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Toeplitz operators on Bergman spaces
with locally integrable symbols

Jari Taskinen and Jani Virtanen

Abstract
We study the boundedness of Toeplitz operators Ta with locally

integrable symbols on Bergman spaces Ap(D), 1 < p < ∞. Our main
result gives a sufficient condition for the boundedness of Ta in terms
of some “averages” (related to hyperbolic rectangles) of its symbol.
If the averages satisfy an o–type condition on the boundary of D,
we show that the corresponding Toeplitz operator is compact on Ap.
Both conditions coincide with the known necessary conditions in the
case of nonnegative symbols and p = 2. We also show that Toeplitz
operators with symbols of vanishing mean oscillation are Fredholm
on Ap provided that the averages are bounded away from zero, and
derive an index formula for these operators.

1. Introduction

Consider the space Lp := (Lp(D, dA), ‖ · ‖p), where dA is the normalized
area measure on the unit disc D of the complex plane, and the Bergman
space Ap, which is the closed subspace of Lp consisting of analytic functions.
The Bergman projection P is the orthogonal projection of L2 onto A2, and
it has the integral representation

Pf(z) =

∫
D

f(ζ)

(1 − zζ̄)2
dA(ζ).

It is also known to be a bounded projection of Lp onto Ap, when 1 < p < ∞.
For an integrable function a : D → C and, say, bounded analytic functions f ,
we define the Toeplitz operator Ta with symbol a by setting

Taf = P (af).
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Since P is bounded, it follows easily that Ta extends to a bounded operator
Ap → Ap for 1 < p < ∞, whenever a is a bounded measurable func-
tion. A considerably more difficult question is the boundedness of Ta on Ap

with unbounded symbols. This is a long-standing problem of high interest
as Toeplitz operators form one of the most important classes of nonself-
adjoint operators. In what follows, we give a sufficient condition for Ta to
be bounded on Ap when the symbol a is a priori only a locally integrable
function. The condition is a rather weak requirement of the boundedness
of certain “averages” of a over hyperbolic rectangles (see Theorem 2.3). We
remark that not all such symbols are L1 on the disc. We also deal with com-
pactness and Fredholmness of these operators for a large class of symbols
that are not necessarily bounded, see Theorems 2.6 and 2.8.

Conditions for Ta to be bounded are known in some special cases when
the operators are acting on Hilbert space. Luecking [3] characterized boun-
ded Toeplitz operators Ta on A2 with positive symbols in L1 and Zhu [8]
considered the same question in the case of weighted Bergman spaces A2

α of
bounded symmetric domains. A treatment of radial generating symbols can
be found in Vasilevski [7]. The most complete previously known result, due
to Zorboska [11], deals with integrable symbols that satisfy the condition of
bounded mean oscillation and determines the bounded Toeplitz operators in
terms of the boundary behavior of the Berezin transform of their symbols.
In contrast, our result gives a complete description in the case of all reflexive
Bergman spaces Ap for positive symbols, while for general symbols we prove
that the same condition is at least sufficient.

Let 1 < p < ∞ and denote by τ(Ap) the closed subalgebra of the Banach
algebra of all bounded operators on Ap generated by Toeplitz operators with
bounded symbols. Recently Suárez [5] showed that all compact operators
on Ap are contained in τ(Ap) and their Berezin transform necessarily van-
ishes on the boundary of the unit ball. However, the condition that the
Berezin transform of an operator vanishes is not sufficient for compactness;
for this and further references we refer the reader to [5]. Our sufficient con-
dition for the compactness of Toeplitz operators, given in the next section,
is proven to be also necessary at least when the symbols are positive.

Most previous results on the Fredholm properties of Toeplitz operators
have been concerned with the Hilbert space case. A thorough discussion
on Fredholmness of Toeplitz operators on the Bergman space A2 can be
found in [7], which deals with several classes of bounded symbols and also
with the class of radial symbols. A partial description of the essential spec-
tra of operators in τ(A2) is given in [5], which also shows that the de-
scription is complete for essentially normal operators. For the case p = 1,
see [6]. Here we give a sufficient condition for Ta to be Fredholm on Ap



Toeplitz operators on Bergman spaces 695

with 1 < p < ∞ when the symbol a is of vanishing mean oscillation but
not necessarily bounded; in addition, we derive an index formula for these
Fredholm operators.

2. Main results and preliminaries

In the following we consider various function spaces, all of which are defined
on D, unless otherwise stated. We first recall a well-known result which can
be found, for example, in [10, Corollary 7.6].

Theorem 2.1. Assume that a ∈ L1 and that a is nonnegative. Then Ta :
A2 → A2 is bounded if and only if

âr ∈ L∞.(2.1)

Here âr of a is the averaging function âr(z) := |B(z, r)|−1
∫

B(z,r)
a dA,

and B(z, r) ⊂ D is the hyperbolic disc with center z ∈ D and radius r > 0,
and |B(z, r)| :=

∫
B(z,r)

dA.

We want to deal with more general symbols, which a priori only belong
to the space L1

loc of locally integrable functions on D. Let us introduce a
collection D of subsets of D which are rectangles in polar coordinates and
have a hyperbolic radius bounded from above and below.

Definition 2.2. Denote by D the family that consists of the sets D :=
D(r, θ) defined by

(2.2) D = {ρeiφ | r ≤ ρ ≤ 1 − 1

2
(1 − r) , θ ≤ φ ≤ θ + π(1 − r)}

for all 0 < r < 1, θ ∈ [0, 2π].

Given D = D(r, θ) ∈ D and ζ = ρeiφ ∈ D, we denote

âD(ζ) :=
1

|D|
∫ ρ

r

∫ φ

θ

a(�eiϕ) � dϕ d�.(2.3)

Theorem 2.3. Assume that a ∈ L1
loc and that there exists a constant C > 0

such that

|âD(ζ)| ≤ C(2.4)

for all D ∈ D and all ζ ∈ D. Then Ta : Ap → Ap is well defined and bounded
for all 1 < p < ∞, and there is a constant C1 > 0 such that

‖Ta‖ ≤ C1 sup
D∈D, ζ∈D

|âD(ζ)|.(2.5)
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In the following we shall denote

Ca := sup
D∈D, ζ∈D

|âD(ζ)|.

Remark 2.4. 1) There exist symbols a satisfying (2.4) but which are not L1

on the disc. The function

(2.6) a(reiθ) :=

⎧⎪⎨
⎪⎩

1

r(1 − r)
sin

1

1 − r
, r ≥ 1

2

1 , r <
1

2

is an example. Obviously, it is not L1. However, given D = D(1−2δ, θ) with
a small enough δ and ζ = ρeiφ ∈ D, we have, using the change of variable
y = 1/(1 − �)

|D||âD(ζ)| =

∫ φ

θ

dϕ
∣∣∣ ∫ ρ

1−2δ

1

1 − �
sin

1

1 − �
d�

∣∣∣ ≤ πδ
∣∣∣∫ 1/(1−ρ)

1/(2δ)

1

y
sin y dy

∣∣∣(2.7)

Dividing the integration interval to subintervals of the form Jn := [2πn,
2π(n + 1)], n ∈ N, one can replace (because of the periodicity of the sinus)
on Jn the function y−1 by y−1 − (2π(n + 1))−1, which has the bound Cn−2

on Jn. Summing over n and bounding | sin y| by 1, the modulus of the

integral
∫ 1/(1−ρ)

1/(2δ)
y−1 sin y dy is seen to have the bound Cδ. Since |D| is of

order δ2, the requirement (2.4) is seen to hold.
However, we are still able to define the Toeplitz operator under the con-

dition (2.4) by introducing a decomposition D = ∪n∈NDn of the disc into
disjoint sets of type (2.2), and showing that for the following functions of z,

Fn(z) :=

∫
Dn

a(ζ)f(ζ)

(1 − zζ̄)2
dA(ζ),(2.8)

the series
∑∞

n=1 Fn(z) converges absolutely for almost every z and defines
an Lp–function. Hence, Taf can be defined as the sum of this series, and the
definition coincides with the conventional one in case a ∈ L1. The details
will be presented in the proof of Theorem 2.3.

2) There is some hope that our condition (2.4) may also turn out nec-
essary, since there is no modulus of a in the integral (2.3). (The condition
obtained by replacing a by |a| in (2.3) is of course far from being necessary.)
On the other hand, it is quite obvious that the conditions (2.1) and (2.4)
are equivalent for positive symbols. Namely, in that case, given D(r, θ)
the assumption (2.4) is equivalent to assuming it only for ζ = ρeiφ with
ρ = 1 − (1 − r)/2 and φ = θ + π(1 − r). Then âD(ζ) is just the average
of a over D, and D on the other hand is essentially a hyperbolic disc with
constant radius.
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3) For nonpositive symbols a the exact form of the sets D is of crucial
importance: it can be used to estimate indefinite integrals of a, and on the
other hand, we need a decomposition of D as a disjoint union of sets of the
form D. These facts and an integration by parts argument will be used to
obtain our main result in Section 3.

As a corollary of our result one can generalize the statement of Theo-
rem 2.1 for all 1 < p < ∞. We do this via the Berezin transform B(T ) of
T ∈ L(Ap) defined by

B(T )(z) = (1 − |z|2)2〈TKz, Kz〉 = 〈Tkz,p, kz,q〉(2.9)

where

Kz(ζ) =
1

(1 − ζz̄)2
(ζ ∈ D).

is the reproducing kernel function and

(2.10) kz,p(ζ) := Kz(ζ)/‖Kz‖2/q
2 (ζ ∈ D) with ‖kz,p‖p = 1.

Recall also the Berezin transform B(f) of a function f ∈ L1 defined by

B(f)(z) = (1 − |z|2)2

∫
D

f(ζ)

|1 − zζ̄ |4 dA(ζ) .

Corollary 2.5. Let 1 < p < ∞ and let a ≥ 0 be locally integrable. Then
Ta : Ap → Ap is bounded if and only if âr ∈ L∞ (equivalently, if and only if
B(a) ∈ L∞).

Proof. Note first that B(a) is bounded on D if and only if âr is bounded
on D (see [10]). Now sufficiency follows from Theorem 2.3 and Remark 2.4.
Conversely, it is easy to see that the Berezin transform of a Toeplitz op-
erator Ta is the Berezin transform of its symbol, that is, B(Ta) = B(a).
Therefore, if Ta is bounded on Ap, then necessarily B(a) is bounded on D,
see (2.9) and (2.10). �

Next we consider the compactness of Toeplitz operators. For a nonneg-
ative symbol a ∈ L1, the Toeplitz operator Ta is compact if and only if
âr(z) → 0 as |z| → 0 (which is equivalent to B(a)(z) → 0 as |z| → 1);
see [10]. According to [11], for a ∈ BMO1

∂ (see (2.12) below), the Toeplitz
operator Ta is compact on A2 if and only if B(a)(z) → 0 as |z| → 1. However,
as stated in the same article, given a general unbounded a, it is unknown
whether a bounded Toeplitz operator Ta : A2 → A2 is compact when B(a)
vanishes on the boundary. If T is in the Toeplitz algebra τ(Ap) and if
B(T )(z) → 0 as |z| → 1, then T is compact; see [5].

We give the following sufficient condition for Ta to be compact on Ap.
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Theorem 2.6. Assume that a ∈ L1
loc and that

lim
d(D)→0

sup
ζ∈D

|âD(ζ)| = 0 ,(2.11)

where

d(D) := dist(D, ∂D) := inf{|z − w| | z ∈ D, |w| = 1}.
Then Ta : Ap → Ap is a compact operator for all 1 < p < ∞.

The proof is a modification of the proof of Theorem 2.3 and is outlined
in Section 4.

Corollary 2.7. Let 1 < p < ∞ and let a ≥ 0 be locally integrable. Then
Ta : Ap → Ap is compact if and only if âr(z) → 0 as |z| → 1 (or, which is
the same, if and only if B(a)(z) → 0 as |z| → 1.)

Proof. The proof is similar to that of Corollary 2.5. Just note that since
kz,p → 0 weakly, we have B(a)(z) → 0 as |z| → 1 whenever Ta is compact.

�
To state our result on Fredholmness, we first recall the notion of the

mean oscillation MOp
r(f) of a function f in Lp (here r > 0 is fixed for a

moment): it is defined by

(2.12) MOp
r(f)(z) =

( 1

|B(z, r)|
∫

B(z,r)

|f(ζ) − f̂r(z)|p dA(ζ)
)1/p

.

The space of bounded mean oscillation BMOp
r consists of all locally Lp

integrable functions for which ‖f‖p
r,p := supz∈D

MOp
r(f)(z) < ∞. If, in

addition, MOp
r(f)(z) → 0 as |z| → 1, we say that f is in V MOp

r . The
definition of BMOp

r depends on p (unlike in the case of the classical BMO
for the unit circle) and BMOp

r ⊂ BMOq
r properly for q < p . Since the

definition is independent of r, we write BMOp
∂ for BMOp

r and V MOp
∂ for

V MOp
r . The following decompositions can be found in [9] (for the case p = 2

see also [10, Chapter 7]). For p ≥ 1,

BMOp
∂ = BO + BAp and V MOp

∂ = V O + V Ap ,

where BO is the space of continuous functions on D for which ω(f)(z) :=
sup{|f(z) − f(w)| : w ∈ B(z, 1)} is a bounded function of z, and BAp is

the space of all functions f on D so that |̂f |pr is bounded; the spaces V O
and V Ap are closed subspaces of BO and BAp, respectively, consisting of

all f for which ω(f)(z) and |̂f |pr(z) vanish, respectively, as |z| → 1.

A bounded linear operator T on a Banach space X is said to be Fredholm
if both its kernel and cokernel are finite dimensional. The index of T is then
the difference of these dimensions.
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Theorem 2.8. Assume that a ∈ V MO1
∂ and that in addition to (2.4) it

satisfies for some δ > 0, C > 0,

|âD(ζ)| ≥ C(2.13)

for all D ∈ D with d(D) ≤ δ, for all ζ ∈ D. Then Ta is Fredholm, and there
is a positive number R < 1 such that

Ind Ta = − ind(B(a)�sT) = − ind(âr�sT)

for any s ∈ [R, 1), where ind h stands for the winding number of a function h,
and h�sT stands for the restriction of h into the set sT.

The proof is given in Section 5.

3. Proof of Theorem 2.3

We need to fix an explicit decomposition of D into sets belonging to the
family D.

Definition 3.1. Let us denote by n := n(m, μ) a bijection from the set
{(m, μ) | m ∈ N, μ = 1, . . . , 2−m} onto N which preserves the order in the
sense that m < l ⇒ n(m, μ) < n(l, λ) for all μ and λ, and μ < λ ⇒
n(m, μ) < n(m, λ) for all m.

We define the sets Dn := Dn(m,μ) := D
(
1 − 2−m+1, 2π(μ − 1)2−m

) ∈ D,
that is,

Dn :=
{
z = reiθ | 1 − 2−m+1 < r ≤ 1 − 2−m,

π(μ − 1)2−m+1 < θ ≤ πμ2−m+1
}
,(3.1)

where m ∈ N and μ = 1, . . . , 2m. We also denote for n = n(m, μ),

rn = 1 − 2−m+1 , r′n := 1 − 2−m

θn = π(μ − 1)2−m+1 , θ′n := πμ2−m+1,(3.2)

hence for all n ∈ N, the set Dn is of the form

(3.3) Dn = {z = reiθ | rn < r ≤ r′n, θn < θ ≤ θ′n}.

We denote for all ζ = ρeiφ ∈ Dn

(3.4) In(ζ) := âDn(ζ) =
1

|Dn|
∫ ρ

rn

∫ φ

θn

a(�eiϕ) � d� dϕ.
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To prove the theorem we assume that (2.4) holds; then, for all n and
all ζ ∈ Dn,

(3.5) |In(ζ)| ≤ Ca,

where Ca is as after (2.5).

Let f ∈ Ap. Let us fix an n(m, μ) and evaluate the following integral
using integration by parts:∫

Dn

a(ζ)f(ζ)

(1 − zζ̄)2
dA(ζ) =

∫ r′n

rn

∫ θ′n

θn

a(reiθ)f(reiθ)

(1 − zre−iθ)2
r dr dθ

=

∫ r′n

rn

(∫ θ′n

θn

ra(reiϕ)dϕ
) f(reiθ′n)

(1 − zre−iθ′n)2
dr

−
∫ r′n

rn

∫ θ′n

θn

(∫ θ

θn

a(reiϕ)dϕ
)
∂θ

f(reiθ)

(1 − zre−iθ)2
dθ r dr

=
( ∫ r′n

rn

∫ θ′n

θn

a(�eiϕ) � dϕ d�
) f(r′ne

iθ′n)

(1 − zr′ne−iθ′n)2

−
∫ r′n

rn

(∫ r

rn

∫ θ′n

θn

a(�eiϕ) � dϕ d�
)
∂r

f(reiθ′n)

(1 − zre−iθ′n)2
dr

−
∫ θ′n

θn

(∫ r′n

rn

∫ θ

θn

a(�eiϕ) � dϕ d�
)
∂θ

f(r′ne
iθ)

(1 − zr′ne−iθ)2
dθ

+

∫ r′n

rn

∫ θ′n

θn

( ∫ r

rn

∫ θ

θn

a(�eiϕ)� dϕ d�
)
∂r∂θ

f(reiθ)

(1 − zre−iθ)2
dθ dr

=: F1,n(z) + F2,n(z) + F3,n(z) + F4,n(z) =: Fn(z).(3.6)

We shall find suitable bounds for the terms Fj,n(z). Let us first consider
the case j = 1. The integral of a in F1,n has, by (3.5), the bound∣∣∣ ∫∫

a(�eiϕ) � dϕ d�
∣∣∣ ≤ Ca|Dn|(3.7)

Moreover, by [10, Proposition 4.13],

|f(r′ne
iθ′n)| ≤ C

|Dn|
∫

Dn

|f(ζ)|dA(ζ),(3.8)

and since

|1 − zr′neiθ′n| ≥ C|1 − zζ̄ |(3.9)

for all ζ ∈ Dn, we get

|F1,n(z)| ≤ C Ca

∫
Dn

|f(ζ)|
|1 − zζ̄ |2 dA(ζ).(3.10)
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As for F2,n, performing the differentiation and using estimates like (3.8)
(which also holds for f ′) and (3.9), we get

∣∣∣∂r
f(reiθ)

(1 − zre−iθ)2

∣∣∣ ≤ C

|Dn|
∫

Dn

( |f(ζ)|
|1 − zζ̄ |3 +

|f ′(ζ)|
|1 − zζ̄ |2

)
dA(ζ)

Hence, taking into account (3.7) and |r′n − rn| ≤ C|1 − zζ̄ | and |r′n − rn| ≤
C(1 − |ζ |2) for all ζ ∈ Dn, we can evaluate F2,n:

|F2,n(z)| =
∣∣∣ ∫ r′n

rn

(∫ r

rn

∫ θ′n

θn

a(�eiϕ) � dϕ d�
)

∂r
f(reiθ′n)

(1 − zre−iθ′n)2
dr

∣∣∣
≤ C

∫ r′n

rn

∣∣∣∫ r

rn

∫ θ′n

θn

a(�eiϕ)� dϕ d�
∣∣∣ 1

|Dn|
∫

Dn

( |f(ζ)|
|1 − zζ̄ |3 +

|f ′(ζ)|
|1 − zζ̄ |2

)
dA(ζ) dr

≤ C ′ Ca

∫ r′n

rn

∫
Dn

( |f(ζ)|
|1 − zζ̄ |3 +

|f ′(ζ)|
|1 − zζ̄ |2

)
dA(ζ) dr

≤ C ′′ Ca

∫
Dn

( |f(ζ)|
|1 − zζ̄ |2 +

|f ′(ζ)|(1− |ζ |2)
|1 − zζ̄ |2

)
dA(ζ).

(3.11)

The remaining terms with j = 3, 4 can be estimated analogously. For
j = 3 we get the same bound as in (3.11), and for j = 4 we get the bound

|F4,n(z)| ≤ C Ca

∫
Dn

( |f(ζ)|
|1 − zζ̄ |2 +

|f ′(ζ)|(1− |ζ |2)
|1 − zζ̄ |2

+
|f ′′(ζ)|(1 − |ζ |2)2

|1 − zζ̄ |2
)

dA(ζ).(3.12)

As a consequence,

∞∑
n=1

Fn(z) ≤
∞∑

n=1

|Fn(z)| ≤
∞∑

n=1

4∑
j=1

|Fj,n(z)|(3.13)

≤ C Ca

∫
D

|f(ζ)|+ |f ′(ζ)|(1 − |ζ |2) + |f ′′(ζ)|(1 − |ζ |2)2

|1 − zζ̄ |2 dA(ζ).

The maximal Bergman projection is known to be bounded on Lp, i.e., there
exists a constant C > 0 such that∥∥∥ ∫

D

|g(ζ)|
|1 − zζ̄ |2 dA(ζ)

∥∥∥
p
≤ C‖g‖p(3.14)

for all g ∈ Lp (see [10, Corollary 3.13]). Moreover, by Theorem 4.28 of [10],
the functions |f ′(ζ)|(1−|ζ |2) and |f ′′(ζ)|(1−|ζ |2)2 belong to Lp. Using (3.13)



702 J. Taskinen and J. Virtanen

we thus find that the series (see (3.6))
∞∑

n=1

|Fn(z)|

can be pointwise bounded by an Lp function, and thus it converges for
almost all z. Hence, the Toeplitz operator can be defined as explained in
Remark 2.4, 1◦. Moreover, by the same arguments,∥∥∥ ∞∑

n=1

Fn(z)
∥∥∥

p
≤ C Ca‖f‖p,(3.15)

which proves the desired boundedness of Ta. �

Corollary 3.2. If a ∈ BA1, then Ta : Ap → Ap is bounded, and

‖Ta‖ ≤ C‖a‖BA1 .

4. Proof of Theorem 2.6

We sketch the changes needed in Section 3. By definitions, we actually have

lim
n→∞

sup
ζ∈Dn

|In(ζ)| = 0.(4.1)

To prove Theorem 2.6 one takes an arbitrary sequence (fk)
∞
k=1 ⊂ Ap with

‖fk‖p ≤ 1 for all k such that fk → 0 uniformly on compact subsets of D. It
is enough to prove that ‖Tafk‖p → 0.

Let ε > 0 be arbitrary. Let the expressions Fj,n(z) be as in Section 3, and
let Fj,n,k(z) be equal to Fj,n(z) with f is replaced by fk. Consider F1,n,k(z).
Applying (4.1) to (3.7) and deducing as in (3.7)–(3.10), we obtain instead
of (3.10) the estimate

|F1,n,k(z)| ≤ Cεn

∫
Dn

|fk(ζ)|
|1 − zζ̄ |2 dA(ζ),(4.2)

where we may assume that εn → 0. Choose N ∈N such that εn <ε for n≥N .

Since the closure of the set D(N) := ∪n≤NDn is compact, there exists a
constant CN > 0 such that∑

n≤N

∫
Dn

1

|1 − zζ̄|2 dA(ζ) ≤ CN

for all z ∈ D. Since the sequence (fk) converges to 0 on compact subsets,
we may choose M ∈ N such that

|fk(ζ)| ≤ ε

1 + CN

for all k ≥ M and ζ ∈ D(N).
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We get for all k ≥ M

∞∑
n=1

|F1,n,k(z)| ≤
∑
n≤N

∫
Dn

|fk(ζ)|
|1 − zζ̄ |2 dA(ζ) +

∑
n>N

∫
Dn

εn
|fk(ζ)|
|1 − zζ̄ |2 dA(ζ)

≤
∑
n≤N

ε

1 + CN

∫
Dn

1

|1 − zζ̄ |2 dA(ζ) + ε

∫
D

|fk(ζ)|
|1 − zζ̄ |2 dA(ζ)

≤ ε + ε

∫
D

|fk(ζ)|
|1 − zζ̄ |2 dA(ζ).

The other expressions Fj,n,k(z), j = 2, 3, 4, are treated similarly, keeping in
mind that also the derivatives of the functions fk converge to 0 uniformly
on compact subsets of D. Arguing as in the proof of Theorem 2.3 we find
that ‖Tafk‖p ≤ Cε for large enough k. �

Comparing the definition of the space V A1 and the condition (2.11)
immediately yields the following

Corollary 4.1. If a ∈ V A1, then Ta : Ap → Ap is compact.

5. Proof of Theorem 2.8

Before proceeding with the proof, we recall for the convenience of the reader
some Fredholm theory that will be needed.

Theorem 5.1. Let T be a bounded linear operator on a Banach space X.
Then T is Fredholm, if it has a regularizer, that is, if there exists a bounded
linear operator S : X → X such that ST − I and TS − I are both compact.

The index function Ind is constant on each connected component of the
space of all Fredholm operators on X. In particular, if S : X → X is
compact, then Ind(T + S) = Ind T .

For these facts, see, for example, [4].
We now proceed to prove Theorem 2.8. Since a ∈ V MO1

∂ , it is enough
to assume (2.13) only for ζ as in Remark 2.4. Also the symbol a has a
decomposition

(5.1) a = a1 + a2

with a1 ∈ V O and a2 ∈ V A1. Because of Corollary 4.1, it is enough to show
that Ta1 is Fredholm. Moreover, we may assume that a1 satisfies (2.13)
and (2.4); thus, by redefining the notation, we may assume that a ∈ V O.
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Let R > 0 be so large that every D ∈ D is contained in a hyperbolic
disc B(z, R). By the V O–condition (with the same C as in (2.13)) we may
assume that

|a(z) − a(w)| ≤ C

2
(5.2)

for all |z| sufficiently large, for all w ∈ B(z, R). We claim that a(z) = 0 for
|z| sufficiently large, say, |z| ≥ s, where 0 < s < 1. If this were not true,
we would find a set D ∈ D with d(D) ≤ δ such that a(ζ) = 0 for some
ζ ∈ D and such that (5.2) would hold for some B(z, R) containing D. As
a consequence, |a(w)| ≤ C/2 for all w ∈ D, which implies a contradiction
with (2.13). In the same way we find that a must be bounded. (However,
the original a need not be bounded!)

We form a regularizer of Ta by defining first

b(z) =
1

a(z)
for |z| ≥ s(5.3)

and b(z) = 1 for |z| ≤ s. We have

TaTb = I − P (I − Mab) − PMa(I − P )Mb

= I − T1−ab − PMaHb.

Here T1−ab is obviously compact, since 1−a(z)b(z) = 0 for all |z| ≥ s. For the
compactness of Hb, note that b is in V O, which is generated by functions in
C(D). Moreover, the operator PMa is bounded on Lp ⊃ Hb(A

p), since a is a
bounded function, so TaTb = I +K for K compact. Similarly, TbTa = I +K ′

for K ′ compact. Thus, Ta has a regularizer and is hence Fredholm (see
Theorem 5.1).

It remains to prove the index formula. Returning back to the decompo-
sition (5.1), we have

Ind Ta = Ind Ta1 ,

which follows from Corollary 4.1 and Theorem 5.1. Note that the decom-
position (5.1) can be obtained by setting a1 = ã or a1 = âr. Hence, it
suffices to prove the index formula for Ta with a ∈ V O and |a(z)| ≥ ε
whenever s ≤ |z| < 1, where ε, s are some positive constants. (See the ar-
gument after (5.2).) Let as(ζ) = a(sζ) for ζ ∈ T and let κ = ind as. Let
f(z) = (z̄/|z|)κa for |z| ≥ s, and extend f to D so that |f(z)| ≥ ε′ for some
ε′ > 0, which implies that 1/f ∈ V O. If g(z) = (z̄/|z|)κ for |z| ≥ s and
g(z) = (z̄/s)κ for |z| < s, then ga − f = 0 for |z| ≥ s, and so Tga = Tf + K
for K compact, and thus

κ + Ind Ta = Ind Tg + Ind Ta = Ind Tf .
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We still need to show that Ind Tf = 0. Let ht = t(1/|f |) + (1 − t) for
t ∈ [0, 1]. We observe that the mapping t �→ Tht is continuous with respect
to the operator norm, since by Theorem 2.3

‖Tht − Ths‖ = ‖Tht−hs‖
≤ C sup

D∈D

1

|D|
∫

D

|ht(ζ) − hs(ζ)| dA(ζ)

≤ C sup
D∈D

1

|D|
∫

D

(
|t − s| 1

|f(ζ)| + |t − s|
)

dA(ζ)

= C sup
D∈D

1

|D|
∫

D

(
1 +

1

ε′

)
|t − s| dA(ζ)

≤ C ′ |t − s| for t, s ∈ [0, 1].

Hence, all Tht are in the same component of the class of Fredholm opera-
tors on Ap and therefore they all have the same index (Theorem 5.1); in
particular, Ind T1/|f | = Ind Th1 = Ind Th0 = 0. Thus,

Ind Tf/|f | = Ind Tf + Ind T1/|f | = Ind Tf ,

and so we can assume |f | = 1 and write f(z) = ei arg f(z). For any integer
m > 0, we have exp(i(arg f)/m) ∈ V O and

Ind Tf = Ind T m
exp(i(arg f)/m) = m Ind Texp(i(arg f)/m) ;

since the index is always an integer, the last expression cannot be bounded
for all m unless Ind Texp(i(arg f)/m) equals zero. So, Ind Tf = 0. �
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