page 52] or Lieberman [18, Lemma 9.4], we
obtain

((uε + ε)m−1η̂)(x, t) < z(x, t) for all (x, t) ∈ DR,t1 ,

which yields that

(3.34) (uε(x, t) + ε)m−1 < z(x, t) for all − R < x < R, t1 < t < T.

Combining (3.33) with (3.34), we have by (H) that

(uε(x2, t2) + ε)m−1 − (uε(x1, t1) + ε)m−1 ≤ z(x2, t2) − z(x1, t1)

≤ C5(|x2 − x1| + |t2 − t1| 12 )(3.35)

for all −R < x1, x2 < R and 0 < t1 < t2 < T , where C5 is the same one as
in (3.33).



Aronson-Bénilan type estimate for degenerate Keller-Segel systems 909

By virtue of (3.27) and (3.35), it holds that

|uε(x2, t2) − uε(x1, t1)| =

=

∣∣∣∣((uε(x2, t2) + ε)m−1
) 1

m−1 −
(
(uε(x1, t1) + ε)m−1

) 1
m−1

∣∣∣∣
≤

{
|(uε(x2, t2) + ε)m−1 − (uε(x1, t1) + ε)m−1| 1

m−1 for m ≥ 2,

C6|(uε(x2, t2) + ε)m−1 − (uε(x1, t1) + ε)m−1| for 1<m<2

≤ (C
1

m−1

5 + C6)(|x2 − x1| + |t2 − t1| 12 )μ(3.36)

for all −R < x1, x2 < R and 0 < t1 < t2 < T with some positive constant
C6 = C6(u0, m, q, γ), where μ = min{1, 1

m−1
}. This implies that {uε}ε>0 is

a family of equi-continuous functions in −R < x < R and 0 < t < T . Hence
by the Ascoli-Arzelà theorem, there is a subsequence of {uε}ε>0, which we
denoted by {uε}ε>0 itself, such that

uε(x, t) −→ u(x, t) as ε→ 0(3.37)

uniformly in every compact set of (−R,R) × (0, T ). Now letting ε → 0
in (3.36), we have by (3.37) that

(3.38) |u(x2, t2) − u(x1, t1)| ≤ (C
1

m−1

5 + C6)(|x2 − x1| + |t2 − t1| 12 )μ

for all −R < x1, x2 < R and 0 < t1, t2 < T . Since R can be taken arbitrary
large and since the constants C5 and C6 are independent of R, we observe
that

|u(x2, t2) − u(x1, t1)| ≤ (C
1

m−1

5 + C6)(|x2 − x1| + |t2 − t1| 12 )μ

for all x1, x2 ∈ R and 0 < t1, t2 < T . Thus we complete the proof of
Theorem 2.1 (1).

Proof of Theorem 2.1 (2). By [23, Theorem 1.2 (ii)], it holds that
∂xu

m−1+δ is a continuous function with respect to x with the property that
∂xu

m−1+δ(x, t) = 0 at the point (x, t) ∈ R×(0, T ) such that u(x, t)=0. Hence
it remains to prove that ∂xu

m−1+δ is a continuous function with respect to t
with the property that ∂xu

m−1+δ(x, t) = 0 at the point (x, t) ∈ R × (0, T )
such that u(x, t) = 0.

First of all, let u(x0, t0) > 0. Then we see by the standard argument that
∂xu

m−1+δ is a continuous function in a neighbourhood of (x0, t0). Therefore,
for fixed x ∈ R, it suffices to prove that ∂xu

m−1+δ(x, ·) is a continuous
function in a neighbourhood of t1 such as u(x, t1) = 0 with the additional
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property that ∂xu
m−1+δ(x, t1) = 0. Therefore, by (3.38), there exists a0 > 0

such that

0 ≤ u(x, t) ≤ |u(x, t) − u(x, t1)| + u(x, t1) ≤ (C
1

m−1

5 + C6)a
μ

holds for all t ∈ Ia(t1) := {t ∈ (0, T ); |t− t1| < a} and for all 0 < a ≤ a0.

For every δ > 0, we have by (2.4) that

|∂xu
m−1+δ(x, t)| =

m− 1 + δ

m− 1
|uδ(x, t)||∂xu

m−1(x, t)|
≤ Caμδ, 0 < a ≤ a0

for some positive constant C = C(u0, m, q, γ). Hence we have by letting
a→ 0 that

∂xu
m−1+δ(x, t1) = 0

which implies that ∂xu
m−1+δ(x, t1) is continuous at t1. Since t1 can be taken

arbitrary in such a way that u(x, t1) = 0, we conclude that ∂xu
m−1+δ(x, t1)

is a continuous function in (0, T ) for all x ∈ R with the additional property
that ∂xu

m−1+δ(x, t) = 0 for the point (x, t) such as u(x, t) = 0.

Concerning 1 < m < 2, by [23, Theorem 1.2 (ii)], it holds that ∂xu is a
continuous function with respect to x with the property that ∂xu(x, t) = 0
at the point (x, t) ∈ R × (0, T ) such that u(x, t) = 0. Hence it remains to
prove that ∂xu is a continuous function with respect to t with the property
that ∂xu(x, t) = 0 at the point (x, t) ∈ R × (0, T ) such that u(x, t) = 0.
This can be handled in a similar manner as above. Indeed, we conclude that
∂xu(x, t1) is a continuous function at t1 for all x ∈ R with the additional
property that ∂xu(x, t) = 0 for the point (x, t) such as u(x, t) = 0. Thus we
complete the proof of Theorem 2.1 (2).

3.3. Proof of Theorem 2.2

By (3.2), (3.37) and the weakly-star compactness of L∞(R × (0, T )), there
exists a sequence of {uε}ε>0, which we denote by {uε}ε>0 itself for simplicity,
such that

∂x(uε + ε)m−1 → ∂xu
m−1 weakly − star in L∞(R × (0, T )).

This together with (3.3) in Lemma 3.2 yields that∫ T

0

∫
R

(
βϕ− ∂xu

m−1 · ∂xϕ
)
dxdt ≥ 0

for all ϕ ∈ C1
0 (R × (0, T )) with the property ϕ(x, t) ≥ 0 for all (x, t) ∈

R × (0, T ). Thus we complete the proof of Theorem 2.2.
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3.4. Proof of Theorem 2.3

The proof of Theorem 2.3 is based on the standard argument. For
reader’s convenience, we shall give the proof.

It holds by (3.21) that

∂tuε(x, t) ≥ −C(uε(x, t) + ε),

which yields that

∂t

(
log(uε(x, t) + ε)

)
≥ −C

for all x ∈ R and 0 < t < T with some positive constant C = C(u0, m, q, γ)
independent of 0 < ε < 1. Integrating both sides with respect to t from t0
to t, we have that

log
( uε(x, t) + ε

uε(x, t0) + ε

)
≥ −C(t− t0) = log e−C(t−t0)

for all x ∈ R and 0 < t0 < t < T . This implies that

uε(x, t) + ε ≥ (uε(x, t0) + ε)e−C(t−t0)(3.39)

for all x ∈ R and 0 < t0 < t < T . Now, letting ε tend to 0 in (3.39), we
have by (3.37) that

u(x, t) ≥ u(x, t0)e
−C(t−t0)

for all x ∈ R and 0 < t0 < t < T , which yields the desired result. This
completes the proof of Theorem 2.3.

The proof of Corollary 2.4 is obvious, so we may omit it.

Acknowledgments: The author would like to express her sincere gratitude
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