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The (L1, L1) bilinear Hardy-Littlewood
function and Furstenberg averages

Idris Assani and Zoltán Buczolich

Abstract
Let (X,B, µ, T ) be an ergodic dynamical system on a non-atomic

finite measure space. Consider the maximal function

R∗ : (f, g) ∈ L1 × L1 → R∗(f, g)(x) = sup
n

f(T nx)g(T 2nx)
n

.

We show that there exist f and g such that R∗(f, g)(x) is not fi-
nite almost everywhere. Two consequences are derived. The bilinear
Hardy–Littlewood maximal function fails to be a.e. finite for all func-
tions (f, g) ∈ L1 ×L1. The Furstenberg averages do not converge for
all pairs of (L1, L1) functions, while by a result of J. Bourgain these
averages converge for all pairs of (Lp, Lq) functions with 1

p + 1
q ≤ 1.

1. Introduction

The bilinear Hardy–Littlewood maximal function was introduced by Alberto
Calderón in the 1960’s. It is defined for f, g measurable functions as

M∗(f, g)(x) = sup
t

1

2t

∫ t

−t

f(x+ s)g(x+ 2s)ds.

Our purpose is to prove that M∗ is not always a.e finite when the functions f
and g are in L1.

Theorem 1. There exist functions f, g both in L1 for which the bilinear
Hardy-Littlewood maximal function

M∗(f, g)(x) = sup
t

1

2t

∫ t

−t

f(x+ s)g(x+ 2s)ds

is not a.e. finite.
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To prove this theorem we use Ergodic Theory. The Ergodic Theory
version of the bilinear Hardy–Littlewood maximal function is defined for
f, g ≥ 0 as

M(f, g)(x) = sup
N

1

2N + 1

N∑
n=−N

f(T nx)g(T 2nx),

where T is an ergodic measure preserving transformation of a non-atomic
probability measure space, f ∈ Lp, and g ∈ Lq. They are called Furstenberg
averages. They appear in H. Furstenberg’s paper in 1977 [5].

A transference argument shows that the class of functions in Lp×Lq , for
which M∗ and M are a.e. finite is the same. For f, g ≥ 0 we have

M(f, g)(x) ≥ sup
N

f(TNx)g(T 2Nx)

2N + 1
,

the tail of the averages M(f, g)(x). We consider the maximal function

R∗(f, g)(x) = sup
n

f(T nx)g(T 2n(x))

n
.

In [1] we showed that for all p, q ≥ 1 such that 1
p

+ 1
q
< 2, R∗ maps

Lp × Lq into Lr as soon as 0 < r < 1/2. This implies that R∗(f, g) is finite

almost everywhere and f(T nx)g(T 2nx)
n

→ 0 for a.e. x as n→ ∞.

In this paper we show that for p = q = 1, R∗(f, g)(x) is not finite almost
everywhere for all f and g.

Theorem 2. Let (X,B, μ, T ) be an ergodic measure preserving transforma-
tion on a finite non-atomic measure space. Then there exist functions f, g
both in L1

+(X) for which the maximal function

R∗(f, g)(x) = sup
n

f(T nx)g(T 2nx)

n

is not finite a.e.

The example of the identity map shows that Theorem 2 is false without
the ergodicity assumption.

Theorem 2 gives us three conclusions. First it solves an open problem
in Ergodic Theory. Indeed, a deep result of J. Bourgain, [2], showed that
the Furstenberg averages converge a.e. as soon as the Hölderian duality is
respected, (i.e. 1

p
+ 1

q
≤ 1). Theorem 2 shows that these averages do not

converge for all pairs of (L1, L1) functions as the tail of these averages does
not converge a.e. to zero for some functions f, g ∈ L1. This is the content
of the following result
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Theorem 3. Given an ergodic measure preserving transformation T, on a
nonatomic probabilty measure space, we can find functions f, g ∈ L1 for
which the Furstenberg averages

1

N

N∑
n=0

f(T nx)g(T 2nx)

do not converge a.e.

Secondly, by transference the unboundedness of M(f, g)(x) implies the
same result for the bilinear Hardy Littlewood maximal function in (L1×L1)
and gives a proof of Theorem 1.

A third consequence of Theorem 2 is that 1/2 is an optimal bound for R∗.

In view of all these three consequences we just need to focus on proving
Theorem 2.

For some further results and recent progress related to the bi- and trilin-
ear Hardy–Littlewood maximal function we also refer to [7], [8], [3] and [4].

Let us fix some notation. Given φ : R → R, periodic by p we put∫
φ =

1

p

∫ p

0

φ(x)dx.

Given a Lebesgue measurable set A, periodic by p we put

λ(A) =
1

p
λ(A ∩ [0, p)).

For a function φ : R → R, we will denote by spt (φ) the set of those
x’s for which φ(x) �= 0. This notation differs slightly from the support of
a function. The functions for which we will apply it will be constant on
intervals of the form [k, k + 1), k ∈ Z and hence spt φ differs only by some
endpoints of these intervals from the set which is usually considered to be
the support of a function.

2. Main Results

We want to prove Theorem 2. To this end we introduce the following defi-
nition.

Suppose that P ⊂ N is an infinite set, 1
2
< ρ < 1, 0 < ε < ε0

def
=1/10,

s, α ∈ N. We also suppose that M ≥ 2,M ∈ N

We will define the functions φi, ψk : R → R so that if Δ is any of these
functions then Δ(x) = Δ(
x�).

We fix the parameters ρ, ε and M.
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Definition 1. An α − P − s-family with ψ-interval [α, ω] consists of an
integer ns and of non-negative functions φi, i = 1, ..., ns, ψk, k = α, ..., ω
which are periodic by an integer ps ∈ P, ps ≥ ω and

λ

{
x : max

k∈[α,ω]
max
l≤ps

∑ns

i=1 φi(x+ l)ψk(x+ 2l)

l
≥ 1

}
(2.1)

> min

{
ε,
s(M − 1)ε2−M

2048

}
,

s · 2−M−1 <
ns∑
i=1

∫
φi < s · 2−M+1,(2.2)

ρε <

ω∑
k=α

∫
ψk < ε.(2.3)

Note that in this definition α is predetermined but ω is not. The num-
ber ω depends on α and on other objects of our construction like the func-
tions φ and ψ.

The next lemma shows that the notion of α−P − s-family is “generic”
among infinite sets P of positive integers in the following sense: if we can
find one α − P ′ − s-family then for any other infinite subset P we will be
able to find an α−P − s-family. This lemma allows us to restrict the proof
of the existence of such families to infinite set of integers consisting only of
powers of two.

Lemma 4. Suppose that P ′ ⊂ N is an arbitrary infinite set and there exists
an α − P ′ − s-family with ψ′-interval [α, ω]. Then for an arbitrary other
infinite set P ⊂ N there exists an α−P − s-family with ψ-interval [α, ω] as
well. Moreover,

(2.4)

∫
φ′

i ≈
∫
φi, in fact

(
1 − p′s

ps

) ∫
φ′

i ≤
∫
φi ≤

∫
φ′

i,

and

(2.5)

∫
ψ′

k ≈
∫
ψk, in fact

(
1 − p′s

ps

) ∫
ψ′

k ≤
∫
ψk ≤

∫
ψ′

k

where φ′
i, ψ

′
k belongs to the “old” α−P ′ − s-family and φi, ψk to the “new”

α− P − s-family and these families are periodic by p′s and ps, respectively.

Proof. Suppose we have φ′
i, i = 1, ..., ns, ψ

′
k, k = α, ..., ω periodic by

p′s ∈ P ′, p′s ≥ ω satisfying (2.1-2.3). Since P contains infinitely many terms
there are arbitrarily large elements ps ∈ P. We will select a sufficiently
large ps  p′s.
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To define φi, ψk periodic by ps it is sufficient to define them on [0, ps)
and then extend their definition onto R by periodicity. If x ∈ [0, 
ps/p

′
s� ·p′s)

then set φi(x) = φ′
i(x), i = 1, ..., ns and ψk(x) = ψ′

k(x), k = α, ..., ω. If x ∈
[
ps/p

′
s� · p′s, ps) then set φi(x) = 0 = ψk(x) for i = 1, ..., ns and k = α, ..., ω.

Since in (2.1–2.3) concerning λ and
∫

there are strict inequalities it is not
difficult to see that (2.1–2.3) hold for φi and ψk if ps is sufficiently large. For
example, we show that (2.3) and (2.5) hold. We have∫

ψk =
1

ps

∫
[0,ps)

ψk =
1

ps

∫
[0,�ps/p′s�p′s)

ψ′
k(2.6)

=

ps/p

′
s�p′s

ps

1


ps/p′s�p′s

∫
[0,�ps/p′s�p′s)

ψ′
k =


ps/p
′
s�p′s

ps

∫
ψ′

k.

From this and

(2.7)
ps − p′s
ps

<

ps/p

′
s�p′s

ps

≤ 1

it follows (2.5) and adding these inequalities for k = α to ω we obtain (2.3)
when ps is sufficiently large. �

The next simple “independence lemma” will be useful later.

Lemma 5. Suppose t, n, π1, π2, θ1, θ2 ∈ Z, θ1, θ2 ≥ 0. Consider two sets
X1,X2 ⊂ [t2n, (t+ 1)2n) with the following properties:

a) They are “periodic within” [t2n + θ1, (t+ 1)2n − θ2) by π1 and π2, respec-
tively. This means that for i = 1, 2 if x, x + πi ∈ [t2n + θ1, (t + 1)2n − θ2)
then x ∈ Xi iff x+ πi ∈ Xi.

b) They consist of integer intervals. This means that x ∈ Xi iff 
x� ∈ Xi

for i = 1, 2.

Then for relatively prime π1 and π2 we have

(2.8) λ(X1 ∩ X2) < 2
λ(X1)λ(X2)

2n

if 2n is much larger than max{π1, π2, θ1, θ2}.

Proof. Set X1 = X1 ∩ Z, X2 = X2 ∩ Z. Since the sets X1 and X2 consist of
integer intervals λ(Xi) = #Xi, (i = 1, 2) and λ(X1 ∩ X2) = #(X1 ∩X2).

Suppose i ∈ {1, 2} and

(2.9) t2n + θ1 ≤ kπi < (k + 1)πi − 1 < (t+ 1)2n − θ2.

Then

Li
def
=

#(Xi ∩ [kπi, (k + 1)πi))

πi



866 I. Assani and Z. Buczolich

does not depend on the choice of k as long as (2.9) is satisfied. If n → ∞
with π1, π2, θ1 and θ2 fixed then

λ(Xi)

2n
=

#Xi

2n
→ Li.

Therefore, if 2n is much larger than π1, π2, θ1 and θ2 then

(2.10) Li <
3
√

2
λ(Xi)

2n
holds for i = 1, 2.

Suppose

t2n + θ1 ≤ kπ1π2 < (k + 1)π1π2 − 1 < (t+ 1)2n − θ2.

Since π1 and π2 are relatively prime

L1L2 =
#(X1 ∩X2 ∩ [kπ1π2, (k + 1)π1π2))

π1π2

.

If n→ ∞ with π1, π2, θ1 and θ2 fixed then

λ(X1 ∩ X2)

2n
=

#(X1 ∩X2)

2n
→ L1L2.

Therefore, if 2n is much larger than π1, π2, θ1 and θ2 then

λ(X1 ∩ X2)

2n
< L1L2

3
√

2.

By using (2.10) we have

λ(X1 ∩ X2)

2n
< L1L2

3
√

2 <
(

3
√

2
λ(X1)

2n

)(
3
√

2
λ(X2)

2n

)
3
√

2

and after multiplying by 2n this implies (2.8). �
Theorem 2 is a consequence of Theorem 6. The proof is quite long.

Therefore we have divided it into two steps and several substeps (14 sub-

steps). Step 1 contains six substeps that correspond to the first induc-
tion step for s = 1. In Step 2 we finish the induction argument on s. In
Section 2.15 we show how this result allows us to derive a proof of Theo-
rem 2. We recall that the parameters 1

2
< ρ < 1, 0 < ε < 1

10
= ε0, and

M ∈ N,M ≥ 2, are fixed in the definition of an α− P − s-family.

Theorem 6. Suppose that P ⊂ N is an infinite set. Then for every α, s ∈ N

there exists an α−P − s-family.

Proof. We do mathematical induction on s. By Lemma 4 we can suppose
that P consists of powers of 2.
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2.1. Step 1: The s = 1 case
Substep 1a: Interval supports

First we show that for any possible choice of α, P, 1
2
< ρ < 1, 0 < ε < 1

10
,

and M ∈ N,M ≥ 2, one can find α−P − 1-families.

We will select later a suitably large n1 and for i < n1 we set φi(x) = 0
for all x ∈ R. To define φn1 and the functions ψk, k = α, ..., ω one could
come up with a somewhat simpler definition but to help the reading of the
more technical later steps of our induction we introduce already at the first
step some of the features used later.

We choose integers 0 = k0 < k1 < · · · < kM so that k1  α.

The interval support of φn1 at level k is defined as

isptk(φn1) =
⋃

{[(t− 1)2n1+k, t2n1+k) :(2.11)

t ∈ Z, spt (φn1) ∩ [(t− 1)2n1+k, t2n1+k) �= ∅}.

(t′ − 1)2n1+kj

(t− 1)2n1+kj−1
�

t2n1+kj−1

�

t′2n1+kj

Figure 1: One component of isptkj
(φn1)

Outside its support φn1 will vanish, so by giving its interval support at dif-
ferent levels we can define it. We zoom in during this definition. (This means
that we define our interval supports as nested sets consisting of intervals and
first we define the larger sets and then we define the smaller ones. This is
similar to the procedure of defining the triadic Cantor set as the intersec-
tion of closed sets at level k consisting of 2k many intervals of length 3−k.
Though in our construction we will use only finitely many steps of zoom-
ing in.) We set

isptkM
(φn1) = R.

(2.12)
For j ∈ {1, ...,M} an interval [(t−1)2n1+kj−1, t2n1+kj−1)⊂ isptkj

(φn1)

belongs to isptkj−1
(φn1) if and only if t is even.
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(See Figure 1.) This implies

(2.13) λ(isptkj
(φn1)) =

(1

2

)M−j

,

and

(2.14) λ(isptkj−1
(φn1)) = λ(isptkj

(φn1) \ isptkj−1
(φn1)) =

1

2
λ(isptkj

(φn1)).

It will be useful to keep in mind for further reference that t − 1, which
corresponds to the left endpoint of a support interval is odd.

2.2. Substep 1b: Definitions of φn1 and ψk′
j

We will define φn1 so that it will be periodic by 2n1+kM ∈ P.

If [(t− 1)2n1, t2n1) ⊂ ispt0(φn1) = isptk0
(φn1) then

φn1(x) = 2n1 if x ∈ [(t− 1)2n1, (t− 1)2n1 + 1), and(2.15)

φn1(x) = 0 if x ∈ [(t− 1)2n1 + 1, t · 2n1).(2.16)

From (2.13) and (2.14) used with j = 1 it follows that

(2.17)

∫ n1∑
i=1

φi =

∫
φn1 = 2−M .

Set k′1 = α.
For any k �= k′1, k ∈ N and x ∈ isptk1

(φn1) we set ψk(x) = 0.
For x �∈ isptk1

(φn1) we set ψk′
1
(x) = 0, that is,

(2.18) ψk′
1

is supported in isptk1
(φn1).

We will choose ψk′
1

so that it is constant on intervals of the form [n, n+1)

for all n ∈ Z, it is periodic by 2n1+kM , its range is {2k′
1, 0} and

(2.19)
1 + ρ

2
ε · 2n1 <

∫
[(t−1)2n1+1,t2n1+1)

ψk′
1
(x)dx < ε2n1 ,

provided [(t − 1)2n1, t2n1) ⊂ isptk1
(φn1). Inequality (2.19) can be achieved

if 2n1 is sufficiently large.

Suppose j ≥ 2 and we can also suppose that α � k1 � ...� kM .

We will choose n1 so that n1  kM and k′j such that kj−1 < k′j
def
=kj−1 +

10 � kj. Our constants will be selected by induction in the following order:
k1, k

′
1, k2, ... kj−1, k

′
j, kj , ..., kM , n1. Assumptions about kj’s and k′j’s are
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given in Section 2.3, we emphasize that in (2.26) the value of the fraction
does not depend on n1. While we make assumptions about n1 at (2.19),
(2.22), (2.24) and (2.43).

The function

(2.20) ψk′
j

will be supported in isptkj
(φn1) \ isptkj−1

(φn1).

At the s = 1 case one nonzero ψk′
j

is sufficient, that is, we set ψk(x) = 0 for

all x ∈ isptkj
(φn1) \ isptkj−1

(φn1), k ∈ N, k �= k′j.

To each t ∈ Z we associate a period π(t)  2kM+1 so that

(2.21) if t �≡ t′ mod 2kM+1 then (π(t), π(t′)) = 1.

These periods can be different primes. We suppose that if π∗ = maxt π(t)
then

2n1  (π∗)kM and(2.22)

if x, x+ π(t) ∈ [(t− 1)2n1 + 1, t2n1 + 1) then ψk′
j
(x) = ψk′

j
(x+ π(t)).(2.23)

This means that ψk′
j

is “periodic” by π(t) within [(t − 1)2n1 + 1, t2n1 + 1).

We will choose ψk′
j

so that it is constant on intervals of the form [n, n + 1)

for all n ∈ N, it is periodic by 2n1+kM , its range is {2k′
j , 0} and

(2.24)
1 + ρ

2
ε · 2n1 <

∫
[(t−1)2n1+1,t2n1+1)

ψk′
j
(x)dx < ε2n1 ,

provided [(t− 1)2n1, t2n1) ⊂ isptkj
(φn1) \ isptkj−1

(φn1). Inequality (2.24) can
be achieved if 2n1 is sufficiently large.

We need to say something about the points where

(2.25)
φn1(x+ l)ψk′

j
(x+ 2l)

l
≥ 1.

Since φn1(x + l) = 2n1 if x + l ∈ spt (φn1) and ψk′
j
(x + 2l) = 2k′

j if x + 2l ∈
spt (ψk′

j
) we need to consider l ≤ 2n1+k′

j .

A few words about our general plan. We will be interested in certain
intervals [t02

n1, (t0 + 1)2n1) ⊂ isptkj
(φn1) \ isptkj−1

(φn1), the exact assump-
tion about these intervals will be given in (2.29). In these intervals [t02

n1,
(t0 + 1)2n1) we consider sets Xt0 satisfying (2.48). These sets are unions
of the subsets Xt0,t1 see (2.46). For the sets Xt0,t1 we have (2.40). For
fixed t0 but different t1’s the sets Xt0,t1 are sufficiently independent, so we
have (2.43). Based on this we can obtain a lower estimate of the measure
of Xt0 see (2.44), (2.45) and (2.47).
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2.3. Substep 1c: The auxiliary sets X ′(j, n1 + k′j), X(1/2, 3/4, j),
X(1/2, 3/4, j, e) and X(1/2, 3/4, j, o)

We can suppose that kj  k′j = kj−1 + 10 is so large that for most points

x ∈ isptkj
(φn1) \ isptkj−1

(φn1) we have [x, x+ 2 · 2n1+k′
j + 2n1) ⊂ isptkj

(φn1).
We denote the set of these x’s by X ′(j, n1 + k′j). Hence, if kj is sufficiently
larger than k′j then

(2.26) 1 ≈
λ(X ′(j, n1 + k′j))

λ(isptkj
(φn1) \ isptkj−1

(φn1))
>

1

2
.

We remark that our construction implies that in (2.26) the choice of kj does
not depend on the choice of n1, which means that one can choose a Kj,0 such
that for all kj ≥ Kj,0 we have (2.26) for any n1. Denote by X(1/2, 3/4, j)
the set of those x for which there exists t ∈ Z such that

(2.27) x ∈ [(t+
1

2
)2n1+kj−1 , (t+

3

4
)2n1+kj−1).

We split X(1/2, 3/4, j) into two subsets depending on the parity of t.

If (2.27) holds and t is even then x ∈ X(1/2, 3/4, j, e), while for odd t’s
x ∈ X(1/2, 3/4, j, o).

Suppose

x, y ∈ X(1/2, 3/4, j), x < y, x ∈ X(1/2, 3/4, j, e), y ∈ X(1/2, 3/4, j, o),

and l = 
y�−
x� > 0. Then, as the reader can verify, 
x� ∈ X(1/2, 3/4, j, e),

y′
def
=x+ l ∈ X(1/2, 3/4, j, o) and x+2l ∈ [2t′ ·2n1+kj−1 , (2t′+1)2n1+kj−1) with

a t′ ∈ Z. Hence,

(2.28)

if x ∈ X ′(j, n1 + k′j) ∩X(1/2, 3/4, j, e) and

y ∈ X(1/2, 3/4, j, o), 0 < l = 
y� − 
x� ≤ 2n1+k′
j then

y′ = x+ l ∈ isptkj−1
(φn1) and x+ 2l ∈ isptkj

(φn1) \ isptkj−1
(φn1).

2.4. Substep 1d: Estimate of the measure of those points where (2.25)
holds in one 2n1 grid interval, definition of the sets Xt0,t1

Suppose

(2.29) [t02
n1, (t0 + 1)2n1) ⊂ X ′(j, n1 + k′j) ∩X(1/2, 3/4, j, e).

We want to obtain an estimate of the measure of those x’s for which (2.25)
holds. By (2.29) there exists t′0 ∈ Z such that

(2.30) [t02
n1, (t0 + 1)2n1) ⊂

[(
2t′0 +

1

2

)
2n1+kj−1,

(
2t′0 +

3

4

)
2n1+kj−1

)
.
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Suppose

(2.31) y ∈ X(1/2, 3/4, j, o) ∩ spt (φn1) with 0 < l = 
y� − 
x� ≤ 2n1+k′
j .

Then φn1(y) = 2n1 and by (2.15)

(2.32) there exists t1 ∈ Z such that y ∈ [t12
n1, t12

n1 + 1).

Moreover, l = t12
n1 − 
x� and y′ = x + l ∈ [t12

n1 , t12
n1 + 1) as well which

implies φn1(x+ l) = φn1(y
′) = 2n1 and |y − y′| < 1.

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

...

..
...
..

x y

��
I∗∗j (x)

� �

t∗j−1,1/2,3/4(y)2
n1+kj−1

�

I∗∗j−1,1/2,3/4(y)

(t∗j (x) − 1)2n1+kj t∗j (x)2
n1+kj

Figure 2: Notation related to I∗∗j (x)

Denote by

I∗∗j (x) =[(t∗j(x) − 1)2n1+kj , t∗j(x)2
n1+kj)(2.33)

the component of isptkj
(φn1) containing x.

By the definition of X ′(j, n1 + k′j) the points y′ = x + l, and x + 2l belong
to I∗∗j (x), that is, x, y′ = x + l, and x + 2l belong to the same component
of isptkj

(φn1). Moreover, by (2.28), y′ = x + l ∈ isptkj−1
(φn1) and x + 2l ∈

isptkj
(φn1) \ isptkj−1

(φn1). We introduce the notation

I∗∗j−1,1/2,3/4(y) =
[(
t∗j−1,1/2,3/4(y) +

1

2

)
2n1+kj−1,

(
t∗j−1,1/2,3/4(y) +

3

4

)
2n1+kj−1

)
for the interval containing y ∈ X(1/2, 3/4, j). Then y′ ∈ I∗∗j−1,1/2,3/4(y) holds

as well. On Figure 2, I∗∗j−1,1/2,3/4(y) is the tiny interval containing y, its
length is marked by a short line segment above y. Keep in mind that we
supposed that j ≥ 2. By our construction if

I∗ =
[(
t∗ +

1

2

)
2n1+kj−1 ,

(
t∗ +

3

4

)
2n1+kj−1

)
is a component of(2.34)

isptkj−1
(φn1) ∩X(1/2, 3/4, j) then

λ(ispt0(φn1) ∩ I∗) =

(
1

2

)j−1

λ(I∗) =

(
1

2

)j−1

2n1+kj−1−2.(2.35)
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This implies that there exist exactly

(
1

2

)j−1

2kj−1−2 many t1’s such that [t12
n1, t12

n1 + 1) ⊂ spt (φn1) ∩ I∗.(2.36)

We denote the set of these t1’s by T1(I
∗).

We still assume that t0 satisfies (2.29). By (2.12) in the interval [t02
n1 +

2n1+k′
j−1, t02

n1 +2n1+k′
j) there are 2k′

j−kj−1−2 many I∗’s satisfying (2.34). De-
note the set of the corresponding t∗’s by T ∗(t0). Finally, denote by T1(t0)
the set of those t1 which belong to a T1(I

∗) with I∗ of the form in (2.34) and
t∗ ∈ T ∗(t0). Then by (2.36)

(2.37) #T1(t0) =
(1

2

)j−1

2kj−1−22k′
j−kj−1−2 =

(1

2

)j

2k′
j−3.

Next suppose t1 ∈ T1(t0) is fixed. If y ∈ [t12
n1, t12

n1 + 1) then by (2.36)
φn1(y) = 2n1. For x ∈ [t02

n1, (t0+1)2n1) set lx,t1 = t12
n1−
x� = 
y�−
x� and

y′ = x+ lx,t1 . Then φn1(x+ lx,t1) = φn1(y
′) = φn1(y) = 2n1. From t1 ∈ T1(t0)

it follows that [t12
n1 , t12

n1 +1) ⊂ [t02
n1 +2n1+k′

j−1, t02
n1 +2n1+k′

j ). This and
x ∈ [t02

n1, (t0 + 1)2n1) implies

(2.38) 0 < lx,t1 = t12
n1 − 
x� ≤ (t1 − t0)2

n1 < 2n1+k′
j < 2n1+kM .

We have φn1(x+ lx,t1) = 2n1 and

(2.39)
φn1(x+ lx,t1)ψk′

j
(x+ 2lx,t1)

lx,t1

≥ 1

if x + 2lx,t1 ∈ spt (ψk′
j
). For t1 ∈ T1(t0) denote by Xt0,t1 the set of those

x ∈ [t02
n1, (t0 + 1)2n1) for which x+ 2lx,t1 ∈ spt (ψk′

j
). This means that

(2.40)
for x ∈ Xt0,t1 ⊂ [t02

n1 , (t0 + 1)2n1) there exists lx,t1 such that

(2.39) holds and y′ = x+ lx,t1 ∈ [t12
n1, t12

n1 + 1).

2.5. Substep 1e: “Periodicity and independence” of the sets Xt0,t1

Observe that if x ∈ [t02
n1, (t0 + 1)2n1) then 
x� ∈ [t02

n1, (t0 + 1)2n1 − 1]
and x+ 2lx,t1 ∈ [(2t1 − t0 − 1)2n1 + 1, (2t1 − t0)2

n1 + 1), moreover by (2.23)
spt (ψk′

j
) is “periodic” by π(2t1 − t0), this implies that

(2.41)
if x, x+ π(2t1 − t0) ∈ [t02

n1, (t0 + 1)2n1) then
x ∈ Xt0,t1 iff x+ π(2t1 − t0) ∈ Xt0,t1 .
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Xt0,t1

t02
n1

(t0 + 1)2n1

support of ψk′
j[t12

n1, t12
n1 + 1)

�x x+ lx,t1 x+ 2lx,t1�

support of ψk′
j

Xt0,t′1
� �

[t′12
n1, t′12

n1 + 1)

Figure 3: Sets Xt0,t1
and Xt0,t′1

From (2.24) it follows that

(2.42)
1 + ρ

2
ε2−k′

j · 2n1 < λ(Xt0,t1) < ε2−k′
j · 2n1.

In (2.43) below it will be useful to keep in mind that the “density” of Xt0,t′1 in
[t02

n1, (t0 + 1)2n1) is λ(Xt0,t′1)/2
n1 and (2.42) holds for t′1 as well. By (2.21),

(2.38) and (2.41) for t1, t
′
1 ∈ T1(t0), t1 �= t′1 the “periods” of Xt0,t1 and Xt0,t′1

are relatively prime, see Figure 3. By Lemma 5 if n1 is sufficiently large
these sets are independent in the sense that

(2.43) λ(Xt0,t1 ∩ Xt0,t′1) < λ(Xt0,t1)2
λ(Xt0,t′1)

2n1
< 2ε2−k′

jλ(Xt0,t1).

Hence, using (2.37) and (2.43) we infer

λ(Xt0,t1 \
⋃

t′1 �=t1, t′1∈T1(t0)

Xt0,t′1) >
(
1 − 2ε · 2−k′

j

(1

2

)j

2k′
j−3

)
λ(Xt0,t1)(2.44)

>
1

2
λ(Xt0,t1).

This, (2.37), and (2.42) imply that

λ(
⋃

t1∈T1(t0)

Xt0,t1) >
1

2

∑
t1∈T (t0)

λ(Xt0,t1)(2.45)

>
1

4
ε2−k′

j · 2n1

(1

2

)j

· 2k′
j−3 =

ε

32
2n1

(1

2

)j

.

This means that in each interval I(t0) = [t02
n1, (t0 + 1)2n1) satisfying (2.29)

we could find a set

(2.46) Xt0 =
⋃

t1∈T1(t0)

Xt0,t1,
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such that

(2.47) λ(Xt0) >
ε

32

(1

2

)j

λ(I(t0))

and

(2.48) for x ∈ Xt0 , ∃l ≤ 2n1+kM such that
φn1(x+ l)ψk′

j
(x+ 2l)

l
≥ 1.

2.6. Substep 1f: Conclusion of the s = 1 case

Denote by I(j) the union of all intervals in isptkj
(φn1) \ isptkj−1

(φn1) which
satisfy (2.29). Using (2.13), (2.14), (2.26) and (2.27) we obtain

(2.49) λ(I(j)) >
1

16
λ(isptkj

(φn1)) =
1

16
2−M+j.

Denote by X (j) the set of those x ∈ isptkj
(φn1) \ isptkj−1

(φn1) for which
there exists l such that (2.48) holds. Then (2.47) and (2.49) imply that

(2.50) λ(X (j)) >
ε

512

(1

2

)j

· 2−M+j =
ε

512
2−M .

The sets X (j)⊂ isptkj
(φn1)\isptkj−1

(φn1) and X (j′)⊂ isptkj′ (φn1)\isptkj′−1
(φn1)

are disjoint when j �= j′ and hence using (2.50) for j = 2, ...,M one can see
that (2.1) holds with s = 1. We set ω = k′M . From (2.17) it follows (2.2)
when s = 1. From (2.18), (2.19), (2.20) and (2.24) it follows (2.3).

2.7. Step 2: The general step of the induction
Substep 2a: usage of the functions from step s − 1 of the
induction

Next we turn to the general step of our induction. Suppose that for any
possible choice of α̃, P̃, ρ̃, 0 < ε̃ < ε0, and M̃ one can find α̃− P̃ − (s− 1)-
families. In case in (2.1), λ{.} > ε holds for an α − P − (s − 1)-family
then one can define an α − P − s-family by choosing an almost arbitrary
φns−1+1 = φns so that (2.2) holds. So we can assume that we work with
α − P − (s − 1)-families for which in (2.1), λ{.} ≤ ε holds. We define φns

analogously to φn1 .
The interval supports are defined by

isptk(φns) =
⋃ {

[(t− 1)2ns+k, t2ns+k) :(2.51)

t ∈ Z, spt (φns) ∩ [(t− 1)2ns+k, t2ns+k) �= ∅
}
.



Bilinear Hardy-Littlewood function and Furstenberg averages 875

We set

isptkM
(φns) = R.

(2.52)
For j∈{1, ...,M} an interval [(t− 1)2ns+kj−1 , t2ns+kj−1)⊂ isptkj

(φns)

belongs to isptkj−1
(φns) if and only if t is even.

This implies

(2.53) λ(isptkj
(φns)) =

(
1

2

)M−j

,

and

(2.54) λ(isptkj−1
(φns)) = λ(isptkj

(φns) \ isptkj−1
(φns)) =

1

2
λ(isptkj

(φns)).

It will be useful to keep in mind for further reference that t − 1, which
corresponds to the left endpoint of the support intervals is odd.

We will define φns so that it will be periodic by 2ns+kM ∈ P.

If [(t− 1)2ns, t2ns) ⊂ ispt0(φns) = isptk0
(φns) then

φns(x) = 2ns if x ∈ [(t− 1)2ns, (t− 1)2ns + 1), and(2.55)

φns(x) = 0 if x ∈ [(t− 1)2ns + 1, t · 2ns).(2.56)

From (2.53) and (2.54) used with j = 1 it follows that

(2.57)

∫
φns = 2−M .

We need more assumptions about k0 � · · · � kM . Set α1 = α. Choose
an α1−P−(s−1)-family with ψ-interval [α1, ω1] periodic by p1,s−1 ∈ P. Re-
call that P consists of powers of 2 and hence p1,s−1 is also a power of 2. As we
remarked earlier we can suppose that for this family in (2.1), λ{.} ≤ ε holds.
We denote the functions corresponding to this family by φ1,1, ..., φ1,n1,s−1,
ψ1,α1 , ..., ψ1,ω1 . For other parameters belonging to this family we adopt
a similar subscript notation. We choose k1 so that k1  p1,s−1 ≥ ω1.
If x ∈ isptk1

(φns) then we set φi(x) = φ1,i(x) for i = 1, ..., n1,s−1 and
ψk(x) = ψ1,k(x) for k = α1, ..., ω1, moreover, for other k’s we set ψk(x) = 0
and for i = n1,s−1 + 1, ..., ns − 1 we set φi(x) = 0. If k1 is sufficiently larger
than p1,s−1 then the length of the components of isptk1

(φns) will be a multiple
of p1,s−1 and hence (2.2) and (2.3) will stay valid “relative to” isptk1

(φns).
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By this we mean the following:

(s− 1) · 2−M−1λ(isptk1
(φns)) <

ns−1∑
i=1

∫
φi

∣∣
isptk1

(φns )
(2.58)

< (s− 1) · 2−M+1λ(isptk1
(φns)),

and

ρελ(isptk1
(φns)) <

ω1∑
k=α1

∫
ψk

∣∣
isptk1

(φns )
(2.59)

=

ω∑
k=α

∫
ψk

∣∣
isptk1

(φns )
< ελ(isptk1

(φns)).

Suppose j ≥ 2 and kj−1 is defined. Let αj = kj−1 + 10 and choose
an αj − P − (s − 1)-family with ψ-interval [αj , ωj]. Again, as we remarked
earlier we can suppose that for this family λ{.} ≤ ε holds in (2.1). Denote the
corresponding functions by φj,1, ..., φj,nj,s−1

, ψj,αj
, ..., ψj,ωj

periodic by pj,s−1.
We will choose kj  pj,s−1 ≥ ωj.

We repeat the above steps for j = 2, ...,M and obtain

kM  pM,s−1 ≥ ωM ≥ αM  kM−1  · · ·(2.60)

 kj  pj,s−1 ≥ ωj ≥ αj  kj−1  · · ·  k1  p1,s−1 ≥ ω1.

The ψ-interval of our α−P−s-family will be defined by α = α1 and ω = ωM .
In the end we choose ns so large that

(2.61) ns > max{nj,s−1 : j = 1, ...,M}.
Similarly to the s = 1 case our parameters are chosen in the order α = α1,
ω1, p1,s−1, k1, ..., kj−1, αj , ωj, pj,s−1, kj , ..., kM , and then we choose some
new parameters, the π(t, j)’s and finally we fix a large ns. At the j’th step
we have a kj−1 which determines αj = kj−1 +10. The αj −P− (s−1) family
provides ωj and pj,s−1. If we have the value of pj,s−1 then we choose kj so
that (2.83) holds. We emphasize again that, similarly to (2.26), (2.83) does
not depend on the choice of ns.

Since P consists of powers of 2 all pj,s−1 are powers of 2. To each j =
1, ...,M and each interval of the form [(t−1)2ns , t2ns), (t ∈ Z) we assign a set
P(t, j) consisting of infinitely many odd numbers such that if π(t, j) ∈ P(t, j)
then

(2.62) π(t, j)  2kMpM,s−1

and

(2.63)
if t �≡ t′ mod 2kM+1, π(t, j) ∈ P(t, j), π(t′, j) ∈ P(t′, j)

then (π(t, j), π(t′, j)) = 1.
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On the other hand,

(2.64) if t ≡ t′ mod 2kM+1 then P(t, j) = P(t′, j),

moreover

(2.65) (π(t, j), π(t′, j′)) = 1 if j �= j′, π(t, j) ∈ P(t, j), π(t′, j′) ∈ P(t′, j′).

We have already defined for x ∈ isptk1
(φns) the values φi(x) for i = 1, ..., ns

and ψk(x) for all k.
We also want to define these functions when x �∈ isptk1

(φns), that is,
there exists a j ≥ 2 such that x ∈ isptkj

(φns) \ isptkj−1
(φns).

Suppose j ≥ 2. For any t ∈ Z from P(t, j) choose and fix a number π(t, j)
such that by Lemma 4 applied to the αj −P− (s−1)-family with ψ-interval
[αj , ωj] we can select an αj −P(t, j)− (s− 1)-family with ψ-interval [αj , ωj]
periodic by π(t, j). Denote the corresponding functions by φt,j,1, ..., φt,j,nj,s−1

,
ψt,j,αj

, ..., ψt,j,ωj
. By (2.64) we can suppose that

(2.66)

if t ≡ t′ mod 2kM+1 then π(t, j) = π(t′, j),

φt,j,i = φt′,j,i for i = 1, ..., nj,s−1,

and ψt,j,k = ψt′,j,k for k = αj , ..., ωj.

We also have (2.62). By (2.63) and (2.65)

(2.67)
if t �≡ t′ mod 2kM+1 then (π(t, j), π(t′, j)) = 1, moreover

(π(t, j), π(t′, j′)) = 1 if j �= j′, for any choice of t and t′.

Based on (2.5) we can suppose that the π(t, j)’s are chosen so large that

(2.68)

∫
ψt,j,k ≈

∫
ψj,k, for all t, j, k.

By using ρε <
∑ωj

k=αj

∫
ψj,k < ε and (2.68) we can obtain for large π(t, j)’s

(2.69) ρε <

ωj∑
k=αj

min
t

∫
ψt,j,k ≤

ωj∑
k=αj

max
t

∫
ψt,j,k < ε.

Similarly, based on (2.4) we can suppose that the π(t, j)’s are chosen so large
that

(2.70)

∫
φt,j,i ≈

∫
φj,i, for all t, j, i.
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By using (s − 1)2−M−1 <
∑ns−1

i=1

∫
φj,i < (s − 1)2−M+1 and (2.70) we can

obtain for large π(t, j)’s

(2.71) (s−1)2−M−1 <

nj,s−1∑
i=1

min
t

∫
φt,j,i ≤

nj,s−1∑
i=1

max
t

∫
φt,j,i < (s−1)2−M+1.

We suppose that

(2.72) if π∗ = max
t,j

π(t, j) then 2ns  (π∗)kM

(this means that ns should be sufficiently large).

2.8. Substep 2b: Definitions of φi, i = 1, ..., nj,s−1 and ψk, k = αj, ..., ωj

Suppose

(2.73) x ∈ [(t− 1)2ns + 1, t2ns + 1) ∩ (isptkj
(φns) \ isptkj−1

(φns)).

Set

(2.74)
φi(x) = φt,j,i(x) for i = 1, ..., nj,s−1, and

ψk(x) = ψt,j,k(x) for k = αj , ..., ωj.

For other k’s set ψk(x) = 0.

(2.75) We also put φi(x) = 0 for nj,s−1 < i < ns.

See Figure 4. It is also clear that by the definition of interval supports we
have

(2.76) φns(x) = 0 for any x ∈ isptkj
(φns) \ isptkj−1

(φns).

By the periodicity assumptions about our corresponding s − 1 families
we have

(2.77)
if x, x+ π(t, j) ∈ [(t− 1)2ns + 1, t2ns + 1)∩

(isptkj
(φns) \ isptkj−1

(φns)) then ψk(x) = ψk(x+ π(t, j)).

If ns is sufficiently large then by our induction step about αj −P(t, j)−
(s− 1)-families we have

λ

{
x : max

k∈[α1,ωM ]
max
l≤π∗

∑ns−1

i=1 φi(x+ l)ψk(x+ 2l)

l
≥ 1

}
(2.78)

>
(s− 1)(M − 1)ε2−M

2048
.
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� � � � 	

isptkj−1
(φns)

�

φi = φt,j,i
ψk = ψt,j,k

...�

[(t− 1)2ns + 1, t2ns + 1)

Figure 4: Definition of φi and ψk in one component of isptkj
(φns)

By choosing ns sufficiently large and keeping in mind (2.75), (2.76) we
have a version of (2.70) and (2.71) with respect to isptkj

(φns) \ isptkj−1
(φns)

(s− 1) · 2−M−1λ(isptkj
(φns) \ isptkj−1

(φns)) <(2.79)

<

ns−1∑
i=1

∫
φi

∣∣
isptkj

(φns )\isptkj−1
(φns )

< (s− 1) · 2−M+1λ(isptkj
(φns) \ isptkj−1

(φns)),

and

ρελ(isptkj
(φns) \ isptkj−1

(φns)) <

ω1∑
k=α1

∫
ψk

∣∣
isptkj

(φns )\isptkj−1
(φns )

(2.80)

=

ω∑
k=α

∫
ψk

∣∣
isptkj

(φns )\isptkj−1
(φns )

< ελ(isptkj
(φns) \ isptkj−1

(φns)).

2.9. Substep 2c: Definitions related to φns, the sets X ′(j, ns + ωj),
X(1/2, 3/4, j), X(1/2, 3/4, j, e) and X(1/2, 3/4, j, o)

We need to say something about the set of those x’s where

(2.81) max
k′∈[αj ,ωj ]

φns(x+ l)ψk′(x+ 2l)

l
≥ 1.

We split the above set of x’s into subsets of those x’s where

(2.82)
φns(x+ l)ψk′(x+ 2l)

l
≥ 1, with ωj ≥ k′ ≥ αj > kj−1.

Since φns(x + l) = 2ns if x + l ∈ spt (φns) and ψk′(x + 2l) = 2k′
if x + 2l ∈

spt (ψk′) we need to consider l ≤ 2ns+k′
.
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More words about our general plan. We will be interested in certain
intervals [t02

ns, (t0 + 1)2ns) ⊂ isptkj
(φns) \ isptkj−1

(φns), the exact assump-
tion about these intervals will be given in (2.86). In these intervals [t02

ns,
(t0 +1)2ns) we consider the sets X ′

t0 satisfying (2.120). By (2.117) these sets
will be the unions of the auxiliary sets X ′

t0,k′ defined in (2.114) via the sets
Xt0,t1,k′ and Xt0,s−1. For the sets Xt0,t1,k′ with αj ≤ k′ ≤ ωj we have (2.101).
For fixed t0 and t1 by (2.100) there can be at most one k′ for which an
Xt0,t1,k′ is defined. For fixed t0 but different t1’s and k′’s the sets Xt0,t1,k′ are
sufficiently independent, so we have (2.106) and (2.107). It is a new feature
that we also need to consider the sets Xt0,s−1 defined in (2.109). These sets
take care of points coming from the (s − 1)-families of earlier steps of the
induction. They will also be sufficiently independent of the sets Xt0,t1,k′,
see (2.112) and then (2.113-2.118). Hence, in (2.119) we obtain our lower
estimate of the measure of the sets X ′

t0 . By (2.121) these sets are disjoint
from Xt0,s−1.

Now we return to the details of the proof of Theorem 6. One can assume
similarly to the one family case the following: Suppose that kj  ωj ≥ k′

is so large that for most points of x ∈ isptkj
(φns) \ isptkj−1

(φns) we have
[x − 2ns, x + 2 · 2ns+ωj + 2ns) ⊂ isptkj

(φns). We denote the set of these x’s
by X ′(j, ns + ωj). If kj  ωj then

(2.83) 1 ≈ λ(X ′(j, ns + ωj))

λ(isptkj
(φns) \ isptkj−1

(φns))
>

1

2
.

Similarly to (2.26) this estimate does not depend on the choice of ns. Denote
by X(1/2, 3/4, j) the set of those x for which there exists t ∈ Z such that
x ∈ [(t+ 1

2
)2ns+kj−1 , (t+ 3

4
)2ns+kj−1). We split X(1/2, 3/4, j) into two subsets

depending on the parity of t. If t is even then x ∈ X(1/2, 3/4, j, e) and if
t is odd then x ∈ X(1/2, 3/4, j, o). Suppose x, y ∈ X(1/2, 3/4, j), x < y,
x ∈ X(1/2, 3/4, j, e), y ∈ X(1/2, 3/4, j, o) and 0 < l = 
y� − 
x�. Then,
as the reader can verify, 
x� ∈ X(1/2, 3/4, j, e), 
y� ∈ X(1/2, 3/4, j, o),

y′
def
=x + l ∈ X(1/2, 3/4, j, o) and x + 2l ∈ [2t′ · 2ns+kj−1 , (2t′ + 1) · 2ns+kj−1)

with a t′ ∈ Z.
Hence,

(2.84)

if x ∈ X ′(j, ns + k′) ∩X(1/2, 3/4, j, e), y ∈ X(1/2, 3/4, j, o), and

0 < l = 
y� − 
x� ≤ 2ns+k′ ≤ 2ns+ωj then

x ∈ isptkj
(φns) \ isptkj−1

(φns), y
′ = x+ l ∈ isptkj−1

(φns), and

x+ 2l ∈ isptkj
(φns) \ isptk−1(φns).

Moreover, from x ∈ [(t + 1
2
)2ns+kj−1 , (t + 3

4
)2ns+kj−1) with t even it follows
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that

[x− 2ns, x+ 2ns + 1) ⊂ [t2ns+kj−1 , (t+ 1)2ns+kj−1)(2.85)

⊂ isptkj
(φns) \ isptkj−1

(φns).

2.10. Substep 2d: Estimate of the measure of those points where
(2.82) holds in one 2ns grid interval, definition of the sets
Xt0,t1,k′

Suppose

(2.86) [t02
ns, (t0 + 1)2ns) ⊂ X ′(j, ns + ωj) ∩X(1/2, 3/4, j, e).

By (2.85) used with x = t02
ns we have

(2.87) [(t0 − 1)2ns, (t0 + 1)2ns + 1) ⊂ isptkj
(φns) \ isptkj−1

(φns).

We want to obtain an estimate of the measure of those x’s for which (2.82)
and hence (2.81) holds for a suitable l.

By (2.86) there exists t′0 ∈ Z such that

(2.88) [t02
ns, (t0 + 1)2ns) ⊂

[(
2t′0 +

1

2

)
2ns+kj−1 ,

(
2t′0 +

3

4

)
2ns+kj−1

)
.

Suppose

y ∈ X(1/2, 3/4, j, o), 0 < l = 
y� − 
x� ≤ 2ns+k′ ≤ 2ns+ωj and(2.89)

y ∈ spt (φns).

By (2.89), φns(y) = 2ns and by (2.55)

(2.90) ∃ t1 ∈ Z such that y ∈ [t12
ns, t12

ns + 1).

Moreover, l = t12
ns − 
x� and y′ = x + l ∈ [t12

ns, t12
ns + 1) as well, which

implies φns(x+ l) = φns(y
′) = 2ns. Denote by

(2.91) I∗∗j (x) = [(t∗j (x) − 1)2ns+kj , t∗j(x)2
ns+kj)

the component of isptkj
(φns) containing x.

By the definition of X ′(j, ns + ωj), y
′ = x + l and x + 2l are in I∗∗j (x),

that is, x, y′ = x+ l, and x+2l belong to the same component of isptkj
(φns).

Moreover, by (2.84), y′ = x + l ∈ isptkj−1
(φns) and x + 2l ∈ isptkj

(φns) \
isptkj−1

(φns). We introduce the notation

I∗∗j−1,1/2,3/4(y) =
[(
t∗j−1,1/2,3/4(y) +

1

2

)
2ns+kj−1,

(
t∗j−1,1/2,3/4(y) +

3

4

)
2ns+kj−1

)
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for the interval containing y ∈ X(1/2, 3/4, j). Then y′ ∈ I∗∗j−1,1/2,3/4(y)
holds as well. Recall that we still suppose j ≥ 2. By our construction, see
Section 2.1 and the second paragraph of 2.7 we have

if I∗ =
[(
t∗ +

1

2

)
2ns+kj−1 ,

(
t∗ +

3

4

)
2ns+kj−1

)
is a component of(2.92)

isptkj−1
(φns) ∩X(1/2, 3/4, j) then

λ(ispt0(φns) ∩ I∗) =
(1

2

)j−1

λ(I∗) =
(1

2

)j−1

2ns+kj−1−2.(2.93)

This implies that there exist

(2.94)
(1

2

)j−1

2kj−1−2 many t1’s such that [t12
ns, t12

ns + 1) ⊂ spt (φns) ∩ I∗.

We denote the set of these t1’s by T1(I
∗). In the interval [t02

ns+2ns+k′−1, t02
ns

+2ns+k′
) there exist 2k′−kj−1−2 many I∗’s satisfying (2.92). Denote the set of

the corresponding t∗’s by T ∗(t0, k
′). Finally, denote by T1(t0, k

′) the set
of those t1 which belong to a T1(I

∗) with I∗ of the form in (2.92) and
t∗ ∈ T ∗(t0, k

′). Then

(2.95) #T1(t0, k
′) =

(1

2

)j−1

2kj−1−2 · 2k′−kj−1−2 =
(1

2

)j

2k′−3.

Next, suppose t1 ∈ T1(t0, k
′) is fixed. Then, from y ∈ [t12

ns, t12
ns + 1) it

follows that φns(y) = 2ns. For x ∈ [t02
ns, (t0 + 1)2ns) set

(2.96) lx,t1 = t12
ns − 
x� = 
y� − 
x�.

Then φns(x + lx,t1) = φns(y
′) = φns(y) = 2ns. From t1 ∈ T1(t0, k

′) it follows
that

(2.97) [t12
ns, t12

ns + 1) ⊂ I∗ ⊂ [t02
ns + 2ns+k′−1, t02

ns + 2ns+k′
)

with a suitable I∗. This implies

(2.98) 0 < t12
ns − (t0 + 1)2ns + 1 ≤ lx,t1 ≤ t02

ns + 2ns+k′ − t02
ns = 2ns+k′

.

We have φns(x+ lx,t1) = 2ns and

(2.99)
φns(x+ lx,t1)ψk′(x+ 2lx,t1)

lx,t1

≥ 1

holds if x+ 2lx,t1 ∈ spt (ψk′).
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Xt0,t1,k′

t02
ns

(t0 + 1)2ns

support of ψk′[t12
ns, t12

ns + 1)

�x x+ lx,t1
x+ 2lx,t1�

Figure 5: The set Xt0,t1,k′

Denote by Xt0,t1,k′ the set of those x ∈ [t02
ns, (t0 + 1)2ns) for which

x+ 2lx,t1 ∈ spt (ψk′). By (2.97)

(2.100) for fixed t0, t1 there can be at most one k′ for which t1 ∈ T1(t0, k
′).

Moreover,

if x ∈ Xt0,t1,k′ ⊂ [t02
ns, (t0 + 1)2ns) then(2.99) holds(2.101)

and x+ lx,t1 ∈ [t12
ns, t12

ns + 1).

Dividing (2.98) by 2ns and rearranging we obtain that for t1 ∈ T1(t0, k
′)

0 < t1 − t0 ≤ 2k′
+ 1 − 1

2ns
,

since t1 and t0 are integers recalling (2.60) and (2.82) we have

(2.102) 0 < t1 − t0 ≤ 2k′
< 2ωj < 2kM .

2.11. Substep 2e: “Periodicity and independence” of the sets Xt0,t1,k′

Observe that if x ∈ [t02
ns, (t0 + 1)2ns) then 
x� ∈ [t02

ns, (t0 + 1)2ns − 1]
and by (2.96), x+ 2lx,t1 ∈ [(2t1 − t0 − 1)2ns + 1, (2t1 − t0)2

ns + 1), moreover
by (2.77) in this interval

(2.103) ψk′ is “periodic” by π(2t1 − t0, j).

This implies that

(2.104)
if x, x+ π(2t1 − t0, j) ∈ [t02

ns, (t0 + 1)2ns) then

x ∈ Xt0,t1,k′ iff x+ π(2t1 − t0, j) ∈ Xt0,t1,k′.

The “periodic density” of the measure of the support of ψ2t1−t0,j,k′ in

[(2t1−t0−1)2ns+1, (2t1−t0)2ns+1) equals 2−k′∫
ψ2t1−t0,j,k′. So the measure of
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this support in an interval of length 2ns is approximately (
∫
ψ2t1−t0,j,k′)2−k′

2ns

provided 2ns is much larger than π(2t1− t0, j). Hence, we have by (2.5) that

1

4

(∫
ψ2t1−t0,j,k′

)
2−k′

2ns <

(∫
ψ2t1−t0,j,k′

)
2−k′

2ns(2.105)

≈ λ(Xt0,t1,k′) < 2

(∫
ψ2t1−t0,j,k′

)
2−k′

2ns.

Suppose t1 ∈ T1(t0, k
′). Denote by K(t0, t1, k

′) the set of those (t′1, k
′′) �=

(t1, k
′) for which t′1 ∈ T1(t0, k

′′). Observe that if t1 = t′1 then from (2.100)
it follows that for k′′ �= k′ we have t1 �∈ T1(t0, k

′′). Hence for (t′1, k
′′) ∈

K(t0, t1, k
′) we have t′1 �= t1. By (2.63), (2.102) and (2.104) if (t′1, k

′′) ∈
K(t0, t1, k

′) then the “periods” of Xt0,t1,k′ and Xt0,t′1,k′′ are relatively prime and
these sets are “independent” in the sense that, using (2.105) and Lemma 5
for large ns as well, we have

λ(Xt0,t1,k′ ∩ Xt0,t′1,k′′) < λ(Xt0,t1,k′) · 2 ·
λ(Xt0,t′1,k′′)

2ns
(2.106)

< 4 · 2−k′′
(∫

ψ2t′1−t0,j,k′′
)
λ(Xt0,t1,k′).

Using (2.69), (2.95), (2.100) and (2.106) we obtain

λ(Xt0,t1,k′ \
⋃

(t′1,k′′)∈K(t0,t1,k′)

Xt0,t′1,k′′) >

(2.107)

>

(
1 −

ωj∑
k′′=αj

4 · 2−k′′
(

max
t

∫
ψt,j,k′′

) (1

2

)j

2k′′−3

)
λ(Xt0,t1,k′) >

3

4
λ(Xt0,t1,k′).

2.12. Substep 2f: Estimates of the measure of points where the max-
imal operator is large for the (s−1)-functions, the sets Xt0,s−1

We recall that by (2.84), (2.86) and (2.87)

[t02
ns, (t0 + 1)2ns + 1) ⊂ isptkj

(φns) \ isptkj−1
(φns).

By (2.73), (2.74) and (2.75)

on [t02
ns + 1, (t0 + 1)2ns + 1) the functions(2.108)

φi, ψk, i = 1, ..., nj,s−1, k = αj, ..., ωj are the restrictions of an

αj −P(t0 + 1, j) − (s− 1) − family periodic by π(t0 + 1, j).
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Set

Xt0,s−1 = {x ∈ [t02
ns, (t0 + 1)2ns) :

max
k∈[αj ,ωj ]

max
l≤π∗

∑nj,s−1

i=1 φi(x+ l)ψk(x+ 2l)

l
≥ 1}.(2.109)

These are the “old” points in [t02
ns, (t0 + 1)2ns) where the inequality

from (2.109) holds. We will need those “new” points from the sets Xt0,t1,k′

which do not belong to these “old” sets Xt0,s−1. By (2.108)

(2.110)
if x, x+ π(t0 + 1, j) ∈ [t02

ns + 1, (t0 + 1)2ns − 2π∗) then

x ∈ Xt0,s−1 iff x+ π(t0 + 1, j) ∈ Xt0,s−1.

In (2.72) we supposed that π(t0 + 1, j) ≤ π∗ � 2ns, so for most part of
[t02

ns, (t0 + 1)2ns) the set Xt0,s−1 is “periodic” by π(t0 + 1, j).
By our assumptions for our αj −P(t0 + 1, j)− (s− 1)-family λ{.} ≤ ε <

ε0 = 1
10

holds in (2.1) therefore, for sufficiently large ns

(2.111) λ(Xt0,s−1) = λ(Xt0,s−1 ∩ [t02
ns, (t0 + 1)2ns)) <

1

8
2ns.

2.13. Substep 2g: Independence estimates of “old” and “new”
sets, that is, of Xt0,s−1 and Xt0,t1,k′. Estimates of the “new
contribution” set X ′

t0

By (2.110), Xt0,s−1 is “periodic” by π(t0 + 1, j) while by (2.104), Xt0,t1,k′ is
“periodic” by π(2t1 − t0, j). By (2.60) and (2.102)

0 < 2t1 − t0 − (t0 + 1) = 2t1 − 2t0 − 1 < 2k′+1 ≤ 2ωj+1 � 2kM+1.

Hence by (2.63), π(t0+1, j) and π(2t1−t0, j) are relatively prime and the sets
Xt0,t1,k′ are sufficiently “independent” of Xt0,s−1. By (2.111) and Lemma 5
for 2ns  π(t0 + 1, j) we have

(2.112) λ(Xt0,t1,k′ ∩ Xt0,s−1) <
1

4
λ(Xt0,t1,k′).

Using (2.105), (2.107) and (2.112) we infer

λ

(
Xt0,t1,k′ \

(
Xt0,s−1 ∪

⋃
(t′1,k′′)∈K(t0,t1,k′)

Xt0,t′1,k′′

))
(2.113)

>
1

2
λ(Xt0,t1,k′) >

1

8

(
min

t

∫
ψt,j,k′

)
2−k′

2ns.
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This estimates the “new contribution” of Xt0,t1,k′ to the set of points where
(2.82) holds. Set

(2.114) X ′
t0,k′ =

⋃
t1∈T1(t0,k′)

(
Xt0,t1,k′ \

( ⋃
(t′1,k′′)∈K(t0,t1,k′)

Xt0,t′1,k′′ ∪ Xt0,s−1

))
.

From k′ �= k′′ and x ∈ X ′
t0,k′ ∩ X ′

t0,k′′ it follows that x ∈ Xt0,t1,k′ with t1 ∈
T1(t0, k

′) and x ∈ Xt0,t′1,k′′ with t′1 ∈ T1(t0, k
′′), that is (t′1, k

′′) ∈ K(t0, t1, k
′),

but this contradicts (2.114). Hence

(2.115) X ′
t0,k′ ∩ X ′

t0,k′′ = ∅ for k′ �= k′′.

By (2.95) and (2.113)

λ(X ′
t0,k′) >

(
1

8

(
min

t

∫
ψt,j,k′

)
2−k′

2ns

)(1

2

)j

2k′−3(2.116)

=
1

64

(
min

t

∫
ψt,j,k′

)
2ns

(1

2

)j

.

Set

(2.117) X ′
t0

= ∪ωj

k′=αj
X ′

t0,k′.

Then by ρ > 1/2, (2.69), (2.115) and (2.116)

λ(X ′
t0) >

ωj∑
k′=αj

1

64

(
min

t

∫
ψt,j,k′

)
2ns

(1

2

)j

(2.118)

=
1

64

( ωj∑
k′=αj

min
t

∫
ψt,j,k′

)
2ns

(1

2

)j

>
1

128
ε2ns

(1

2

)j

.

Hence in each interval I(t0) ⊂ [t02
ns, (t0 + 1)2ns) satisfying (2.86) we have

found a set X ′
t0

such that

(2.119) λ(X ′
t0
) >

ε

128

(1

2

)j

λ(I(t0))

and for x ∈ X ′
t0

(2.120) ∃l ≤ 2ns+ωj such that
φns(x+ l)

∑ωj

k′=αj
ψk′(x+ 2l)

l
≥ 1.

Moreover,

(2.121) X ′
t0
∩ Xt0,s−1 = ∅.
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2.14. Substep 2h: Conclusion

Denote by I(j) the union of all intervals in isptkj
(φns) \ isptkj−1

(φns) which
satisfy (2.86).

Then by (2.53), (2.54), (2.83), and the definition of X(1/2, 3/4, j, e) we
have

(2.122) λ(I(j)) >
1

16
λ(isptkj

(φns)) =
1

16
2−M+j.

Denote by X (j) the set of those x ∈ isptkj
(φns)\

(
isptkj−1

(φns)∪
⋃

t0
Xt0,s−1

)
for which there exists l such that (2.120) holds. Then (2.119) and (2.122)
imply that

(2.123) λ(X (j)) >
ε

128 · 16

(1

2

)j

2−M+j =
ε

2048
2−M .

When j �=j′ the sets X (j)⊂ isptkj
(φns)\isptkj−1

(φns) and X (j′)⊂ isptkj′ (φns)\
isptkj′−1

(φns) are disjoint from each other and from the sets ∪t0X ′
t0,s−1. Us-

ing the estimates (2.123) for j = 2, ...,M and (2.78) we obtain that (2.1)
holds with s as well. Inequality (2.2) follows from (2.57), (2.58), and (2.79).
Inequality (2.3) follows from (2.59) and (2.80). �

2.15. How to derive Theorem 2 from Theorem 6

We define the dynamical system (Ys,Bs, λs, Tps) where Ys = [0, ps), Tps :
x → x + 1 mod ps, Bs is the σ-field of measurable subsets on Ys and λs is
the normalized Lebesgue measure on [0, ps).

By Theorem 6 we have

λs

{
x : max

l≤ps

ω∑
k=α

ns∑
i=1

φi(T
l
ps

(x))ψk(T
2l
ps

(x))

l
≥ 1

}
> min

{
ε,
sε(M − 1)2−M

2048

}
.

Dividing by the norms of the sums of the non-negative functions ψk

and φi we derive the estimate

λs

{
x : max

l≤ps

ω∑
k=α

ns∑
i=1

φi(T
l
ps

(x))ψk(T
2l
ps

(x))

l‖
∑ns

i=1 φi‖1‖
∑ω

k=α ψk‖1

≥ 1

‖
∑ns

i=1 φi‖1‖
∑ω

k=α ψk‖1

}

> min
{
ε,
sε(M − 1)2−M

2048

}
.

For 0 < ε < ε0 fixed, one can pick s and M such that s(M−1)2−M

2048
≥ 1.

Actually we will choose s to be equal to 
2048·2M

M−1
� + 1. We can observe that
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with this choice for M > 2 we have 
2048·2M

M−1
� + 1 ≤ 22048·2M

M−1
. Using the

estimates (2.2) and (2.3) we have

λs

{
x : max

l≤ps

ω∑
k=α

ns∑
i=1

φi(T
l
ps

(x))ψk(T
2l
ps

(x))

l‖
∑ns

i=1 φi‖1‖
∑ω

k=α ψk‖1
≥ 1

εs2−M+1

}
> ε.

Therefore, if we set Fs
def
=

∑ns

i=1 φi

‖
∑ns

i=1 φi‖1
and Gs

def
=

∑ω
k=α ψk

‖
∑ω

k=α ψk‖1
then we have

λs

{
x : max

l≤ps

Fs(T
l
ps

(x))Gs(T
2l
ps

(x))

l
≥ 1

εs2−M+1

}
> ε.

As we have assumed that s = 
2048·2M

M−1
� + 1, the last inequality implies

(2.124) λs

{
x : max

l≤ps

Fs(T
l
ps

(x))Gs(T
2l
ps

(x))

l
≥ (M − 1)

4 · 2048ε

}
> ε.

To simplify further the notation we set C = 1
8192ε

. This constant depends
only on ε, a fixed positive number. We introduce different values of M with
the sequence Mj = (j + 1)5. To these values the subsequence sj of natural

numbers is automatically associated, where sj = 
2048·2(j+1)5

(j+1)5−1
�+ 1. We define

now the measure preserving system

∞∏
j=1

(Ysj
,Bsj

, λsj
, Tpsj

)

and the functions

W (y1, y2, ..., yn, ...) =
∞∑

j=1

√
βjFsj

(yj), Q(y1, y2, ..., yn, ...) =
∞∑

j=1

√
βjGsj

(yj)

where the constants βj will be specified a bit later. The space is Y =∏∞
j=1 Ysj

, and the measure preserving transformation acting on Y is the
map U defined as U(y1, y2, ..., yn, ...) = (Tps1

(y1), Tps2
(y2), ..., Tpsn

(yn), ...).
The invariant measure under U, is denoted by μ, and it is the product of the
measures λsj

. We have for any positive number z,

μ

{
y ∈ Y : sup

l

W (U l(y))Q(U2l(y))

l
≥ z

}

≥ λsj

{
yj ∈ Ysj

: βj sup
l

Fsj
(T l

psj
(yj))Gsj

(T 2l
psj

(yj))

l
≥ z

}
.
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We can select now the terms βj . We put βj = (π2

6
− 1)−2(j + 1)−4. Observe

that this guarantees that the functions W and Q have norm 1 in L1(μ).
We also have limj(Mj − 1)βj = ∞. With these conditions we can conclude
without difficulty. For each j we have

μ

{
y ∈ Y : sup

l

W (U l(y))Q(U2l(y))

l
≥ Cβj(Mj − 1)

}

≥ λsj

{
yj ∈ Ysj

: sup
l

Fsj
(T l

psj
(yj))Gsj

(T 2l
psj

(yj))

l
≥ C(Mj − 1)

}
> ε.

Therefore, we have found a complete non-atomic measure space, a measure
preserving system and functions W and Q with L1 norm 1 such that

μ

{
y ∈ Y : sup

l

W (U l(y))Q(U2l(y))

l
= ∞

}
> ε.

Thus Theorem 2 holds for this measure preserving system. By using the
disintegration of μ into ergodic components i.e. dμ = dμcdc and for a.e. c
and U with respect to μc is ergodic we have∫

μc

{
y ∈ Y : sup

l

W (U l(y))Q(U2l(y))

l
= ∞

}
dc > ε.

Therefore there exists at least one c∗ such that

μc∗

{
y ∈ Y : sup

l

W (U l(y))Q(U2l(y))

l
= ∞

}
> ε.

To duplicate this for any ergodic measure preserving system we can use
Halmos’s result [6] on the density of the conjugates of an ergodic measure
preserving system for the weak topology. We have for any ergodic measure
preserving system (B,F , m,D) on a complete non-atomic finite measure
space, for any j

sup
‖f‖1=1, ‖g‖1=1

m

{
b : sup

l

f(Dlb)g(D2lb)

l
> M ′

j

}

≥ sup
‖W‖1=1, ‖Q‖1=1

μc∗

{
y ∈ Y : sup

l

W (U ly)Q(U2ly)

l
> M ′

j

}
> ε.

The details are omitted here. Similar details are given in the appendix of [3]
in the case of the averages associated with the triple a.e. recurrence and
these arguments apply to the situation considered here.
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rem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977),
204–256.

[6] Halmos, P: Lectures on ergodic theory. Chelsea Publishing, New York,
1960.

[7] Lacey, M.: The bilinear maximal function maps into Lp, 2/3 < p ≤ 1.
Ann. of Math. (2) 151 (2000), no. 1, 35–57.

[8] Lacey, M. and Thiele, C.: On Calderón’s conjecture. Ann. of Math. (2)
149 (1999), 475–496.

Recibido: 2 de julio de 2008

Idris Assani
Department of Mathematics

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27599, USA

assani@email.unc.edu

www.math.unc.edu/Faculty/assani

Zoltán Buczolich
Department of Analysis, Eötvös Loránd University
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