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Bernstein-Heinz-Chern results in
calibrated manifolds

Guanghan Li and Isabel M. C. Salavessa

Abstract

Given a calibrated Riemannian manifold M with parallel calibra-
tion Ω of rank m and M an orientable m-submanifold with parallel
mean curvature H, we prove that if cos θ is bounded away from zero,
where θ is the Ω-angle of M , and if M has zero Cheeger constant, then
M is minimal. In the particular case M is complete with RicciM ≥ 0
we may replace the boundedness condition on cos θ by cos θ ≥ Cr−β,
when r → +∞, where 0 < β < 1 and C > 0 are constants and r is the
distance function to a point in M . Our proof is surprisingly simple
and extends to a very large class of submanifolds in calibrated man-
ifolds, in a unified way, the problem started by Heinz and Chern of
estimating the mean curvature of graphic hypersurfaces in Euclidean
spaces. It is based on an estimation of ‖H‖ in terms of cos θ and an
isoperimetric inequality. In a similar way, we also give some condi-
tions to conclude M is totally geodesic. We study some particular
cases.

1. Introduction

E. Heinz [18] in 1955 introduced the problem of estimating the mean curva-
ture of a surface of R

3 described by a graph of a function f : R
2 → R. He

proved that if f is defined on the disc x2 + y2 < r2 and the mean curvature
satisfies ‖H‖ ≥ c > 0, where c is a constant, then r ≤ 1

c
. Thus, if f is

defined in all R
2 and ‖H‖ is constant, then H = 0. Later, this result was

extended for the case of a map f : R
m → R by Chern [9] and independently,

by Flanders [15]. This problem was generalized by the second author in her
Ph.D thesis ([29], [30]) in 1987, for submanifolds of a Riemannian product
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M = M × N of Riemannian manifolds (M, g1) and (N, h), that can be de-
scribed as a graph Γf := {(p, f(p)) : p ∈ M} of a smooth map f : M → N ,
that we recall as follows. On any oriented Riemannian manifold (M, g) it is
defined an isoperimetric constant, the Cheeger constant

(1.1) h(M, g) = inf
D

A(∂D, g)

V (D, g)
,

where D ranges over all open submanifolds of M with compact closure in M
and smooth boundary (see e.g. [7] and Section 4), and A(∂D, g) and V (D, g)
are respectively the area of ∂D and the volume of D, with respect to the
metric g. We call such D by compact domain. The Cheeger constant is
zero, if, for example, M is a closed manifold (we abusively take the same
definition for the closed case), or if M is a simple Riemannian manifold,
that is, there exists a diffeomorphism φ : (M, g) → (Rm, <,>) onto R

m such
that λ2g ≤ φ∗ <,>≤ μ2g for some positive constants λ, μ. Another large
class of Riemannian manifolds with zero Cheeger constant are the complete
Riemannian manifolds with non-negative Ricci tensor (see Section 4). Hence,
zero Cheeger constant is a quite interesting condition.

Theorem 1.1. ([29, 30]) If f : (M, g1) → (N, h) is a smooth map whose
graph Γf has parallel mean curvature H, then for each compact domain
D ⊂ M we have the isoperimetric inequality

‖H‖ ≤ 1

m

A(∂D, g1)

V (D, g1)
.

Thus ‖H‖ ≤ 1
m

h(M, g1). In particular if (M, g1) has zero Cheeger constant
then Γf is a minimal submanifold of M ×N .

We may also handle this problem in the context of calibrated manifolds.
A calibration on a Riemannian manifold M of dimension m+ n is a closed
m-form Ω with comass one, that is, for each p ∈ M and any orthonormal
system Xi ∈ TpM , |Ω(X1, . . . , Xm)| ≤ 1 holds, and equality is achieved at
some system (see [17]). If F : M →M is an oriented immersed submanifold
of dimension m, it is defined the Ω-angle of M , θ : M → [0, π], given by

cos θ = Ω(X1, . . . , Xm),

where Xi is a direct orthonormal frame of TpM . We give to M the induced
metric g = F ∗ḡ. The submanifold is said to be Ω-calibrated if cos θ = 1. This
is equivalent to Ω restricted to M is the volume element of M . Calibrated
submanifolds are minimal, for they minimize the volume of any domain D
among all variations Ft : D → M , t ∈ [0, 1], of F0 = F that fixes the
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boundary ∂D. Let dVt be the volume element of (D, gt = F ∗
t ḡ). Assuming F0

is calibrated, integration over D of

cos θ1dV1 − dV0 = F ∗
1 Ω − F ∗

0 Ω = dτ

where τ =
∫ 1

0
F ∗
t (Ω(∂F

∂t
, ·))dt is a (m− 1)-form that satisfies τ|∂D

= 0, gives

V1(D) ≥
∫
D

cos θ1dV1 =

∫
D

dV0 = V0(D).

This inequality shows F0 is minimal. Furthermore, if F1 also minimizes the
volume on the homotopy class of a calibrated submanifold, then F1 is a
calibrated submanifold as well. On the other hand, a stable minimal sub-
manifold F may not be Ω-calibrated. This is the case M has two different
m-calibrations and F is calibrated only for one of them. A pertinent ques-
tion is to ask when is it true that stable minimal submanifolds are in fact
calibrated for some calibration. This is true at least locally, for hypersur-
faces in Euclidean spaces, or more generally for submanifolds under certain
integrability conditions (see Subsection 5.2).

The simplest examples of Riemannian manifolds with a calibration are
the Riemannian products M = (M×N, g1×h), with the volume calibration

(1.2) Ω((X1, Y1), . . . , (Xm, Ym)) = V ol(M,g1)(X1, . . . , Xm).

If M is a graph submanifold Γf : M →M ×N then

cos θ = (det(g1 + f ∗h))−1/2 > 0,

where the determinant is with respect to the metric g1. Reciprocally, a m-
dimensional submanifold of M×N is locally a graph if cos θ > 0. The graph
is a calibrated submanifold if and only if f is constant, that is, the graph
is a slice. The condition cos θ ≥ τ > 0, τ a constant, is equivalent to the
boundedness of ‖df‖2. The induced metric on the graph M is the graph
metric g = g1 + f ∗h on M and so, under the above condition the metrics g
and g1 are equivalent. In this case, (M, g) has zero Cheeger constant if and
only if (M, g1) has so.

In this paper we will obtain the result in Theorem 1.1 from a general
result for any calibration Ω, but with an extra condition on cos θ at infin-
ity. This means that this approach for graphs is not so good has the one
in [29, 30], although they are very much related to each other. In both ap-
proaches we use a suitable vector field Z1, naturally defined on all M using
the calibration, but in Theorem 1.1 we consider the divergence of Z1 with
respect to the metric g1 of M , while in next theorem we consider the diver-
gence with respect to the induced metric g of M . On the other hand, we will
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provided a unified way to obtain a Heinz-Chern result for submanifolds with
parallel mean curvature in a very large class of ambient spaces, the class of
calibrated manifolds.

Examples of calibrated manifolds are the Kähler manifolds with the
Kähler calibration, the Riemanniam manifolds with special holonomy, name-
ly, the Calabi-Yau manifolds with the special Lagrangian calibration, the
quaternionic-Kähler manifolds with the quaternionic calibration, the hyper-
Kähler manifolds (with many calibrations), G2 manifolds with the associa-
tive and co-associative calibration, and Spin(7) manifolds with the Cayley
calibration (see [22]). These special spaces are Einstein manifolds, and ex-
cept the quaternionic-Kähler case, they are all Ricci flat. If n = 1, a paral-
lel Ω defines a non-zero global parallel vector field (∗Ω)� on M and so, if M
is simply connected then it splits as a Riemannian product M = M × N1,
where N1 is one dimensional, and Ω is the volume element of M . More
generally, for n = 1, a divergence free vector field X̄ on M , defines a closed
m-form Ω = ∗X̄�, where ∗ is the star operator on M . This form is a cali-
bration if ‖X̄‖ = 1. This is the case of a Riemannian manifold M with a
codimension-one transversally oriented foliation by minimal hypersurfaces,
for, in this case the unit normal X̄ to the leaves defines a divergence free
vector field of M that calibrates the leaves. For foliations of any codimension
see Section 5.

In what follows, (M, ḡ,Ω) denotes a calibrated (m+n)-dimensional man-
ifold with a calibration Ω of rank m ≥ 2, and F : M → M is an immersed
oriented submanifold of dimension m, induced metric g, volume element dV ,
normal bundle NM , mean curvature H and Ω-angle θ. We consider the fol-
lowing morphisms Φ : TM → NM , Ψ : ∧2TM → ∧2NM , such that for
X, Y ∈ TpM , U, V ∈ NMp,

(1.3)
ḡ(Φ(X), U) = Ω(U, ∗X),
〈Ψ(X ∧ Y ), U ∧W 〉 = Ω(U ∧W, ∗X ∧ Y ),

where ∗ : TM → ∧m−1TM and ∗ : ∧2TM → ∧m−2TM are the star op-
erators and 〈, 〉 is the usual inner product in ∧2NM . For m = 2, set
〈Ψ(dV ), U ∧W 〉 = Ω(U ∧W ), where dV is the volume element of M . Our
main results are:

Theorem 1.2. (The integral Ω-isoperimetric inequality). On a compact
domain D of M , with boundary ∂D with volume element dA, the following
inequality holds∣∣∣∣

∫
D

(−m cos θ‖H‖2 + 〈∇⊥H,Φ〉)dV +

∫
D

∇̄HΩ

∣∣∣∣ ≤
∫
∂D

sin θ ‖H‖dA,

where 〈, 〉 is the Hilbert-Schmidt inner product in TM∗ ⊗NM .
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From now on we assume Ω is parallel. Theorem 1.2 leads to:

Theorem 1.3. If F : M → M is immersed with parallel mean curvature
and cos θ > 0, on a compact domain D of M , the following isoperimetric
inequality holds:

‖H‖ ≤ 1

m

(
sup∂D sin θ

infD cos θ

)
A(∂D, g)

V (D, g)
.

In particular:

(1) If cos θ ≥ τ > 0 where τ is a constant, then ‖H‖ ≤ 1
m

√
1−τ2

τ
h(M, g). In

this case, if M has zero Cheeger constant, then M is a minimal submanifold.

(2) If cos θ = 1 on ∂D for some domain D then F is a minimal immersion.

Corollary 1.1. If M is closed with parallel mean curvature and cos θ > 0,
then M is minimal.

Corollary 1.2. IfM is closed, 1>|cos θ| constant, and ‖Φ(X)‖≤μ sin θ‖X‖,
where 0 < μ ≤ 1 is a constant, and ‖H‖ not identically zero, then

|cot θ| ≤ μ√
m

∫
M
‖∇⊥H‖dV∫
M
‖H‖2dV

.

Equality holds iff Φ is a homothetic morphism with coefficient of conformality
μ2 sin2 θ on the orthogonal complement of the distribution defined by the
kernel of ∇⊥H, and ∇⊥

XH = Φ(ψ(X)) where ψ : TM → TM is a linear
morphism.

We will see that ‖Φ(X)‖ ≤ sin θ ‖X‖ always hold. The conformality condi-
tion on Φ is not an uncommon condition. In a 8-dimensional quaternionic
Kähler manifold, almost complex 4-submanifolds define a morphism Φ with
coefficient of conformality (1− cos θ)(cos θ− 1

3
). Four dimensional submani-

folds with equal Kähler angles of a Kähler manifold of complex dimension 4,
define Φ with coefficient of conformality (1 − cos θ) cos θ (see Section 5).

We can slightly improve Theorem 1.3 in case RicciM ≥ 0 and M is
complete. In this case, if we fix p ∈ M , there is a constant C1 > 0, such
that (see Section 4)

(1.4) h(M) ≤ h(Br(p)) ≤ C1

r
for all r ∈ (0,+∞).

Theorem 1.4. If F : M → M is a complete immersed oriented m-dimen-
sional submanifold with parallel mean curvature, and RicciM ≥ 0 and the
Ω-angle satisfies cos θ ≥ Cr−β > 0 when r → +∞, where 0 ≤ β < 1 and
C > 0 are constants, and r is the distance function in M to a point p ∈M ,
then F is a minimal submanifold.
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An application of Theorem 1.1 is the following:

Proposition 1.1. If (M, g1) is a complete Riemannian manifold with Ri-
cci(M,g1) ≥ 0, then any graphic submanifold with parallel mean curvature
F = Γf : M → (M × N, g1 × h), where f : (M, g1) → (N, h) is a smooth
map, is a minimal submanifold.

It is fundamental some nonnegativeness on the curvature tensor of M to
obtain such Heinz-Chern results. If M = H

m × R where H
m is is the m-

hyperbolic space, there are examples of entire graphic hypersurfaces, and so
complete, with non-zero constant mean curvature c and with cos θ bounded
away from zero, as can be shown by the following proposition. Note that
h(Hm) = m− 1. The function r(x) = ln ((1 + |x|)/(1 − |x|)) is the distance
function in H

m to 0, for the Poincaré model, and ν = (−∇f, 1)/
√

1 + ‖∇f‖2

is a unit normal to Γf :

Proposition 1.2. [29, 30, 32] For each |c| ≤ m−1, fc : H
m → R defined by:

fc(x) =

∫ r(x)

0

c
(sinh r)m−1

∫ r

0
(sinh t)m−1dt√

1 − ( c
(sinh r)m−1

∫ r

0
(sinh t)m−1dt)

2
dr,

is smooth on all H
m, and for each d ∈ R, Γfc+d ⊂ H

m × R has constant

mean curvature given by ḡ(H, ν) = c
m

, and cos θ >
√

(m− 1 − |c|)/(m− 1).
Furthermore, {Γ(fc)+d(x) : x ∈ H

m, d ∈ R} and {Γ(fc)+d(x) : x ∈ H
m, c ∈

[1 −m,m − 1]} define (partial) foliations of H
m × R by hypersurfaces with

the same constant mean curvature c, and with constant mean curvature pa-
rameterized by the leaf, respectively.

A related classical problem is the Bernstein-type problem, that deter-
mines when a minimal submanifold must be totally geodesic. In 1927, Bern-
stein [6] proved that any minimal surface of R

3 defined by the graph of an
entire map f : R

2 → R is a linear plane. This result was generalized to R
m+1

for m ≤ 7 by De Giorgi [11] (m = 3), Almgren [2] (m = 4), and Simons
[36] (m ≤ 7), and to higher dimensions and codimensions under various
growth conditions by many others, as for example Hildebrandt, Jost, and
Widmann in [19], Ecker and Huisken [13], Wang [37], and more recently some
attention is given to Bernstein theorems in curved Riemannian product or
warped product spaces by Aĺıas, Dajczer and Ripoll [3]. In higer dimension,
and mainly in higer codimension, Bernstein-type results tend to be more
difficult and complicated to formulate. Some Bernstein results have been
obtained for stable minimal hypersurfaces by Do Carmo and Peng [12], Mi-
randa [27], Fischer-Colbrie, Schoen, Simon and Yau [14, 35], and for leaves
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of transversely oriented codimension one foliations of Riemannian manifolds
by Barbosa, Kenmotsu, Oshikiri, Bessa and Montenegro [5, 4], where Chern-
Heinz inequalities are derived, as well the stability of the leaves.

In this paper we obtain some Bernstein-type results using the same phi-
losophy of the Chern-Heinz inequalities, applied to submanifolds immersed
in calibrated manifolds, and under certain conditions, allowing us to ob-
tain this type of results in any codimension. They are derived from the
expression of Δ cos θ. This Laplacian involves the covariant derivative of
the mean curvature, a quadratic term on the second fundamental form B
and a curvature term of M that we have to analyse. We should have in mind
that if F is totally geodesic then θ is constant. Let BΦ a 1-form on M and
∧2B : ∧2TM → ∧2NM given by

(1.5)
BΦ(X) =

∑
i ḡ(B(Xi, X),Φ(Xi))

∧2B(X ∧ Y ) =
∑

iB(Xi, X) ∧ B(Xi, Y ),

where Xi is any orthonormal basis of TpM . We consider the following
quadratic forms defined for any m-calibration Ω and F : Mm → M sat-
isfying cos θ > 0, and applied to tensors B′ ∈ ⊙2 TM∗ ⊗NM

(1.6)
QΩ(B′) = Q̃Ω(B′) + 1

cos2 θ
‖B′

Φ‖2

Q̃Ω(B′) = ‖B′‖2 − 2
cos θ

〈Ψ,∧2B′〉.
QΩ (or Q̃Ω) is said to be δ-positive at B′ if QΩ(B′) ≥ δ‖B′‖2, where δ > 0.
This is the case, with δ = 1, when 〈Ψ,∧2B′〉 ≤ 0, as it is the case n = 1.

The quadratic form QΩ was defined in [37] for the case M = Mm × Nn

and Ω the volume element of (M, g1) and F = Γf with f : (M, g1) → (N, h) a
smooth map. For n ≥ 2, one has to require λiλj ≤ (1−δ), for i �= j and some
constant 0 < δ ≤ 1, where λ2

1 ≥ . . . ≥ λ2
m ≥ 0 are the eigenvalues of f ∗h, to

have QΩ δ-positive at any B′. This condition gives bounds to the components
of the calibration Ω in a convenient basis Xi of TM and Uα of NM , namely
on the components 〈Ψ(Xi ∧Xj), Uα ∧ Uβ〉 = cos θδiαδjβλiλj (see Section 5).
In general, this condition onQΩ or on Q̃Ω, can be a quite restrictive condition
for the higer codimension case, and it holds for calibrated submanifolds only
if these are necessarily totally geodesic (see Proposition 1.3). But it holds
for certain kind of submanifolds, as for example, if F is sufficiently close
to a totally umbilical submanifold (i.e. satisfy B = Hg). For the Kähler
calibration we will find in Proposition 5.3 that δ-positiveness is quite unlike
to hold on minimal 4-submanifolds with equal Kähler angles unless M is
a Calabi-Yau 4-fold. In Lemma 5.5 for almost complex submanifolds in
quaternionic Kähler manifolds, we give a natural condition that ensures δ-
positiveness of QΩ(B).
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For calibrated submanifolds we have:

Proposition 1.3. If F : M →M is Ω-calibrated then QΩ(B) = Q̃Ω(B) = 0.
Thus, if QΩ is δ-positive, then F is totally geodesic. This is always the
case n = 1.

Theorem 1.5. Assume M has parallel mean curvature, cos θ > 0, and
QΩ(B) ≥ δ‖B‖2 for some constant δ > 0 and

(1.7)
∑

ijR̄(Xi, Xj , Xi,Φ(Xj)) ≥ 0.

Then the following inequalities hold for any compact domain D:

(1.8)

‖∇ log cos θ‖ ≤ √
m tan θ ‖B‖,∫

D

‖B‖2dV ≤
√
m

δ

∫
∂D

tan θ ‖B‖dA.

Moreover:

(A) if tan θ ‖B‖ is integrable on M and M is complete, then F is totally
geodesic;

(B) if infM cos θ = τ > 0, and ‖B‖ is not identically zero, then

infM ‖B‖2

supM ‖B‖ ≤ inf
D

(−∫
D
‖B‖2dV

−∫
∂D

‖B‖dA
)

≤
√
m

δ

√
1 − τ 2

τ
h(M).

In particular, if ‖B‖ is constant, then

‖B‖ ≤
√
m

δ

√
1 − τ 2

τ
h(M).

In this case (since ‖B‖ �= 0), h(M) �= 0.

(C) If the sectional curvatures of M are bounded from below, M is complete,
‖B‖ is bounded, then either infM cos θ = 0 or infM ‖B‖ = 0.

δ-positiveness of QΩ(B) and (1.7) imply Δ log cos θ ≤ −δ‖B‖2, and (A)-(C)
are consequences of this. Parallel submanifolds (i.e. ∇B = 0) have parallel
mean curvature, ‖B‖ is constant, and equality to zero at (1.7). We will see
in Section 5 that (1.7) holds for example for almost complex submanifolds in
quaternionic space forms with nonnegative scalar curvature. If n = 1, (1.7)

is equivalent to
∑

j Ricci
M(Xj ,Φ(Xj)) ≥ 0, that holds for M an Einstein

manifold.

For M noncompact surface, using a criteria for parabolicity we prove
next theorem:
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Theorem 1.6. Assume F : M2 → M is a minimal complete immersed
surface with cos θ > 0, and K̄ ◦ F ≥ 0 away from a compact set of M ,
where K̄ denotes the sectional curvatures of M . If (1) or (2) below holds:

(1) M is a space form of dimension 3;

(2) QΩ(B) ≥ δ‖B‖2, cos θ ≥ τ , with τ, δ > 0 constants and (1.7) holds;

then M is a totally geodesic submanifold.

The previous theorem applied to graphs gives (simpler proofs) of the classical
Bernstein results:

Corollary 1.3. (1) [6, 10] If a smooth entire function f : R
2 → R defines a

minimal graph in R
3, then f is linear.

(2) [37] If a smooth entire function f : R
2 → R

n defines a minimal graph
in R

n+2, with ‖ ∧2 df‖ = |λ1λ2| ≤ 1 − δ, 1 ≥ δ > 0 constant, and ‖df‖
bounded (or equivalently, cos θ ≥ τ > 0), then f is a linear map.

An application of Theorem 1.5 gives the following Bernstein-type results for
graphic submanifolds:

Corollary 1.4. (3) Let f : (Mm, g1) → (Nn, h) defining a minimal graph on
M = M × N with

∫
M

tan θ ‖B‖dV < +∞. We assume (M, g1) is complete
with sectional curvature K1 and Ricci tensor Ricci1 and (Nn, h) has sectional
curvature KN satisfying: (a) for n = 1, Ricci1 ≥ 0; (b) for n ≥ 2, f ∗h <
(1−δ)g1, 1 ≥ δ > 0, and at each p ∈M and two-planes P of TpM , and P ′ of
Tf(p)N , either K1(P ) ≥ KN(P ′)+, or Ricci1(p) ≥ 0 and KN (P ′) ≤ −K1(P ).
Then f is totally geodesic. Furthermore if at some point K1(p) > 0 (or
Ricci1 > 0) then f is constant, and Γf is a slice.

For immersed hypersurfaces in the Euclidean space we have:

Corollary 1.5. Assume M is a complete minimal immersed hypersurface
of R

m+1, such that for some parallel calibration Ω of R
m+1, we have cos θ > 0

on all M (and so, M is locally a graph). If
∫
M

sin θ‖B‖dV < +∞, then M
is a linear hyperplane.

In Section 2 we derive the fundamental properties of the morphism Φ
and prove Theorem 1.2 and Corollary 1.2. In Section 3 we discuss when F
is totally geodesic, describe the formula of the Laplacian of cos θ and give
the proof of Proposition 1.3, Theorems 1.5 and 1.6, and Corollaries 1.3, 1.4
and 1.5. In Section 4 we obtain some properties of the Cheeger constant,
and prove Theorem 1.4 and Proposition 1.1. In Section 5 we specify to some
examples of submanifolds in calibrated Riemannian manifolds, namely in a
foliated space, in Kähler and quaternionic-Kähler manifolds.
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2. The morphism Φ

Given Ω a m-calibration on M , we consider the TM-valued (m − 1)-form
Ω� : ∧m−1TM

∗ → TM , ḡ(Ω�(X2 . . . , Xm), X1) = Ω(X1, . . . , Xm), where
Xi ∈ TpM . Let F : M → M be an immersed submanifold of dimen-
sion m with normal bundle NM , and Ω-angle θ. We denote by ∇, ∇
and ∇⊥ the respective covariant derivatives of M , M and NM , and by
B(X, Y ) = ∇XdF (Y ) the second fundamental form of F , defined by the
following equations for X, Y vector fields on M and U section of NM

∇XY = (∇XY )�, (∇XY )⊥ = B(X, Y ), ∇⊥
X U = (∇XU)⊥,

where (·)� and (·)⊥ are the orthogonal projections into TM and NM respec-
tively. The mean curvature is H = 1

m
traceB. We consider the morphism

Φ = ΦΩ : TM → NM defined in (1.3), Φ(X) = (Ω�(∗X))⊥. Recall the
covariant derivative and the co-differential of Φ are given by

∇XΦ(Y ) = ∇⊥
X (Φ(Y )) − Φ(∇XY ), δΦ = −

∑
i

∇Xi
Φ(Xi).

Lemma 2.1. If X ∈ TpM and U ∈ NMp are units, then |ḡ(Φ(X), U)| ≤
sin θ.

Proof . Let Xi be a direct o.n. basis of TpM with X1 = X. Consider the
function

φ(t) = Ω( εX1+tU√
1+t2

, X2, . . . , Xm) = 1√
1+t2

| cos θ| + t√
1+t2

ḡ(Φ(X), U)

where ε = ±1 s.t. ε cos θ = | cos θ|.
Since Ω is a calibration, φ(t) ≤ 1 for any t. We may assume cos θ �= 0.

At t= ḡ(Φ(X),U)
| cos θ| , φ(t)=

√
cos2 θ + ḡ(Φ(X), U)2≤1. �

Lemma 2.2. For Xi and Uα d.o.n. basis of TpM and NMp respectively, we
have

δΦ = m cos θH − ∑
α(∇UαΩ)(X1, . . . , Xm)Uα

〈∇Φ, B〉 = − cos θ Q̃Ω(B) +
∑

jk(∇Xj
Ω)(Xi, . . . , B(Xj , Xk)(k), . . . , Xm)

Proof . Let U a section of NM and Z ∈ TpM . We may assume ∇⊥U(p) =
∇Xi(p)=0. At p, g((∇ZU)�, X)=−ḡ(B(Z,X), U), ∇ZXi(p)=(∇ZXi(p))

⊥=
B(Z,Xi), and

ḡ(∇ZΦ(X1), U) = Z · ḡ(Φ(X1), U) = d(Ω(U,X2, . . . , Xm))(Z)

= ∇ZΩ(U,X2, . . . , Xm) + Ω((∇ZU), X2, . . . , Xm)

+
∑

i≥2Ω(U,X2, . . . ,∇ZXi, . . . , Xm)

= ∇ZΩ(U,X2, . . . , Xm) + Ω((∇ZU)�, X2, . . . , Xm)

+
∑

i≥2ḡ(Ω
�(X2, . . . , B(Z,Xi), . . . , Xm), U).
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That is

∇ZΦ(X1) =
∑

α∇ZΩ(Uα, X2, . . . , Xm)Uα − cos θ B(Z,X1)

+
∑

i≥2(Ω
�(X2, . . . , B(Z,Xi), . . . , Xm))⊥.

We have ∗Xk = (−1)k−1X1 ∧ . . . ∧ X̂k ∧ . . . ∧Xm. Hence,

∇ZΦ(Xk) =
∑

α(−1)k+1∇ZΩ(Uα, X1, . . . , X̂k, . . .Xm)Uα − cos θ B(Z,Xk)

+
∑

1≤i<k(−1)k+1(Ω�(X1, . . . , B(Z,Xi), . . . , X̂k, . . . , Xm))⊥

+
∑

k<i(−1)k+1(Ω�(X1, . . . , X̂k, . . . , B(Z,Xi), . . . , Xm))⊥.

Therefore,∑
k∇Xk

Φ(Xk) =
∑

α − dΩ(Uα, X1, . . . , Xm)Uα

+
∑

α(∇UαΩ)(X1, . . . , Xm)Uα − ∑
k cos θ B(Xk, Xk)

+
∑

k

∑
i<k(−1)k+i(Ω�(B(Xk, Xi), X1, . . . , X̂i, . . . , X̂k, . . . , Xm))⊥

+
∑

k

∑
k<i(−1)k+i−1(Ω�(B(Xk, Xi), X1, . . . , X̂k, . . . , X̂i, . . . , Xm))⊥.

Interchanging i by k in the later line and using the symmetry of B and that
dΩ = 0 we prove the first equality of the lemma. The computation of the sec-
ond equality is similar with 〈∇Φ, B〉 =

∑
jk ḡ(∇Xj

Φ(Xk), B(Xj , Xk)), recall-

ing the definition in (1.6), where 〈Ψ,∧2B〉=∑
i<k

∑
j〈Ψ(Xi, Xk), B(Xj, Xi)∧

B(Xj , Xk)〉. �
Proof of Theorem 1.2. Consider the vector field Z on M defined by

(2.1) g(Z,X) = ḡ(Φ(X), H) ∀X ∈ TM.

Using Lemma 2.2 we have

div(Z) = −ḡ(δΦ, H) +
∑

iḡ(Φ(Xi),∇⊥
Xi
H)

= −m cos θ ‖H‖2 + 〈∇⊥H,Φ〉 + ∇̄HΩ(X1, . . . , Xm).(2.2)

Assume Z �= 0. Take X = Z/‖Z‖ and U = Φ(X)/‖Φ(X)‖. By Lemma 2.1,
‖Φ(X)‖2 = ḡ(Φ(X), U)2≤sin2 θ. From this inequality and applying Schwartz
inequality in (2.1) we get

(2.3) ‖Z‖ ≤ sin θ ‖H‖.
If ν denotes the outward unit of ∂D, integration of (2.2) on D and (2.3)
gives ∣∣∣∣

∫
D

(−m cos θ‖H‖2 + 〈∇⊥H,Φ〉)dV +

∫
D

∇̄HΩ

∣∣∣∣
≤

∣∣∣∣
∫
∂D

〈Z, ν〉dA
∣∣∣∣ ≤

∫
∂D

sin θ ‖H‖dA
�
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Theorem 1.3 and its Corollary 1.1 are an immediate consequence of The-
orem 1.2.

Proof of Corollary 1.2. By Theorem 1.2,

m cos θ

∫
M

‖H‖2dV =

∫
M

〈∇⊥H,Φ〉dV.

We use Schwartz and a geometric-arithmetic inequality to obtain

|〈∇⊥H,Φ〉| ≤ ∑
i

∣∣ḡ(∇⊥
Xi
H,Φ(Xi))

∣∣
≤ ∑

i‖∇⊥
Xi
H‖μ sin θ ≤ √

mμ sin θ‖∇⊥H‖,

where Xi is any orthonormal basis of TpM .
If equality holds, then Φ(Xi) = αi∇⊥

Xi
H or ∇⊥

Xi
H = βiΦ(Xi), and if

∇⊥
Xi
H �= 0 we must have ‖Φ(Xi)‖ = μ sin θ, where αi, βi ∈ R. Since

μ sin θ �= 0 we must have ∇⊥
Xi
H = Φ(ψ(Xi)), ∀i. �

3. Δ cos θ

In this section we are assuming Ω is parallel and F : Mm → M
m+n

is an
immersion with cos θ > 0. We use the curvature sign convention R̄(X, Y ) =
−[∇̄X , ∇̄Y ] + ∇̄[X,Y ]. Thus, R̄(X, Y, Z,W ) = ḡ(R̄(X, Y )Z,W ).

Lemma 3.1. ∇ cos θ = B�
Φ and

Δ cos θ = − cos θ Q̃(B) +m〈∇⊥H,Φ〉 − ∑
ijR̄(Xi, Xj, Xi,Φ(Xj))

Δ log(cos θ) = −QΩ(B) + m
cos θ 〈∇⊥H,Φ〉 − 1

cos θ

∑
ijR̄(Xi, Xj, Xi,Φ(Xj))

Δ( 1
cos θ) = 1

cos θ(Q̂Ω(B) − m
cos θ 〈∇⊥H,Φ〉 + 1

cos θ

∑
ijR̄(Xi, Xj, Xi,Φ(Xj)))

where Q̂Ω(B) = QΩ(B) + 1
cos2 θ

‖BΦ‖2. Moreover,

‖∇ cos θ‖2 ≤ m sin2 θ‖B‖2 and ‖Φ‖2 ≤ m sin2 θ.

Furthermore, if n = 1, ‖Φ‖2 ≥ sin2 θ. In the later case if m = 2 and H = 0,
then

‖∇ cos θ‖2 =
1

2
‖B‖2(‖Ω‖2 − cos2 θ) =

1

2
‖B‖2‖Φ‖2.

Remark. In this lemma the expression of Δ cos θ is still valid for cos θ
with any value in R, since, at points where cos θ = 0, cos θQ̃Ω(B) means
2〈Ψ,∧2B〉.
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Proof. For a local orthonormal frame Xi, and where (j) denotes “place j”,

d cos θ(Xk) =
∑

jΩ(X1, . . . , ∇̄Xk
Xj (j), . . . , Xm)

=
∑

jΩ(X1, . . . , B(Xk, Xj)(j), . . . , Xm) +
∑

jΩ(X1, . . . ,∇Xk
Xj (j), . . . , Xm)

=
∑

jΩ(X1, . . . , B(Xk, Xj)(j), . . . , Xm) = BΦ(Xk),

where we used in the last equality 〈∇Xk
Xj , Xj〉=0, and Ω(X1, . . . , Xk(j), . . . ,

Xm) vanish for k �= j. Differentiation of the later equation at p, and using
that

∇̄Xk
B(Xk, Xj) = ∇Xk

B(Xk, Xj) − ∑
iḡ(B(Xk, Xj), B(Xk, Xi))Xi∑

k∇Xk
B(Xk, Xj) =

∑
k∇Xk

B(Xj , Xk) = m∇⊥
Xj
H − ∑

k(R̄(Xk, Xj)Xk)
⊥,

where in the latter equality we used the Codazzi’s equation for B, ∇Xk
B(Xj ,

Xk) = ∇Xj
B(Xk, Xk) − (R̄(Xk, Xj)Xk)

⊥, we have

� cos θ =
∑

k∇Xk
d cos θ(Xk)

=
∑

k

∑
s<j2Ω(X1, . . . , B(Xs, Xk)(s), . . . , B(Xj, Xk)(j), . . . , Xm)

+
∑

kjΩ(X1, . . . ,∇Xk
B(Xk, Xj)(j), . . . , Xm)−cos θḡ(B(Xk, Xj), B(Xk, Xj))

=
∑

s<j

∑
k2〈Ψ(Xs, Xj), B(Xs, Xk) ∧ B(Xj, Xk)〉 +m〈∇⊥H,Φ〉

− cos θ‖B‖2 − ∑
kjR̄(Xk, Xj, Xk,Φ(Xj)).

The lemma now follows from the expressions of Δ log cos θ and Δ( 1
cos θ

) in
terms of Δ cos θ. Next we estimate ‖∇ cos θ‖2 and ‖Φ‖. By Lemma 2.1,
‖Φ(Xk)‖ ≤ sin θ, and so ‖Φ‖2 ≤ m sin2 θ. Now, from the first equation in
this proof,

‖∇ cos θ‖2 = ‖BΦ‖2 ≤ ∑
ijk sin2 θ‖Bij‖ ‖Bik‖

≤ ∑
ijk

sin2 θ

2
(‖Bij‖2 + ‖Bik‖2) ≤ m sin2 θ ‖B‖2,

where Bij = B(Xi, Xj). Note that ‖Ω‖2 ≥ 1, because there exists a cali-
brated subspace. Consequently, if n = 1, 1 ≤ ‖Ω‖2 = cos2 θ + ‖Φ‖2 what
implies ‖Φ‖2 ≥ sin2 θ. Finally in case m = 2 and n = 1, let ν be a unit
normal to M and set Bij = ḡ(B(Xi, Xj), ν). From minimality of F

‖∇ cos θ‖2 = Ω(B(X1, X1), X2)
2 + Ω(B(X2, X1), X1)

2

+ Ω(B(X1, X2), X2)
2 + Ω(B(X2, X2), X1)

2

= B2
11Ω(ν,X2)

2 +B2
12Ω(ν,X1)

2 +B2
12Ω(ν,X2)

2 +B2
22Ω(ν,X1)

2

=
1

2
‖B‖2(Ω(ν,X2)

2 + Ω(ν,X1)
2) =

1

2
‖B‖2(‖Ω‖2 − Ω(X1, X2)

2).

�



664 G. Li and I. Salavessa

An immediate consequence from the last equality of Lemma 3.1 follows
next:

Proposition 3.1. If m = 2 and n = 1, F is minimal and cos θ is constant,
then either F is a calibrated submanifold or it is totally geodesic.

Proposition 3.2. If F is a parallel submanifold then (1.7) = 0 holds.

Proof. From proof of Lemma 3.1

∑
k∇Xk

B(Xk, Xj) = m∇Xj
H − ∑

k(R̄(Xk, Xj)Xk)
⊥.

Since ∇B = 0, then
∑

k(R̄(Xk, Xj)Xk)
⊥ = 0. �

Proof of Proposition 1.3. Since F is calibrated, F is minimal, and by
Lemma 2.1 Φ = 0. From Lemma 3.1, 0 = QΩ(B) = Q̃Ω(B), and so B = 0. �

Recall the average value of a function f on a domain D and on ∂D is
given by:

−
∫
D

fdV =
1

V (D)

∫
D

fdV, −
∫
∂D

fdA =
1

A(∂D)

∫
∂D

fdA.

Proof of Theorem 1.5. Using Lemma 3.1 we obtain the first inequality
of (1.8), and under the assumptions of the theorem we have

(3.1) Δ log cos θ ≤ −QΩ(B) ≤ −δ‖B‖2.

Thus, applying Lemmas 2.1 and 3.1, we have after integration of (3.1),

δ

∫
D

‖B‖2 ≤
∫
∂D

−g(∇ log cos θ, ν)dV ≤
∫
∂D

√
m sup

∂D
tan θ‖B‖dA

and second inequality of (1.8) is proved. If tan θ‖B‖ is integrable on M , then
so it is ∇ log cos θ, by the first inequality of (1.8). Since − log cos θ is a sub-
harmonic function by (3.1), then applying the Stokes theorem for complete
manifolds in the version given by Yau ([38] Corollary page 660), we conclude
Δ log cos θ = 0. From (3.1), this implies B = 0 on D, and (A) is proved. (B)
follows immediately. To prove (C) we use the Omori-Cheng-Yau maximum
principle. Under the assumptions, by Gauss equation RicciM is bounded
from below. If we assume infM cos θ > 0, then we take a sequence pk such
that u(pk) → supM u, ∇u(pk) → 0 and limk Δu(pk) ≤ 0 when k → +∞,
where u = log(cos θ)−1. This implies by Lemma 3.1 that QΩ(B)(xk) → 0,
and so infM ‖B‖ = 0. �
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Proof of Theorem 1.6. Recall that if a surface is parabolic, any nonneg-
ative superharmonic function is constant. By Gauss equation, the sectional
curvature of M satisfies KM = R̄(X1, X2, X1, X2) − 1

2
‖B‖2. Let C be a

compact set of M such that K̄ ◦ F ≥ 0 away from C. (1) Since M is 3-
dimensional, QΩ(B) ≥ ‖B‖2 and by Lemma 3.1, ‖∇ cos θ‖2 ≥ 1

2
‖B‖2 sin2 θ.

Again, by Lemma 3.1 and the assumptions of the theorem we have Δ cos θ ≤
− cos θ‖B‖2 and so

Δ log(1 + cos θ) =
1

(1 + cos θ)
(Δ cos θ − ‖∇ cos θ‖2

(1 + cos θ)
)

≤ 1

(1 + cos θ)
(− cos θ‖B‖2 − ‖∇ cos θ‖2

(1 + cos θ)
) ≤ 0(3.2)

We consider on M the complete metric g̃ = (1 + cos θ)pg, where we choose
p ≥ 2. This metric has sectional curvature K̃ that satisfies on M ∼ C

K̃ =
1

(1 + cos θ)p
(R̄(X1, X2, X1, X2) − 1

2
‖B‖2 − p

2
Δ log(1 + cos θ))

≥ 1

(1 + cos θ)p
(− 1

2
‖B‖2 +

p

2

1

(1 + cos θ)
(cos θ‖B‖2 +

‖∇ cos θ‖2

(1 + cos θ)
))

≥ 1

(1 + cos θ)p
(− 1

2
+
p

2

cos θ

(1 + cos θ)
+
p

4

sin2 θ

(1 + cos θ)2
)‖B‖2

=
p− 2

4(1 + cos θ)p
‖B‖2.

Note that dṼ = (1 + cos θ)pdV and so
∫
M
K̃−dṼ < +∞, where K̃− =

max{−K̃, 0}. This implies that (M, g̃) is parabolic, and so it is (M, g), since
Δ̃ = (1 + cos θ)−pΔ. From (3.2) we have cos θ constant and since cos θ > 0,

we conclude that B = 0. (2) We consider on M the metric g̃ = cos
1
δ θg. This

metric is complete because 1 ≥ cos θ ≥ τ > 0, and by Lemma 3.1 and the
assumptions on the theorem, the sectional curvature satisfies on M ∼ C,

K̃ = cos−
1
δ θ(KM − 1

2δ
Δ log cos θ) ≥ cos−

1
δ θR̄(X1, X2, X1, X2) ≥ 0

and Δ
(

1
cos θ

− 1
τ

) ≥ δ
cos θ

‖B‖2. By the same arguments as in (1), B = 0. �

Proof of Corollaries 1.3 and 1.4. First we note that the graph Γf of a
map f : (M, g1) → (N, h) defines a complete submanifold of (M ×N, g1×h)
provided (M, g1) is complete. We are considering Ω the volume calibration.
(1) is a result of Theorem 1.6(1), since graphs satisfy cos θ > 0. (2) is a con-
sequence of Theorem 1.6(2), because the eigenvalues of f ∗h satisfy |λ1λ2| ≤
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1− δ, what implies QΩ(B) ≥ δ‖B‖2 and cos θ ≥ τ = (1 +C + (1− δ)2)−1/2,
where ‖df‖2 ≤ C (see Subsection 5.1). To prove (3) we use Theorem 1.5 (A).
Since λ2

i ≤ 1 − δ (case n ≥ 2), QΩ is δ-positive. Now we only have to
check that (1.7) holds. Using Xi and Xm+α suitable orthonormal frames of
(TM, g = g1 + f ∗h) and of (NM, ḡ) respectively (see Section 5), we have∑

i	=j
R̄ (Xi, Xj, Xi,Φ(Xj)) =

= cos θ
∑
i	=j

λ2
j

(1 + λ2
i )(1 + λ2

j)

(
RM

1 (ai, aj, ai, aj)(3.3)

− λ2
iR

N (ai+m, aj+m, ai+m, aj+m)
)

= cos θ
∑
j

∑
i	=j

( λ2
j

(1 + λ2
j)
K1(ai, aj)

− λ2
iλ

2
j

(1 + λ2
i )(1 + λ2

j)
(K1(ai, aj) +KN(ai+m, aj+m))

)

= cos θ
(∑

j

λ2
j

(1 + λ2
j )
Ricci1(ajaj)(3.4)

−
∑
j 	=i

λ2
iλ

2
j

(1 + λ2
i )(1 + λ2

j)
(K1(ai, aj) +KN(ai+m, aj+m))

)

If n = 1, λi = 0 for i ≥ 2 and the last term of (3.4) disappears. For
n ≥ 2, if we assume at each point p ∈ M and two-planes P of TpM and
P ′ of Tf(p)N , K1(P ) ≥ KN(P ′)+ = max{KN(P ′), 0} (or Ricci1(p) ≥ 0 and,
KN(P ′) ≤ −K1(P ) respectively) then we get∑

i	=j
R̄(Xi, Xj, Xi,Φ(Xj)) ≥ 0

from (3.3) (from (3.4) respectively). This implies by Theorem 1.5, that Γf
is a totally geodesic submanifold of M , on therefore f : (M, g1) → (N, h) is
also totally geodesic (see [30] or [25, 32]), and so we have equality to zero
in all above equalities (see Proposition 3.2). In this case all λi are constant.
Moreover if at some pointK1(p) > 0 (or Ricci1 > 0 respectively) then λj = 0
for all j, and f is constant. �

Proof of corollary 1.5. We have cos θ > 0, Q̃Ω(B) = QΩ(B) ≥ ‖B‖2

and (1.7) holds as well. In this case we use a modified version of the proof of
Theorem 1.5 (A), by considering Δ cos θ = − cos θQ̃Ω(B) ≤ 0. Integrability
of ‖∇ cos θ‖ ≤ sin θ‖B‖ implies Δ cos θ = 0, and so ‖B‖ = 0, that is M is a
hyperplane. �
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4. The Cheeger constant of a submanifold

In this section we estimate the Cheeger constant (1.1) of a Riemannian
manifold (M, g). If ∂M �= ∅ then D satisfies ∂D ∩ ∂M = ∅. If M closed we
may let D = M .

Proposition 4.1. [39] If M is complete simply connected and the sectional
curvature satisfies KM ≤ −K, K a positive constant, then

h(M) ≥ (m− 1)
√
K.

The proof is based on the use of the comparison theorem to obtain Δr ≥
(m− 1)

√
K where r is the distance function to a point, and integration on

a domain D.

Proposition 4.2. If M is complete and RicciM ≥ 0 then h(M) = 0.

Proof . If we assume the Ricci curvature of M satisfies RicciM ≥ 0, follow-
ing [3] for m = 2, by a result due to Cheng [8] the first eigenvalue of the
Dirichlet problem on a geodesic ball Br(p) is less than or equal to the first
eigenvalue of a geodesic ball of the same radius of R

m, that is C1/r
2 for some

constant C1 > 0 that does not depend on r. Therefore λ1(Br(p)) ≤ C1/r
2,

for 0 < r < +∞. By a well known inequality due to Cheeger (Theorem 3
p. 95 in [7]), we get h2(M) ≤ h2(Br(p)) ≤ 4λ1(Br(p)) ≤ 4C1

r2
. This implies

for M complete that h(M) = 0. �
Given a smooth function f : M → R and a regular value of |f |, t ∈ R|f |,

the sets

D+
f (t) = {p ∈M : |f(p)| ≥ t}, D−

f (t) = {p ∈M : |f(p)| ≤ t},
Σf(t) = {p ∈M : |f(p)| = t}

define smooth submanifolds with ∂D±
f (t) = Σf (t). Set V±(t) = V (D±

f (t))
and A(t) = A(Σf (t)). Then V±(t) are smooth on R|f | and the co-area
formula (see e.g. [7]) states that for any nonnegative mensurable function h
(or h ∈ L1(M)),

∫
M

h‖∇f‖dV =

∫ +∞

0

dt

∫
Σf (t)

h dA(t).

Applying the co-area formula to h = ‖∇f‖−1XA, with A = D∓
f (s) for s

regular value, where XA is the characteristic function of a set A, one obtains

V∓′(s) = ±
∫

Σf (s)

‖∇f‖−1dA(s).
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Lemma 4.1. If D∓
f (s) is compact for s < sup |f | (s > inf |f | resp.), then

h(M) ≤ ±
−∫
D∓

f (s)
‖∇f‖dV

s−−∫
D∓

f (s)
|f |dV .

Proof. Using the co-area formulas for f restricted to the interior of D−
f (s)

(at regular values s), and that h(M) ≤ A(t)/V−(t), ∀t < s, we have

∫
D−

f (s)

‖∇f‖dV =

∫ s

0

A(t)dt ≥
∫ s

0

h(M)V−(t)dt

= h(M)(tV−(t)]
s

0
−

∫ s

0

tV ′
−(t))

= h(M)(sV−(s) −
∫ s

0

∫
Σf (t)

|f(x)|‖∇f‖−1dA(t)dt)

= h(M)(sV−(s) −
∫
D−

f (s)

|f(x)|dV )

where in the last equality we use the co-area formula for h = |f |
‖∇f‖ . Similarly

for D+
f (s). Note that the functions

s−−
∫
D−

f (s)

|f |dV =

∫ s

0

V−(t)dt and − s+ −
∫
D+

f (s)

|f |dV =

∫ t+

s

V+(t)dt,

where t+ = supM |f |, are increasing on s. �

Corollary 4.1. The Cheeger constant of M vanish if there exist a smooth
function f such that D−

f (s) is compact ∀s < supM |f | = +∞, and for some

constants 0 < α, δ < 1, we have −∫
D−

f (s)
‖∇f‖dV ≤ sα, and −∫

D−
f (s)

|f | ≤
(1 − δ)s, when s→ +∞.

Let r be the distance function to a point p. Recalling that ‖∇r‖ = 1, we
have

Corollary 4.2. If r2 is smooth for r < s, then

h(M) ≤ −
∫

Bs(p)

2rdV
/(
s2 −−

∫
Bs(p)

r2dV
)
.

In particular, if −∫
Bs(p)

r2dV ≤ (1 − δ)s2, where 0 < δ < 1 is a constant,

(M, g) is complete, and r2 smooth on M , then h(M) = 0.
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Note that in the previous corollary,

−
∫
Bs(p)

rdV ≤
(
−
∫
Bs(p)

r2dV
)1/2

≤
√

(1 − δ)s,

and D−
f (s2) = Bs(p). Thus, if h(M) �= 0, then lims→+∞ 1

s2
−∫
Bs(p)

r2dV = 1. If

M = R
m, in corollary 4.2 we may take δ = m

2+m
.

If M is a submanifold of a (m + n)-dimensional Riemannian manifold
(M, ḡ) we can also estimate the Cheeger constant of M under certain con-
ditions. Recall ([29, 28]) that a vector field X̄ on M is strongly convex on a
open set U of M if

LX̄ ḡ ≥ 2αḡ

where α > 0 is a constant. Examples of such vector fields are 1
2∇̄r̄2 = r ∂

∂r

on a geodesic ball of M of radius R and center p̄ that does not intercept
the cut locus at p̄ and

√
κR < π/2 where κ = max{0, supBR(p̄) K̄} and K̄

are the sectional curvatures of M . A strictly convex function f on M with
Hess f ≥ αḡ defines a strongly convex vector field ∇f . Positive homothetic
no-Killing vector fields are strongly convex. In R

m+n the position vector field
X̄x = x is such an example. If F : M → M is an immersed submanifold
let XF denote the vector field X along F .

Lemma 4.2. If M carries a strongly convex vector field X̄ on a neighbour-
hood of an immersion F : M → M then

(
sup
M

‖X̄F‖
)−1 ≤ 1

α
(

1

m
h(M) + sup

M
‖H‖).

In particular if M is minimal and has zero Cheeger constant then X̄F is
unbounded.

Proof. By an elementary computation (see [21] or [29]) for any immersion F

m ḡ(H, X̄F ) = divg(X̄
T
F ) − 1

2 trg LX̄ ḡ

where X̄T
F is the projection of X̄F onto TM . Integration on a domain D

gives

αmV (D) ≤
∫
∂D

g(X̄T
F , ν)dA−

∫
D

m ḡ(H, X̄F )dV

≤ sup
D

‖X̄F‖(A(∂D) +

∫
D

m ‖H‖dV )

where ν is a unit normal to ∂D. Thus(
sup
D

‖X̄F‖
)−1 ≤ 1

α
( 1

m

A(∂D)

V (D)
+ −

∫
D

‖H‖dV ),

with −∫
D
‖H‖dV ≤ supM‖H‖. Taking the infimum on D we obtain the

proposition. �
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Corollary 4.3. If F : M → R
n+m is a minimal immersion with zero

Cheeger constant, then F is unbounded.

Proof of Theorem 1.4. Using Theorem 1.3, on each ball Br(p), and for

any domain D ⊂ Br(p), ‖H‖ ≤ 1
m

(infBr(p) cos θ)−1A(∂D)
V (D)

, and so, taking the

infimum for D ⊂ Br(p), m‖H‖ ≤ (infBr(p) cos θ)−1h(Br(p)). By assumption
of the theorem infBr(p) cos θ ≥ Cr−β, and (1.4) leads to ‖H‖ ≤ Crβ−1 for
some constant C > 0 that does not depend on r. Thus, letting r → +∞ we
obtain ‖H‖ = 0, and theorem 1.4 is proved. �

Proposition 1.1 is an immediate consequence of Proposition 4.2 and The-
orem 1.1.

If under certain conditions we have Δ cos θ ≤ 0, (as in Theorem 1.5)
and θ is not constant, by the maximum principle, for any regular value of
cos θ, D−(ε) = {p : cos θ ≤ ε} cannot be a compact domain. Next we
assume for ε > 0, the set D+(ε) = {p : cos θ ≥ ε} to be compact. The next
proposition is an attempt to understand what happens if one replaces the
assumption Q(B) ≥ δ‖B‖2 by the weaker condition Q(B) ≥ 0. .

Proposition 4.3. Assume cos θ > 0, and D+(ε) is compact ∀ε ∈ (0, 1].
Then:

(a) If there exists constants α, δ ∈ (0, 1) such that

−
∫
D+(ε)

(cos θ)−1dV ≤ (1−δ)1
ε

and −
∫
D+(ε)

sin θ cos θ−2‖B‖ ≤ (
1

ε
)α, for ε→ 0,

then h(M) = 0.

(b) If M is immersed with parallel mean curvature,

QΩ(B) + (cos θ)−2‖BΦ‖2 ≥ 0

and (1.7) holds, and for some constant α > 1,

∫
M

(cos θ)−(α+2) sin θ‖R̄‖dV < +∞,

then

either

∫
M

(cos θ)−(α+4)‖B‖2dV = +∞, or M is compact.

Proof. By Lemma 3.1, f = 1/ cos θ in (a) satisfies −∫
D+(ε)

‖∇f‖ ≤ (1
ε
)α,

and in (b) Δf ≥ 0 and f > 0. Then (a) follows from Corollary 4.1. Now
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we prove (b). For each s fixed we consider the compact sets D−
f (s) and

Σf (s) and follow close the proof in [26, Lemma 7.1] replacing r by f . We
take a cut off function φ(f) : M → R

+
0 where φ : R

+
0 → [0, 2] is a smooth

nonnegative bounded function satisfying φ(t) = 1 if t ≤ s, φ(t) = 0 if t ≥ 2s,
and (φ′)2 ≤ Cs−2 and |φ′′| ≤ Cs−2, C > 0 a constant that does not depend
on s (see for example, [26, Lemmas 7.1 and 6.1] and [38, p. 661]). Assume
2s ∈ Rf . Then integrating Δ(φ2(f)fα−1f) on D−

f (2s), applying Stokes and
using that Δfα−1 ≥ 0 we have

0 ≤
∫
D−

f (2s)

φ2(f)fα−1Δf dV

≤
∫
D−

f (2s)

−(2φ(f)Δ(φ(f)) + 2‖∇(φ(f))‖2)fαdV

−
∫
D−

f (2s)

(
4(α− 1)φ(f)〈∇(φ(f)),∇f〉fα−1 + 2〈∇(φ2(f)fα−1),∇f〉

)
dV.

Hence,

2

∫
D−

f (2s)

φ2(f)(α− 1)fα−2‖∇f‖2 ≤

≤
∫
D−

f (2s)

−2φ(f)(φ′′(f)‖∇f‖2 + φ′(f)Δf)fαdV

−
∫
D−

f (2s)

2
(‖∇(φ(f))‖2fα + 2(α− 1)φ(f)〈∇(φ(f)),∇f〉fα−1

)
dV

− 4

∫
D−

f (2s)

φ(f)〈∇(φ(f)),∇f〉fα−1 dV

≤
∫
D−

f (2s)

C̃

s2
‖∇f‖2fα +

C̃

s
Δf fα + (α− 1)

C̃

s
fα−1‖∇f‖2

+

∫
D−

f (2s)

−4φ(f)fα−1〈∇(φ(f)),∇f〉,

where C̃ > 0 denotes a constant that does not depend on s. On the other
hand

−4φ(f)fα−1〈∇(φ(f)),∇f〉 = −4〈f α
2 ∇(φ(f)), f

α−2
2 φ(f)∇f〉

≤ 2( 2

(α− 1)
‖∇(φ(f))‖2fα +

(α− 1)

2
fα−2φ(f)2‖∇f‖2).
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This implies
∫
D−

f (s)

(α− 1)fα−2‖∇f‖2dV ≤
∫
D−

f (2s)

(α− 1)φ2(f) fα−2‖∇f‖2dV

≤
∫
D−

f (2s)

( C̃
s2
‖∇f‖2fα +

C̃

s
Δf fα)dV

+

∫
D−

f (2s)

((α− 1)fα−1 C̃

s
‖∇f‖2 +

4

(α− 1)

C̃

s2
‖∇f‖2fα)dV.

Assuming ‖B‖2

cos4+α θ
integrable onM , by Lemma 3.1 ‖∇f‖2fα, and so ‖∇f‖2fα−1,

are integrable, and under the condition of integrability of sin θ
cosα+2 θ

‖R̄‖ we ob-
tain the integrability of Δf fα. Making s→ +∞, from the above inequality
we have∫

M

(α− 1)fα−2‖∇f‖2dV = lim
s→+∞

∫
D−

f (s)

(α− 1)fα−2‖∇f‖2dV = 0

and f is constant, what is impossible unless M is compact. �

5. Some calibrations

5.1. The volume calibration

We consider in a Riemannain product M = M × N of two Riemannian
manifolds (M, g1) and (N, h) the volume calibration (1.2), and M a graph
submanifold F = Γf : M →M ×N of a map f : M → N . The graph metric
on M is the induced metric g = g1+f ∗h by the graph map Γf (p) = (p, f(p)).
We take ai a diagonalizing g1-orthonormal basis of f ∗h with eigenvalues
λ2

1 ≥ λ2
2 ≥ · · · ≥ λ2

m ≥ 0. Let k such that λ2
k > 0 and λ2

k+1 = 0, and consider
the orthonormal system of Tf(p)N , a1+m, . . . a1+k defined by df(ai) = λiai+m,
and extend to an orthonormal basis a1+m, . . . , an+m. Then for i = 1, . . . , m,
α = 1, . . . , n (where λα = 0 for α ≥ k + 1)

Xi =
dΓf(ai)√

1 + λ2
i

=
ai + λiai+m√

1 + λ2
i

, Xm+α =
λαaα − aα+m√

1 + λ2
α

define respectively an orthonormal basis of (T(p,f(p))Γf , g) and of (NMp, ḡ).
The sign of λi can be chosen such that Xi is a direct basis of Γf . Then
considering Φ as a morphism from T(p,f(p))Γf to NMp we have

Φ(Xi) = cos θλiXi+m, cos θ = (Πj(1 + λ2
j))

−1/2
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and as a morphism from TM , Φ(ai) = cos θ((df tdf(ai),−df(ai)), where df t

is the adjoint map. For B =
∑

ija h
a
ijXa, a = m+ 1, . . . , m+ n we have

‖B‖2 ≥ ∑
ijk(h

m+j
ik )2 =

∑
i<j,k[(h

m+j
ik )2 + (hm+i

jk )2] +
∑

ik(h
m+i
ik )2.

If n = 1, QΩ(B) ≥ ‖B‖2. For n ≥ 2 if we assume |λiλj | ≤ 1 − δ for i �= j,
where 0 < δ ≤ 1, the quadratic form QΩ(B) is also δ-positive. Indeed, we
have ([37])

QΩ(B) = ‖B‖2 +
∑

ikλ
2
i (h

m+i
ik )2 + 2

∑
k,i<jλiλjh

m+i
jk hm+j

ik

= δ‖B‖2 + (1 − δ)‖B‖2 +
∑

ikλ
2
i (h

m+i
ik )2 + 2

∑
k,i<jλiλjh

m+i
jk hm+j

ik

≥ δ‖B‖2 + (1 − δ)(∑
i<j,k[(h

m+j
ik )2 + (hm+i

jk )2] +
∑

ik(h
m+i
ik )2)

− (1 − δ)
∑

ik(h
m+i
ik )2 − 2(1 − δ)

∑
i<j,k|hm+j

ik | |hm+i
jk | ≥ δ‖B‖2

Moreover, cos2 θ (
∑

iλ
2
i ) ≤ sin2 θ ≤ (m− 1) cos2 θ (

∑
iλ

2
i ), for

sin2 θ = 1− cos2 θ = cos2 θ(Πi(1 +λ2
i )− 1) = cos2 θ(

∑
iλ

2
i +

∑
i<jλ

2
iλ

2
j + . . .).

We denote by ∇df the Hessian of f : (M, g1) → (N, h). Let gij = g(ai, aj) =
δij(1 + λ2

i ) and consider the section W of f−1TN and the vector field Z1

of M :

W = traceg∇df =
∑

ijg
ij∇df(ai, aj), Z1 =

∑
stg

sth(W, df(as))at.

Then (see [30]) mH = (−Z1,W − df(Z1)). Assuming H is parallel with
c = ‖H‖, the vector field Z we used in the proof of Theorem 1.2 can be
expressed as Z = − cos θ

m
Z1. We have the relations ‖Z1‖g1 ≤ mc, divg1(Z1) =

m2c2, ‖Z‖g ≤ | sin θ|c, divg(Z) = −mc2 cos θ. Integration on D of divg1(Z1)
gives Theorem 1.1.

5.2. The foliation calibration

Assume π : M → N is a transversally oriented m-foliation of an oriented

Riemannian manifold (M
m+n

, ḡ) onto a set N with M = ∪y∈NMy, where
the leaf at y, My = π−1(y), is an oriented m-submanifold, and such that for

each x ∈ M , we have a split TxM = TxM
v ⊕ TxM

h
where the vertical space

TxM
v

= Tx(Mπ(x)) is orthogonal to the horizontal space TxM
h
, defining

smooth oriented vector subbundles of TM . If N is a smooth n-manifold, π

is a fibration if ∀x, Kern dπ(x) = TxM
v

and dπ(x) : TxM
h → Tπ(x)N is an

isomorphism, and it is Riemannian if N has a metric h such that dπ(x) is
an isometry for any x. We define for Xi vector fields of M

Ω(X1, . . . , Xm) = V olπ(x)(X
v
1 , . . . , X

v
m)
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where V olπ(x) is the volume element of the leaf at p = π(x). Let ea, a =
1, . . . , m+n, be a local orthonormal frame ofM with ei, i = 1, . . . , m, vertical
and eα, α = m+1, . . . , m+n, horizontal. We denote by Bv

x(ej, ei) = (∇̄ej
ei)

h

the second fundamental form of the leaf Mπ(x) and Hv
x the mean curvature

at x. We assume ei is a direct basis of the leaf. Now we have

∇̄eaΩ(eα, e1, ..., êi, ..., em)=−Ω(∇̄eaeα, e1, ..., êi, ..., em)=(−1)iḡ(∇̄eaeα, ei).
From this equality and other similar ones, follows the following lemma:

Lemma 5.1. All components of ∇̄Ω and of dΩ vanish except for the follow-
ing where i, j ≤ m, α, β ≥ m+ 1

∇̄ej
Ω (eα, e1, . . . , êi, . . . , em) = (−1)i+1ḡ(Bv(ej , ei), eα)

∇̄eβ
Ω (eα, e1, . . . , êi, . . . , em) = (−1)iḡ(∇̄eβ

eα, ei)

dΩ (eα, e1, . . . , em) = −m ḡ(Hv, eα)

dΩ (eα, eβ, e1, . . . , êi, . . . , em) = (−1)iḡ([eα, eβ], ei)

So, dΩ = 0 iff Hv = 0 and [TM
h
, TM

h
] ⊂ TM

h
, and ∇̄Ω = 0 iff Bv = 0

and (∇̄
TM

hTM
h
)v = 0. Therefore, we can conclude:

Proposition 5.1. Ω is a calibration in M , that is dΩ = 0, if and only
if the leaves are minimal and the horizontal subspace defines an integrable

distribution TM
h

of rank n. In this case Ω calibrates the leaves and conse-
quently they are stable minimal submanifolds. It defines a parallel calibration

if and only if the leaves and the integral submanifolds of TM
h

are all totally
geodesic.

Corollary 5.1. If n = 1 and π defines a foliation of M by minimal hyper-
surfaces, then Ω defines a closed calibration and the leaves are stable. Ω is a
parallel calibration if and only if the leaves are totally geodesic and the unit
normal X̄ to the leaves satisfies ∇̄X̄X̄ = 0. This is the case when for some
function f : M → R, Ȳ = fX̄ defines a nondegenerated Killing vector field
with f constant along each leaf.

Proof. We only have to prove the last statement. From integrability of the
leaves, one easily sees that

0 = ḡ([ei, ej], Ȳ ) = 2ḡ(ei, ∇̄ej
Ȳ ) = −2ḡ(Bv(ei, ej), Ȳ ).

Moreover, f ḡ(∇̄X̄X̄, ei) = −ḡ(∇̄ei
Ȳ , X̄) = −df(ei). �

If n = 1 the mean curvature and the second fundamental form of the
leaves have been studied by Barbosa, Kenmotsu, Oshikiri, Bessa and Mon-
tenegro in [5, 4], for the general case Ω closed. The above Corollary 5.1,
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using the fact Ω is a closed calibration, gives an elementary proof of the
stability of the leaves (see introduction) proved in [4] using more classical
stability arguments involving eigenvalue problems and maximum principles.

Corollary 5.2. Let (N, h) be a Riemannian manifold and G a Lie group
and N ′ ⊂ G a subset that acts transitively and freely on N as a group of
isometries, and f : M → N a smooth map defining a minimal graph Γf of
M × N . If the orbit (IdM × N ′)NM of the normal bundle of Γf defines
an integrable distribution of M × N , then Γf is stable. Furthermore, if
G = N = N ′, and g = TeG, e the identity element, then the later condition
is equivalent to ψ = −df t : g → C∞(TM) is a Lie algebra homomorphism.
In particular all minimal graphs in M × R are stable.

Proof. This argument is used in [4] for N = G = R to construct a fo-
liation in M × N . Let af(p) = La(f(p)), where a ∈ N ′ ⊂ G acts on
the left of N , and a on TyN acts as (La)∗y. Since the action is free and
transitive then M × N = ∪a∈GΓaf is a foliation, and since each a is an
isometry, Γaf is a minimal submanifold. Now, the normal bundle of Γaf is
just given by (Id × (La)∗)(NM) = {(−df tp(Y ), (La)∗f(p)Y ) : Y ∈ Tf(p)N},
and we get the integrability condition on the orbit. If G = N = N ′, this
means {(−df tp(Ỹf(p)), Ỹy), Ỹ ∈ g, y ∈ G, p ∈M} is an integrable distribution,

where Ỹy = (Ly)∗e(Ỹe). We easily see this is equivalent to [ψ(X̃), ψ(Ỹ )]M =
ψ([X̃, Ỹ ]), where ψ(X̃) defines a vector field on M , that at p ∈ M values
−df tp(X̃f(p)). �
Remark. In the previous corollary, if m = n, M = R

n and f = ∇φ
where φ : R

n → R is a smooth function, defining a minimal Lagrangian
graph in R

n × R
n, then ψ(∂i) = Hess φ�(∂i). The stability condition means

D3φ(Hess φ�(∂i), ∂j , ∂k) = D3φ(Hess φ�(∂j), ∂i, ∂k). This seems to be quite
different from the condition of special Lagrangian graphs. Minimal La-
grangian graphs are calibrated by the special Lagrangian calibration ([17]),
and may not satisfy the above condition, that is related to a different cali-
bration.

Corollary 5.3. Any minimal submanifold Mm of R
m+n, with n = 1, is

locally stable and locally a calibrated submanifold. The same also holds for
n ≥ 2 if for a local representation as a graph of a map f : R

m → R
n,

ψ = −df t : R
n → C∞(TR

m) is a Lie algebra homomorphism.

Proof. Let p ∈ M and D a compact neighbourhood of p where it is de-
fined να, an orthonormal frame of NM defined on D. We identify L = TpM
with R

m. Now dπL(p) is the identity map of TpM where πL(q) = q −∑
α ḡ(q, να(p))να(p) and we may assume πL is a diffeomorphism. Thus, D

is the graph of a map f : R
m → R

n. �
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Next we generalize the main result of [5] (Proposition 2.14) for any codi-

mension. We assume TM
h

is an integrable distribution and consider the
maximal horizontal integrable n-submanifold Σ passing at a given pont
x ∈ M , with second fundamental form Bh

x(eα, eβ) = (∇̄eαeβ)
v, and mean

curvature Hh
x = 1

n

∑
αB

h
x(eα, eα). Let sv be the scalar curvatures of the

leaves and sh the ones of the horizontal integrable submanifolds, and Ricci
and s̄ the Ricci tensor and scalar curvature of M , respectively. Hh defines
a vertical vector field of M , and consider its divergence in a fiber and in M
respectively:

div(Hh) =
∑
i

ḡ(∇̄ei
Hh, ei), div(Hh) =

∑
a

ḡ(∇̄eaH
h, ea)

Similarly for the horizontal vector field Hv we may take its divergence along
an horizontal integrable submanifold Σ, divΣ(Hv) =

∑
α ḡ(∇̄eαH

v, eα).

Lemma 5.2. Assuming TM
h

is an integrable distribution

div(Hh) = div(Hh) − n‖Hh‖2

div(Hv) = divΣ(Hv) −m‖Hv‖2

n div(Hh) +mdivΣ(Hv) =
∑

iRicci(ei, ei) − sv +m2‖Hv‖2 + ‖Bh‖2

=
∑

αRicci(eα, eα) − sh + n2‖Hh‖2 + ‖Bv‖2.

2n div(Hh) + 2mdivΣ(Hv) =

= s̄− sv − sh +m2‖Hv‖2 + n2‖Hh‖2 + ‖Bh‖2 + ‖Bv‖2.

Proof. We may assume at a point x, (∇̄eaei(x))
v = (∇̄eaeα(x))

h = 0,
∀a, i, α. The first two equalities are obtained by an elementary computation.
At x

n div(Hh) =
∑

i,αḡ(∇̄ei
(∇̄eαeα)

v), ei) =
∑

i,αd(ḡ((∇̄eαeα)
v, ei))(ei)

=
∑

i,αd(ḡ(∇̄eαeα, ei))(ei) =
∑

i,αḡ(∇̄ei
∇̄eαeα, ei)

= ḡ( R̄(eα, ei)eα + ∇̄eα∇̄ei
eα + ∇̄[ei,eα]eα , ei ).

and ∑
iḡ(∇̄eα∇̄ei

eα, ei) =
∑

i − ∇̄eα(ḡ(eα, ∇̄ei
ei)) = −ḡ(eα, m∇̄eαH

v)

ḡ(∇̄∇eieαeα , ei ) =
∑

j ḡ(∇̄ej
eα , ei )ḡ(∇̄ei

eα , ej )

ḡ(∇̄∇eαei
eα , ei ) =

∑
β ḡ(∇̄eβ

eα , ei )ḡ(∇̄eαei , eβ )

leading to
∑

i,αḡ(∇̄[ei,eα]eα , ei ) = ‖Bh‖2 + ‖Bv‖2, and consequently,

n div(Hh) =
∑

α,iR̄(eα, ei, eα, ei) + ‖Bh‖2 + ‖Bv‖2 −mdivΣ(Hv).
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Now
∑

iα R̄(eα, ei, eα, ei) =
∑

iRicci(ei, ei) −
∑

ij R̄(ej, ei, ej , ei) and using
Gauss equation with respect to a leaf, we obtain the first expression for
n div(Hh). Writing

∑
iα R̄(eα, ei, eα, ei) =

∑
αRicci(eα, eα) −

∑
αβ R̄(eα, eβ,

eα, eβ) and applying Gauss equations with respect to Σ we get the second
expression for n div(Hh). Summing the previous two expressions we obtain
the last one. �

Proposition 5.2. Assume M is closed, TM
h

is an integrable distribution
and Hv is a divergence free vector field along each horizontal integral sub-
manifold. Then Hv = 0, i.e. the leaves are minimal and dΩ = 0. Further-
more:

(1) If Hh is also a divergence free vector field along each leaf, the horizontal
integral submanifolds are minimal as well.

(2) If Ricci ≥ 0 and sv ≤ 0 for all the leaves, the horizontal integrable sub-
manifolds are totally geodesic and Ricci vanish in the direction of all leaves
and sv = 0.

(3) If Ricci ≥ 0 and sh ≤ 0 for all horizontal integral submanifolds Σ, then
they are minimal and the leaves of π are totally geodesic and Ricci vanish
in the direction of all horizontal vector fields and sh = 0.

(4) If s̄ ≥ 0 and sv + sh ≤ 0, all the leaves and the horizontal integrable
submanifolds are totally geodesic, and s̄ = sv + sh = 0.

Consequently, if s̄ ≥ 0 (Ricci ≥ 0 resp.) and s̄ > 0 (Ricci > 0 resp.) at
some point x, then either the leaf Mπ(x) or (and resp.) the horizontal in-
tegral submanifold at some y ∈ π−1(x) must have positive scalar curvature
somewhere. In particular, in the later case, n ≥ 2.

Proof. If divΣ(Hv) = 0 for each Σ, integration of div(Hv) on M of the
second formula of previous lemma gives Hv = 0. Similarly for (1), using the
first formula. To prove (2) (3) and (4) we integrate the last three formulas
of Lemma 5.2, with Hv = 0, along each leaf Mπ(x), that is compact. �

If n = 1 and Hv is constant, with the same constant for all fibers, then Hv

is a divergence free vector along each horizontal integral submanifold, giving
the case in [5].

5.3. The Kähler calibration

On a Kähler manifold (M,J, ḡ) with Kähler form w(X, Y ) = g(JX, Y ) it

is defined the Kähler calibration Ω = wk

k!
, that calibrates the complex sub-

manifolds of complex dimension k. If θ1, . . . , θk are the Kähler angles of M ,
cos θ1 ≥ · · · ≥ cos θk ≥ 0 and ea = Xi, Yi a diagonalizing o.n basis of F ∗w,
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that is F ∗w(Xi, Xj) = F ∗w(Yi, Yj) = 0, F ∗w(Xi, Yj) = cos θiδij, then

cos θ = ε cos θ1 · · · cos θk, ε = ±1

and Φ(Xi) = −ε cos θ(J( Yi

cos θi
))⊥, Φ(Yi) = ε cos θ(J( Xi

cos θi
))⊥. A submanifold

M is said to have equal Kähler angles, if ε = 1 and θi = ϑ ∀i (see [34]). It
is a complex (resp. Lagrangian) submanifold iff cosϑ = 1 (resp. cosϑ = 0).
We assume M and M are of real and complex dimension 4 respectively
and M has equal Kähler angles. We recall that (F ∗w)� : TM → TM and
Φ : TM → NM (with respect to the Kähler calibration) are conformal mor-
phisms with coefficient of conformality cos2 ϑ and sin2 ϑ cos2 ϑ, respectively.
Note that Φ = −Φ′◦(F ∗w)� with Φ′(X) = (JX)⊥, given in [34, 33]. We have
‖Φ′(X)‖2 = sin2 ϑ‖X‖2. We can write (F ∗w)� = cos ϑJw where Jw is the
almost complex structure of M , defined where cosϑ �= 0 by Jw(Xi) = Yi.
Similarly we get a polar decomposition for w⊥ = cos ϑJ⊥, the restriction
of w to the normal bundle. The orthonormal frame of the normal bundle
Ui = Φ′( Yi

sinϑ
), Vi = J⊥Ui = Φ′( Xi

sinϑ
) diagonalizes w⊥. We have

Ω(Xi, Yj, Uk, Vs) = (cos2 ϑ+ sin2 ϑδik)δijδks
Ω(X1, X2, V1, V2) = Ω(Y1, Y2, U1, U2) = − sin2 ϑ

and all the other components of Ω in this basis vanish. Then it follows the
condition Q̃Ω(B) ≥ δ‖B‖2 is very restrictive. Consider the complex and
anticomplex parts of B with respect the almost complex structures Jw of
TM and J⊥ of NM :

Bc(X, Y ) = 1
2(B(X, Y ) − J⊥B(JwX, Y )),

Ba(X, Y ) = 1
2(B(X, Y ) + J⊥B(JwX, Y )).

Then Q̃(B)=‖B‖2 + (cos θ)−1(‖Ba‖2 − ‖Bc‖2) + ρ, where

|ρ| ≤ 4 sin2 ϑ
cos θ

∑
a<b,c‖B(ea, ec)‖ ‖B(eb, ec)‖ ≤ 12 sin2 ϑ

cos θ ‖B‖2.

Using this upper bound, for cos θ ∈ (11
13 , 11

12 ], if

(5.1) ‖Ba‖2 ≥ (13−cos θ(13−δ))
(−11+cos θ(13−δ))‖Bc‖2, with 0 ≤ δ < 13 cos θ−11

cos θ ≤ 1

we have Q̃(B) ≥ δ‖B‖2. Note that if M is a complex submanifold, Jw =
J⊥ = J , sin ϑ = 0, B is a complex bilinear form, and Q̃(B) = 0. So, cali-
brated submanifolds may not be totally geodesic. Theorem 1.5(A) gives (3)
of next proposition
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Proposition 5.3. Let F : M2k → M
2k

be a 2k-submanifold immersed with
parallel mean curvature H and with equal Kähler angles into a Kähler man-
ifold of complex dimension 2k and scalar curvature s̄.

(1) [34] Assume H = 0 and M is Einstein. If k = 2 and s̄ �= 0, then F
is either a complex or a Lagrangian submanifold. If k ≥ 3, s̄ < 0, and M
closed, then F is either complex or Lagrangian. If k ≥ 3, s̄ = 0, and M
closed, then θ is constant.

(2) [31] If k = 2, s̄ < 0, M closed and ‖H‖2 ≥ −(s̄/8) sin2 ϑ, then F is
either a complex or a Lagrangian submanifold.

(3) If k = 2, cos θ > 0, (1.7) holds and (5.1) is satisfied for some δ and
cos θ ∈ (11

13 , 11
12 ], and M is closed, then F is totally geodesic.

If M is a complex space form of sectional holomorphic curvature ν then for
U ∈ NM ,

R̄(ea, eb, ea, U) =
3ν

4
w(ea, eb)ḡ(Φ

′(ea), U),

and ∑
abR̄(ea, eb, ea,Φ

′(eb)) =
3kν

2
cos2 ϑ sin2 ϑ.

Note that ν has the same sign has s̄, but for k = 2 and ν > 0 (5.1) in (3)
does not hold because of (1). Hence, δ-positiveness of Q̃ can be expected
only when s̄ = 0. (2) is related to a result obtained by Kenmotsu and Zhou
in [23], and Hirakawa in [20] where a classification of surfaces with parallel
mean curvature in a complex space forms is obtained using the Kähler angle.

5.4. The Quaternionic calibration

This calibration is not so well understood in the literature so we will describe
in some detail. Let (V, I, J,K, g) be an hyper-Hermitean vector space of
dimension 4n, where I, J are two anti-commuting g-orthogonal structures.
For each x = (a, b, c) ∈ S

2 it is defined a g-orthogonal structure Jx =
aI + bJ + cK and its Kähler form wx(X, Y ) = g(JxX, Y ). Then V is a
right-quaternionic vector space with Xζ = ζ0X − JxX =: Jζ̄X where ζ =
(ζ0, x) ∈ H and Jx is extended linearly for x ∈ R

3. The right-quaternionic
linear group of isometries of V is Sp(n) = Sp(V ) = {ξ ∈ O(V ) : ξJx =
Jxξ, ∀x ∈ S

2} ⊂ SO(V ). Let Sp(1) = {ζ ∈ H : |ζ | = 1}. The inclusion
Sp(V ) · Sp(1) = Sp(V ) × Sp(1)/ ± (Id, 1) ⊂ SO(V ) is given by (ξ, ζ)X =
ξ(X)ζ−1. Moreover, for P = (ξ, ζ)

P (JxX) = ξ(JxX)ζ−1 = −ξ(X)ζ−1ζxζ−1 = Jτζ(x)
(ξ(X)ζ−1) = Jτζ(x)

P (X)

where τ : S3 ⊂ H → SO(3) ⊂ SO(4) is the double covering map τζ(v) =
ζvζ̄. A subspace T is a complex subspace if JxT ⊂ T for some x ∈ S

2. It is
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a quaternionic subspace if it is Jx-complex ∀x. The fundamental 4-form of
V is defined by

(5.2) Ω = 1
6(wI ∧ wI + wJ ∧ wJ + wK ∧ wK).

For each X ∈ V , let H0
X = span{IX, JX,KX}, HX = RX ⊕ H0

X . Each
P ∈ SO(V ) acts on Ω as PΩ(X, Y, Z,W ) = Ω(P−1X,P−1Y, P−1Z, P−1W ),
and we have

Lemma 5.3. HΩ := {P ∈ SO(V ) : P · Ω = Ω} = Sp(V ) · Sp(1).

Proof. If P = (ζ, ξ) ∈ S
2×Sp(V ) then P = (ξ, ζ) satisfies P (HX) = HP (X).

Note that ∀X, Y ∈ V , wI(IX, IY ) = wI(X, Y ), wJ(IX, IY ) = −wJ(X, Y ).
If P = (ξ, q) ∈ Sp(V ) ·Sp(1) one can prove directly that P ·Ω = Ω (see [24]).
Then Sp(V ) · Sp(1) ⊂ HΩ. Now if P ∈ HΩ, from the above consider-
ations P (HX) = HP (X). Thus, ∀x ∈ R

3 P (JxX) = JA(X,x)P (X), with
A(X, ·) ∈ SO(3) necessarily in case ‖X‖ = 1. We extend A(X, λ) = λ,
for λ ∈ R ⊂ H. Since ∀λ ∈ R, P (JxλX) = λP (JxX) we get A(λX, x) =
A(X, x). Now we assume ‖X‖ = 1. From P (JxyX) = P (Jx(JyX)) we
have A(X, xy) = A(JyX, x)A(X, y). Let x = μx′ + λy, where x′⊥y is a
unit of R

3. Then A(X, x′ × y) = A(X, x′) × A(X, y), and so A(JyX, x)
A(X, y) = A(X, xy) = μA(X, x′ × y) − λId = μA(X, x′) × A(X, y) − λId,
implying A(JyX, x) = μA(X, x′) + λA(X, y) = A(X,μx′ + λy) = A(X, x).
Finally let X, Y units with HX ⊕HY and Z = X+Y

‖X+Y ‖ . Then HP (X) ⊕HP (Y ).

From P (Jx(X+Y )) = JA(Z,x)P (X+Y ) we get JA(X,x)P (X)+JA(Y,x)P (Y ) =
JA(Z,x)P (X) + JA(Z,x)P (Y ), and so A(X, x) = A(Z, x) = A(Y, x). Then
A(X, x) = A(x) ∀X, that is A does not depend on X. We have proved that
P (JxX) = Jτζ(x)P (X), where A = τζ for some ζ ∈ Sp(1) (unique up to a
sign). Define ξ : V → V by ξ(X) = P (X)ζ = Jζ̄P (X). Then P = (ξ, ζ) and
ξ ∈ Sp(V ). �

The fundamental 4-form induces a symmetric endomorphism ΩΔ : ∧2V →
∧2V , defined by 〈ΩΔ(X ∧ Y ), Z ∧W 〉 = Ω(X, Y, Z,W ). For each oriented
orthonormal system B = {X1, X2, X3, X4} of V , we define the bivectors
Λ±
r = Λ±

r (B), by

Λ±
1 = 1√

2
(X1 ∧X2 ±X3 ∧X4),

Λ±
2 = 1√

2
(X1 ∧X3 ∓X2 ∧X4),

Λ±
3 = 1√

2
(X1 ∧X4 ±X2 ∧X3).

If X is a unit, Λ±
r (X) is defined as above w.r.t. X1 = X,X2 = IX,X3 =

JX,X4 = KX. Note that Λ±
r (X) = Λ±

r (JxX) for any x ∈ S
2. Set for
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any X, Y and i = 0, 1, 2, 3, r = 1, 2, 3, and εr0 = ε31 = ε12 = ε23 = +1,
ε11 = ε21 = ε22 = ε32 = ε13 = ε33 = −1,

Θi(X,Y ) = 1
2 (X ∧ Y + ε1

i IX ∧ IY + ε2
iJX ∧ JY + ε3

iKX ∧ KY ).

satisfying Θs′(JxX,JxY ) ∈ span{Θs(X,Y ), s = 0, . . . 3} and for Jx = I, J,K,
Θs′(X,JxX) either is zero or gives Λ±

s (X) for some s. If HX , HY , HZ are
orthogonal quaternionic lines, andX, Y are units we have for any x, y, z ∈ S

2

(5.3)

Ω(X, JxX, JyX, JzX) = 〈x, y × z〉,
Ω(X, JxX, Y, JyY ) = 1

3
〈x, y〉,

Ω(X, JxX, JyX, Y ) = Ω(X, JxX, Y, Z) = 0.

We take an orthonormal basis Xi of V the form {eα, Ieα, Jeα, Keα},
α = 1, . . . , n. We have ΩΔ(ξ) =

∑
i<j Ω(ξ,Xi∧Xj)Xi∧Xj . An orthonormal

basis of eigenvectors of ΩΔ is given by the 2n(4n− 1) vectors, where α, β =
1, . . . , n, r = 1, 2, 3,

(5.4)
(1/

√
n)

∑
α Λ+

r (eα), Λ−
r (eα), 1/

√
2(Λ+

r (en) − Λ+
r (eα)) α < n

Θs(eα, Ieβ), Θs(eα, Jeβ), Θs(eα, Keβ) α < β, s = 0, 1, 2, 3

The corresponding eigenvalues, that range {2n+1
3
,±1,±1/3}, are given as

follows where i = 1, 2, 3, L = id, I, J,K

ΩΔ(Λ+
r (eα)) = Λ+

r (eα) +
∑

β �=α
2
3Λ+

r (eβ) ΩΔ(
∑

α Λ+
r (eα)) = 2n+1

3 (
∑

α Λ+
r (eα))

ΩΔ(Λ+
r (eα) − Λ+

r (eβ)) = 1
3 (Λ+

r (eα) − Λ+
r (eβ)) ΩΔ(Λ−

r (eα)) = −Λ−
r (eα)

ΩΔ(Θ0(eα, Leβ)) = Θ0(eα, Leβ) ΩΔ(Θi(eα, Leβ)) = − 1
3Θi(eα, Leβ)

Given a k-dimensional T subspace of V we consider the restriction ΩΔ
T :

∧2T → ∧2T, symmetric endomorphism with eigenvalues α1, . . . , α k(k−1)
2

that

we call the nonnormalized quaternionic angles of T .

From now on we restrict our attention when T is an oriented four dimen-
sional subspace with direct orthonormal basis (X1, X2, X3, X4) and V eight
dimensional.

Proposition 5.4. The fundamental form Ω defines a calibration that cal-
ibrates the quaternionic 4 dimensional subspaces. The quaternionic angle
of an oriented 4-dimensional subspace T 4 is defined by the number cos θ =
Ω(X1, X2, X3, X4) ∈ [−1, 1]. T and T⊥ have the same quaternionic angle
and there are only two eigenvalues αi = ± cos θ each with multiplicity three.

Proof . To see that Ω is a calibration, we set φ(x) = 〈(wx)|T ∧(wx)|T , V olT 〉,
where (wx)T is the restriction of wx to T×T . If cos θx1 , cos θx2 , with θxi ∈ [0, π

2
],
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are the Jx-Kähler angles of T w.r.t. Jx, then for any o.n.b. x, y, z of R
3,

cos θ = Ω(T ) = 1
6(φ(x) + φ(y) + φ(z))

= 1
3(εx cos θx1 cos θx2 + εy cos θy1 cos θy2 + εz cos θz1 cos θz2)(5.5)

where εu = ±1 depending if (wu)T defines the same or the opposite orien-
tation of T . From (5.5) we see that |φ(u)| ≤ 2 and so |Ω(T )| ≤ 1, and
Ω(T ) = ±1 iff εu = ±1 and cos θus = 1, s = 1, 2, that is T is a Ju-complex
subspace, ∀u = x, y, z, or equivalently, T is a quaternionic subspace. Since
the Js-Kähler angles of T and the ones of the orthogonal complement of T⊥

are the same, then Ω(T ) = Ω(T⊥). �

Proposition 5.5. If V is 8-dimensional and T is a 4-dimensional subspace
Jx-complex for some x then 1

3
≤ cos θ(T ) ≤ 1, with equality to 1

3
if and only

if T is a totally complex subspace, that is T is a Jy-Lagrangian subspace
∀y⊥x. Moreover, if two complex subspaces T and T ′ of V have the same
quaternionic angle, then there exist an element P ∈ Sp(V ) ·Sp(1) such that
T ′ = P (T ).

Proof . If T is a Jx-complex subspace of V then T is Cayley subspace of
(V, g, Jy) for all y ∈ S

2. To see this we take an orthonormal basis of T of
the form B = {Xi} = {X, JxX,Z, JxZ}. We have g(JyJxX,X) = −〈y, x〉 =
g(JyJxZ,Z), g(JyJxZ,X) = −g(JyX, JxZ), g(JyZ, JxX) = −g(Jy×xX,Z),
and g(JyJxZ, JxX) = g(JyX,Z). A basis for the self-dual 2-forms on T is
given by JBr = Λ+

r (B). Then we see that (wy)|T = cos θy(p)JBv where v =
1
t
(< y, x >, g(JyX,Z), g(Jy×xX,Z)) ∈ S

2 and cos θy(p) = t = ‖(JyX)�‖,
proving that (wy)T is self-dual, that is ∗(wy)|T = (wy)|T . This is just the
same as to say the Jy-Kähler angles of T are equal, that is T is a Cayley
subspace. Therefore θu1 = θu2 =: θu and so cos θ = 1

3
(1+cos2 θy+cos2 θz) ≥ 1

3
,

with equality if and only if cos2 θy = cos2 θz = 0, that is T is a Ju-Lagrangian
subspace for any u⊥x. If T and T ′ have the same quaternionic angle, we
use the canonical frames given in (5.8) below for T and for T ′ and define P
by P (B) = B′, P (B⊥) = B′⊥. Then PJu = Ju′P for (u, u′) = (x, x′), (y, y′)
or (z, z′), and P (X) = X ′, P (Y ) = Y ′, and taking ζ ∈ Sp(1) such that τζ
maps (x, y, z) to (x′, y′, z′), we get ξ(·) = P (·)ζ−1 ∈ Sp(V ), what proves that
P = (ξ, ζ) ∈ Sp(V ) · Sp(1). �

Some further algebraic considerations. Let T be a Euclidean space of
dimension 4. For each linear map l : T → T we define ∧2l : ∧2T →
∧2T , ∧2l(u ∧ v) = l(u) ∧ l(v). If λi ≥ 0 are the eigenvalues of

√
lT l (also

called the singular values of l) and B = {ei} a corresponding orthonormal
basis of eigenvectors, let ẽi defined by l(ei) = λiẽi whenever λi �= 0, and
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extend to an orthonormal basis ẽi of T . Using Newton inequalities we have
2
∑

1≤i<j≤4 λiλj ≤ 3(λ2
1 + · · · + λ2

4) with equality iff λi = λj ∀i, j. Each

direct orthonormal basis B of T and B⊥ of T⊥ define respectively a direct
orthonormal basis Λ±

r = Λ±
r (B) of ∧2

±T , and Ξ±
r of ∧2

±T
⊥. We consider the

two hyper-Hermitean structures of T (denoted by JTs , when we choose one)
JBr = Λ+

r , J̃Br = Λ−
r . We note the following: If u, v is an o.n. system of

vectors of T then

(5.6) |〈u ∧ v,Λ+
r 〉| ≤ 1, with equality to 1 iff v = ±JBr (u).

and similar for Λ−
r . We define

Q±l = −1
3

∑
rJ

T
r ◦ l ◦ JTr , H±l = 1

4(l + 3Q±l)

where ± depends on JTr = JBr or J̃Br . Note that H± : Skew(T ) → sp1(T )
gives the orthogonal projection of l onto a (JTr )-hyper-complex linear map
(does not depend on the oriented basis B). We also have 〈l, Q±(l)〉 =∑

r=1,2,3
4
3
〈∧2l(Λ±

r ),Λ±
r 〉 and that

|〈∧2l(Λ±
1 ),Λ±

1 〉| ≤
1

2
(λ1λ2 + λ3λ4),

|〈∧2l(Λ±
2 ),Λ±

2 〉| ≤
1

2
(λ1λ3 + λ2λ4),

|〈∧2l(Λ±
3 ),Λ±

3 〉| ≤
1

2
(λ1λ4 + λ2λ3),

and ‖l‖2 = λ2
1 + λ2

2 + λ2
3 + λ2

4. Moreover,

9‖Q±l‖2 = 3‖l‖2 − 2
∑

r〈JTr ◦ l ◦ JTr , l〉 = 3‖l‖2 + 6〈Q±l, l〉,
and so

0 ≤ 16‖H±l‖2 = (‖l‖2 + 6〈Q±l, l〉 + 9‖Q±l‖2)

= 4‖l‖2 + 12〈Q±l, l〉 = 16〈H±l, l〉.
Consequently 3〈Q±l, l〉 ≥ −‖l‖2. If equality holds, then H±l = 0, and so
l ∈ sp1(T )⊥ = ∧2

+T = span{JTr }. Newton inequalities and (5.6) prove that

(5.7)

−1
3
‖l‖2 ≤ 〈Q±l, l〉 ≤ ‖l‖2,

〈Q±l, l〉 = ‖l‖2 iff l is hyper-complex,

〈Q±l, l〉 = −1
3
‖l‖2 iff l ∈ ∧2

+T = span{JTs }
Furthermore, if l is hyper-complex then l is conformal. The singular values
of ∧2l are λiλj for i < j. We can split

∧2l = ∧+
+l ⊕∧+

−l ⊕ ∧−
+l ⊕ ∧−

−l,

where ∧±
+l : ∧2

+T → ∧2
±T and ∧±

−l : ∧2
−T → ∧2

±T.
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∧2l is self dual (resp. anti-self-dual), i.e. ∧2l∗ = ∗∧2 l (resp. ∧2l∗ = −∗∧2l)
iff the anti-self dual part ∧−

+l⊕∧+
−l vanish (resp. the self-dual part ∧+

+l⊕∧−
−l

vanish), iff either ∧2l = 0, what means at least 3 of the singular values vanish,
or l is an orientation preserving (resp. reversing) conformal isomorphism.

If (M, g,Q) is a quaternionic-Kähler manifold of real dimension 4n and
fundamental form Ω, the quaternionic 4m-submanifolds, are necessarily to-
tally geodesic ([16]). Some attention have been drawn to a more general
type of submanifolds, the almost complex submanifolds in the quaternionic
context, and their minimality have been studied. This includes the quater-
nionic submanifolds as well the totally complex or the Kähler submanifolds.
See for example [1] and their references, where some examples can be found.
Most of these submanifolds are also proved to be totally geodesic. We will
show some use of the quaternionic angle in the study of almost complex
submanifolds with parallel mean curvature.

An immersed submanifold F : M → M is an almost complex submani-
fold if there exist a smooth section JM : M → Q such that, for each p ∈M ,
JM(p)(TpM) ⊂ TpM . If n = 2 and m = 1, the quaternionic angle satisfies
1
3
≤ cos θ ≤ 1 with equality to 1

3
at totally complex points and to 1 at

quaternionic points. Since cos θ ≥ 1
3

we conclude from Theorem 1.4:

Proposition 5.6. If (M, g,Q) is a quaternionic-Kähler manifold of real
dimension 8 and M is an almost complex complete submanifold of real di-
mension 4 and with parallel mean curvature and RicciM ≥ 0, then M is a
minimal submanifold.

For an almost complex 4-dimensional submanifold, Φ : TM → NM is
a conformal morphism with coefficient of conformality (1− cos θ)(cos θ− 1

3
)

([33]). To see this we first note that we can take canonical orthonormal basis
B of TpM and B⊥ of NMp of the form

(5.8)
B = {X, JxX, cJyX + sY, cJzX + sJxY } = {Xk}
B⊥ = {JyY, JzY, cY − sJyX, cJxY − sJzX} = {Ui}

where c2 + s2 = 1, x, y, z = x× y is an o.n. basis of R
3 with Jx = JM(p) and

Y ∈ H⊥
X . Then

cos θ = (1 − 2

3
s2), s2 =

3

2
(1 − cos θ), c2 =

3

2
(cos θ − 1

3
),

and using this basis we see that Φ(B) = −2
3
scB⊥.

Next we use the formula of Δ cos θ to obtain some nonexistence results
for almost complex submanifolds, and in particular to give a “calibration”-
type proof of the above mentioned result of Gray [16], for the case n = 2 and
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m = 1. We take for basis of NMp, that is reordering B⊥, B′⊥ = {U ′
i}, U ′

1 =
U3, U

′
2 = U4, U

′
3 = U1, U

′
4 = U2, and consider the corresponding basis Ξ′±

t ,
of ∧2NMp. The matrix of Ψ : ∧2TM → ∧2NM , with respect to the basis
Λ+

1 ,Λ
+
2 ,Λ

+
3 ,Λ

−
1 ,Λ

−
2 ,Λ

−
3 of ∧2TM and the basis Ξ′+

1 ,Ξ
′+
2 ,Ξ

′+
3 ,Ξ

′−
1 ,Ξ

′−
2 ,Ξ

′−
3 of

∧2NMp is given by

(5.9) Ψ =

⎡
⎢⎢⎢⎢⎣

2
3(1 + s2) 0 0 0 0 0

0 2
3c2 0 0 0 0

0 0 2
3c2 0 0 0

0 0 0 2
3s2 0 0

0 0 0 0 2
3s2 0

0 0 0 0 0 −2
3s2

⎤
⎥⎥⎥⎥⎦

Note that wM =
√

2Λ+
1 and wNM =

√
2Ξ′+

1 are the respective Kähler forms.
Ψ applies ∧2

±TM into ∧2
±NM and denoting the corresponding restriction

Ψ± : ∧2
±TM → ∧2

±(NM), and defining Ψ′
+ := Ψ+ − 2(1 − cos θ)Ψ0, where

Ψ0 : ∧2TM → ∧2NM is the linear morphism given by Ψ0(wM) = wNM and
zero on the orthogonal complement of RwM , then Ψ′

+ and Ψ− are conformal,
with ‖Ψ′

+(η)‖2 = (cos θ − 1
3)

2‖η‖2, ∀η ∈ ∧2
+TM, and ‖Ψ−(η)‖2 = (1 −

cos θ)2‖η‖2, ∀η ∈ ∧2
−TM . Thus, if M is immersed with no totally complex

points the bundles ∧2
+TM and ∧2

+MN are isomorphic. If M is immersed
with no quaternionic points, then ∧2

−TM and ∧2
−MN are isomorphic. If

there are neither quaternionic nor totally complex points, then Φ : TM →
NM is an isomorphism.

If Xi is a direct o.n. basis of TpM and Yi ∈ NMp are any vectors, then

∑
s<jΩ(X1, . . . , Ys(s), . . . , Yj (j), . . . , X4) =

∑
r

Ω(Λ+
r ,Λ

+
r (Y ))−Ω(Λ−

r ,Λ
−
r (Y ))

with ∗Λ−
r = −Λ−

r , and where Λ±
r (Y ), Y = (Y1, . . . , Y4), are formally defined

in the same way as Λ±
r (B). Thus, we consider the two components of ∧2B,

∧+
+B : ∧2

+TpM → ∧2
+NMp and ∧−

−B : ∧2
−TpM → ∧2

−NMp, and say that
∧2B is self-dual iff ∧2B = ∧+

+B⊕∧−
−B and it is anti-self-dual if the self dual

part vanish. Therefore, from lemma 3.1

Δ cos θ = − cos θ‖B‖2 + 2〈Ψ+,∧+
+B〉 + 2〈Ψ−,∧−

−B〉
+m〈∇⊥H,Φ〉 − ∑

ijR̄(Xi, Xk, Xi,Φ(Xk))(5.10)

Now we prove the classic result on quaternionic submanifolds in [16] reducing
it to a linear algebra problem:

Proposition 5.7. If M is a quaternionic submanifold of M then M is
totally geodesic.
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Proof. We identify TpM = HX ≡ HY = NMp, through the canonical ba-
sis B = {X, JxX, JyX, JzX} = {Xk} and (B′)⊥ = {Y, JxY, JyY, JzY }, and
set lk = B(Xk, ·) : TpM → NMp ≡ TpM . We have Φ = 0 and Ψ− = 0,
Ψ+ = 2

3
Id. Then (5.10) is 0 =

∑
k〈Q±

B(lk), lk〉 − ‖lk‖2. By (5.7) each lk
is hyper-complex, that is B(Xk, JxZ) = Jx(B(Xk, Z)), ∀x ∈ S

2. Conse-
quently, B(JxZ, JxW ) = J2

xB(Z,W ) = −B(Z,W ), for any x. But then
B(Z,W ) = −B(JyZ, JyW ) = B(JxJyZ, JxJyW ) = B(JzZ, JzW ), for any
o.n. basis x, y, z = x× y of R

3 and so B = 0. �
At p consider the canonical frames B = {Xk} and B′⊥ = {U ′

k}, and the
linear isometry L : NMp → TpM, L(U ′

k) = Xk. We define lk = L◦B(Xk, ·) :
TpM → TpM , and l′k = lk ◦ S ′ and l′′k = lk ◦ S ′′, where S ′, S ′′ are orientation
preserving isometries, by

l′k(X1)= lk(X1), l
′
k(X2)= lk(X2), l

′
k(X3)=−lk(X3), l

′
k(X4)=−lk(X4)

l′′k(X1)= lk(X1), l
′′
k(X2)=−lk(X2), l

′′
k(X3)=−lk(X3), l

′′
k(X4)= lk(X4).

Then, ‖l′k‖ = ‖l′′k‖ = ‖lk‖ = ‖B(Xk, ·)‖, and we have

∧2 l′k(Λ
±
1 ) = ∧2lk(Λ

±
1 ), ∧2l′k(Λ

±
2 ) = − ∧2 lk(Λ

±
2 ), ∧2l′k(Λ

±
3 ) = − ∧2 lk(Λ

±
3 ),

∧2 l′′k(Λ±
1 ) =−∧2 lk(Λ

±
1 ), ∧2l′′k(Λ±

2 ) =−∧2 lk(Λ
±
2 ), ∧2l′′k(Λ±

3 ) = ∧2lk(Λ
±
3 ).

Set

D =
∑

k(‖lk‖2 − 〈Q+lk, lk〉) ≥ 0(5.11)

A =
∑

k(〈Q+l′k, l
′
k〉 + 1

3‖lk‖2) ≥ 0(5.12)

E =
∑

k(〈Q−l′′k, l′′k〉 + 1
3‖lk‖2) ≥ 0(5.13)

Note that ∧2B =
∑

k ∧2lk and is antiselfdual iff
∑

k ∧+
−lk ⊕ ∧−

+lk = 0.
By (5.7)

Lemma 5.4. At p, 0 ≤ D,A,E ≤ 4
3
‖B‖2. Furthermore, D = 0 iff

A(or E) = 4
3
‖B‖2 iff B = 0. If A = 0 (E = 0 resp.) then ∧2B is self-

dual (resp. antiselfdual).

Now we investigate when Q̃Ω(B) ≥ δ‖B‖2. Using the matrix (5.9)

cos θQ̃Ω(B) = cos θ‖B‖2 − 2〈Ψ+,∧+
+B〉 − 2〈Ψ−,∧−

−B〉(5.14)

= −∑
k(

∑
r=1,2,3

4
3〈Λ+

r ,∧2lk(Λ
+
r )〉 − ‖lk‖2)

− s2∑
k(4

3 〈Λ+
1 ,∧2lk(Λ+

1 )〉 − 4
3〈Λ+

2 ,∧2lk(Λ+
2 )〉 − 4

3〈Λ+
3 ,∧2lk(Λ+

3 )〉
+4

3〈Λ−
1 ,∧2lk(Λ−

1 )〉 + 4
3〈Λ−

2 ,∧2lk(Λ−
2 )〉 − 4

3〈Λ−
3 ,∧2lk(Λ−

3 )〉 + 2
3‖lk‖2)

= (D + s2E) − s2(A+ 2
3‖B‖2).(5.15)
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Lemma 5.5. Assume at p, for each k, ‖H+lk‖ ≤ ε‖lk‖ where 0 ≤ ε ≤ 1,

and 0 ≤ τ ≤ 4(1−ε)
9

such that (1 − cos θ) ≤ τ . Then, at p,

cos θ Q̃Ω(B) ≥ δ‖B‖2

where δ = 4(1−ε)−9τ
3

≥ 0.

Note that we assume cos θ ≥ 5
9
. Lemma 5.5 includes the case cos θ ≡ 1, that

implies lk hypercomplex, giving ε = 1 and δ = 0, as in proof of Proposi-
tion 5.7.

Proof. The condition on H+lk implies

|〈Q+lk, lk〉 + 1
3 |lk|2| ≤ 4

3ε|lk|2.
Then

D =
∑

k

4

3
‖lk‖2 − (1

3‖lk‖2 + 〈Q+lk, lk〉) ≥ 4
3(1 − ε)‖B‖2.

Using the bounds in lemma 5.4 and (5.15), we obtain

cos θ Q̃Ω(B) ≥ 4(1−ε)−6s2

3 ‖B‖2,

that proves the lemma. �
Note that (1.7) can be satisfied. If M is a quaternionic space form of

reduced scalar curvature ν = sM/32, then

R̄(X, Y, Z,W )= ν
4(〈X∧Y, Z∧W 〉+∑

r〈JrX∧JrY, Z∧W 〉+〈JrX, Y 〉〈JrZ,W 〉)
and so

(5.16)
∑

ki R̄(Xi, Xk, Xi,Φ(Xk)) = 9ν(cos θ)(cos θ − 1
3) = 4νs2c2

Proposition 5.8. Assume F : M → M is a closed almost complex im-
mersed submanifold such that (1.7) holds.

(1) If there exist constants 0 ≤ ε ≤ 1, 0 ≤ τ < 4(1 − ε)/9, such that
(1− cos θ) ≤ τ and at each point p ∈M there exist canonical frames B and
B′⊥ such that ‖H+lk‖ ≤ ε‖lk‖, then F is totally geodesic.

Furthermore, if M is a quaternionic space form then:

(2) If F : M → M is parallel and ν �= 0 then either F is a quaternionic
submanifold or a totally complex submanifold.

(3) If M is closed, F has parallel mean curvature and ∧2B is anti-self-dual
then F is totally geodesic and if ν > 0 then either F is totally complex or a
quaternionic submanifold.
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Proof. (1) follows from previous lemma and Theorem 1.5(A). If we assume

τ < 4(1−ε)
9

, it guarantees δ > 0. (2) From the proof of Proposition 3.2,

∑
k(R̄(Xk, Xi)Xk)

⊥ = 0

and by (5.16),

4νs2c2 = 9ν(1 − cos θ)(cos θ − 1
3) = 0.

(3) We have

Δ cos θ = −4ν s2c2 − cos θ‖B‖2 ≤ 0,

what implies cos θ ≥ 1
3

is constant and so −4ν s2c2 − cos θ‖B‖2 = 0. �

Proposition 5.9. Assume M is a closed almost complex submanifold with
parallel mean curvature on a quaternionic space form M . Then F is totally
geodesic if (1) or (2) below holds:

(1) ν > 0 and ‖B‖2 ≤ 3ν(cos θ − 1
3
)

(2) ν < 0 and ‖B‖2 ≤ −27
8
ν(cos θ − 1

3
)(1 − cos θ).

Proof. We may write Δ cos θ given in (5.10) and using (5.15) as

Δs2 = 6νs2c2 + 4sc
∑

j〈∇⊥
Xj
H,Uj〉 − 3

2s
2(A + 2

3‖B‖2) + 3
2(D + s2E).

(1) The conditions imply

3
2 s

2(A+ 2
3 ‖B‖2) ≤ 6νs2c2

and so Δs2 ≥ 0.

(2) Under the assumptions,

3
2 (D + s2E) ≤ 2(1 + s2)‖B‖2 ≤ 4‖B‖2 ≤ −6s2c2ν,

and we have Δs2 ≤ 0. In both cases (1)(2) we conclude that s is constant,
and again that Δs2 = 0. This implies in case (1)

D + s2E = 0,

and in case (2)

s2(A+ 2
3‖B‖2) = 0,

what leads to the conclusion in the proposition (see Lemma 5.4). �
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5.5. The special calibrations

The special Lagrangian calibration. Let (M, g, J, ρ) be a Calabi-Yau mani-
fold of complex dimension k with holomorphic volume element ρ ∈ ∧(k,0)M .
Then Re(ρ) is the Lagrangian calibration and calibrates the special La-
grangian submanifolds. On M it is also defined the Kähler calibrations. If
k = 4, there is also a S1-family of Cayley calibrations

Ωθ = −1

2
w2 +Re(eθρ),

that calibrates the Cayley 4-submanifolds.

The Cayley calibration. If (M
8
, ḡ,Ω) is a Spin(7) 8-dimensional manifold,

then it is defined a Cayley calibration Ω. Given a Spin(7)-frame ei that
identifies TpM with the space of octonions R

8, Ω is the 4-form defined by
Ω(x, y, z, w) = 〈x, y × z × w〉, where the cross product of three vectors is
defined in R

8. A Calabi-Yau 4-fold is also a Spin(7) manifold and any Cayley
calibrations defined above corresponds to this definition. If F : M4 → M is
an immersed 4-submanifold, then Φ(X1) = (X2 ×X3 ×X4)

⊥, where Xi is a
d.o.n. basis of TpM .

The associative and the co-associative calibration. Let (M
7
, ḡ, φ) be a G2

Riemannian manifold with a closed G2 3-form φ. Identifying TpM with
R

7 = Im(R8) by aG2-frame, φ(x, y, z) = 〈x, yz〉 where on the right hand side
it is considered the octonion product. This is the associative calibration. The
co-associative calibration is ψ = ∗φ and satisfies ψ(x, y, z, w) = 1

2
〈x, [y, z, w]〉

where [y, z, w] = (yz)w−y(zw) is the associator operator. The forms φ and ψ
calibrate respectively the associative 3-dimensional submanifolds and the
co-associative 4-dimensional submanifolds. If F : M → M is an immersed
3-submanifold, Φφ(X1) = (X2X3)

⊥, where X1, X2, X3 is any d.o.n. basis
of TpM . If F is an immersed 4-submanifold, Φψ(X1) = [X2, X3, X4]

⊥. If N
is a Calabi-Yau 3-fold, then N × S1 or N × R are G2-manifolds with

φ = 1∗ ∧ w +Re(ρ) and ψ =
1

2
w ∧ w − 1∗ ∧ Im(ρ).

If N is a G2 manifold, then N×S1 or N×R with Ω = 1∗∧φ+ψ are Spin(7)
manifolds.
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