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Lowest uniformizations of closed
Riemann orbifolds

Rubén A. Hidalgo

Abstract

A Kleinian group containing a Schottky group as a finite index
subgroup is called a Schottky extension group. If Ω is the region
of discontinuity of a Schottky extension group K, then the quo-
tient Ω/K is a closed Riemann orbifold; called a Schottky orbifold.
Closed Riemann surfaces are examples of Schottky orbifolds as a con-
sequence of the Retrosection Theorem. Necessary and sufficient con-
ditions for a Riemann orbifold to be a Schottky orbifold are due to
M. Reni and B. Zimmermann in terms of the signature of the orb-
ifold. It is well known that the lowest uniformizations of a closed
Riemann surface are exactly those for which the Deck group is a
Schottky group. In this paper we extend such a result to the class of
Schottky orbifolds, that is, we prove that the lowest uniformizations
of a Schottky orbifold are exactly those for which the Deck group is
a Schottky extension group.

1. Introduction

1.1. Schottky extension groups

The conformal automorphisms of the Riemann sphere Ĉ are provided by
the Möbius transformations. We denote by M ∼= PSL(2, C) the group of
Möbius transformations. The Poincaré extension theorem [10, 12] asserts
that each Möbius transformation acts naturally on hyperbolic 3-space H3 as
an orientation-preserving isometry. A Kleinian group is a discrete subgroup
G of M. The region of discontinuity of a Kleinian group G is the subset Ω(G)

of Ĉ on which G acts discontinuously; this is an open subset and it may be
empty. The complement Λ(G) = Ĉ − Λ(G) is called the limit set of G.
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A function group is a pair (F, Δ), where F is a finitely generated Kleinian
group and Δ is an F -invariant connected component of Ω(F ). Good sources
on Kleinian groups are the books of B. Maskit [10] and of K. Matsuzaki and
M. Taniguchi [12].

A Schottky group of rank g ≥ 1 is a Kleinian group G generated by
loxodromic transformations A1, . . . , Ag such that there are 2g disjoint simple

loops, say C1, C
′
1, . . . , Cg, C

′
g, all of them bounding a common domain D ⊂ Ĉ,

where Ai(Ci) = C ′
i, and Ai(D) ∩ D = ∅, i = 1, . . . , g. It is well known that

Ω(G) is a dense connected set, in particular, (G, Ω(G)) is a function group,
and that S = Ω(G)/G is a closed Riemann surface of genus g. The trivial
group is called the Schotky group of rank g = 0. A Schottky group of rank g
may also be characterized as a finitely generated and purely loxodromic
Kleinian group with non-empty region of discontinuity which is isomorphic
to a free group of rank g [8] (another characterization of Schottky groups
of rank g is given by geometrically finite Kleinian groups isomorphic to free
groups of rank g and without parabolic transformations). As groups of
hyperbolic isometries of hyperbolic space H3, Schottky groups of rank g can
be characterized as the universal covering groups of handlebodies of genus g
whose interior is endowed with a complete geometrically finite hyperbolic
structure with injectivity radius bounded away from zero (we say that this
is a Schottky structure on the handlebody).

A Schottky extension group is a Kleinian group containing a Schottky
group as a finite index subgroup. Every finite Kleinian group is a Schottky
extension group (they are exactly the ones containing a Schottky group of
rank g = 0 as finite index subgroup). Clearly, every Schottky extension
group necessarily contains a Schottky group as a finite index normal sub-
group. Let K be a Schottky extension group and let G be a Schottky group,
say of rank g, which is a finite index normal subgroup of K. Let M = H3/G
be the handlebody with the Schottky structure provided by the Schottky
group G. As G is a normal subgroup of finite index in K, it follows that K
induces a finite group, isomorphic to K/G, of orientation-preserving isome-
tries of the interior of M . Conversely, the lifting to the universal cover H3 of
a finite group of orientation-preserving isometries of the interior of M , with
a Schottky structure produced by a Schottky group G, produces a Kleinian
group K containing G as a normal subgroup of finite index, that is, a Schot-
tky extension group.

1.2. Closed Riemann orbifolds

A closed Riemann orbifold is a pair O = (S,P), where S is a closed Riemann
surface, called the underlying Riemann surface structure of O, and P is a
finite collection (maybe empty) of pairs (pj, nj), where pj ∈ S are pairwise
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different, called the conical points, and nj ≥ 2 is an integer, called the order
of pj. The signature of O is the tuple (g; n1, ..., nr), where g is the genus
of S and r is the cardinality of P. We say that O is of hyperbolic type if
2g − 2 +

∑r
j=1(1 − 1/nj) > 0. The orbifold fundamental group of O is

πorb
1 (O)=

〈
a1, ..., ag, b1, ..., bg, c1, ..., cr; c

n1
1 = · · ·= cnr

r = 1 =

g∏
j=1

[aj , bj ]

r∏
i=1

ci

〉
,

where [a, b] = aba−1b−1. Note that if P = ∅, then we identify the Riemann
orbifold O with the Riemann surface S. Two closed Riemann orbifolds,
say O1 = (S1,P1) and O2 = (S2,P2), are said to be conformally equivalent
if there is a conformal homeomorphism h : S1 → S2 inducing an ordering
preserving bijection of conical points. A good source about orbifolds is, for
instance, the notes of W.P. Thurston [16].

1.3. Riemann orbifolds from function groups

Let (F, Δ) be a function group so that Δ/F is closed. It follows from Ahlfors
finiteness theorem [1] that F is finitely generated.

The quotient Δ/F defines naturally a closed Riemann orbifold. The
conical points are the projections of those points z ∈ Δ with non-trivial
stabilizer Fz < F (a cyclic subgroup) and the corresponding orders are the
orders of Fz. The complement S0 in Δ/F of the above conical points has a
natural structure of a Riemann surface, this being the complement of a finite
number points of a closed Riemann surface, say S. By the results in [11],
the Riemann surface structure of S is unique up to conformal equivalence.
The underlying Riemann surface structure of the Riemann orbifold is S.

By the Selberg lemma [3, 15], the group F has a finite index normal
torsion free subgroup N . In this way, R = Δ/N is a closed Riemann surface
and H = F/N is a finite group of conformal automorphisms of R so that
Δ/F = R/H .

1.4. Good Riemann orbifolds

A closed Riemann orbifold is called a good orbifold if it is obtained as the
quotient of a closed Riemann surface by a finite group of conformal auto-
morphisms; otherwise, it called a bad orbifold. The only signatures corre-
sponding to bad orbifolds are: (i) (0; n), n ≥ 2, (ii) (0; n, m), n 	= m. As
already noted above, the Riemann orbifold produced by a function group is
a good orbifold. From now on in this paper, an orbifold will mean a good
orbifold.
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1.5. Uniformizations

An uniformization of a closed Riemann orbifold O = (S,P) is a triple
(Δ, F, Q : Δ → S) so that:

(i) (F, Δ) is a function group,

(ii) Q :Δ → S is a holomorphic (branched) covering map with Deck(Q)=F,

(iii) the conical points of O are exactly the branched values of Q, and

(iv) the orders of conical points are equal to the orders of the branch values
of Q.

Note that if P = ∅, the above definition corresponds to the usual notion
of uniformization of closed Riemann surfaces.

If G is a Schottky group and S = Ω(G)/G, then (Ω(G), G, Q : Ω(G) → S)
is called a Schottky uniformization of S. As a consequence of the retrosec-
tion theorem (e.g. [4, 6]), every closed Riemann surface has a Schottky
uniformization.

Let O = (S,P) be a closed Riemann orbifold of a hyperbolic type. It fol-
lows from the Klein-Poincaré uniformization theorem [13] the existence of a
co-compact Fuchsian group Γ ∼= πorb

1 (O), acting on the hyperbolic plane H2,
so that the closed Riemann orbifold induced by H

2/Γ is conformally equiv-
alent to O. The uniformization (H2, Γ, P : H2 → S) is called a Fuchsian
uniformization.

The classification of uniformizations of closed Riemann surfaces is pro-
vided by the following result due to B. Maskit [9].

Theorem 1 (Classification of Uniformizations [9]). Let S be a closed
Riemann surface.

(1) If (Δ, G, Q : Δ → S) is an uniformization of S, then there exists a co-
llection {αm} of (homotopically independent) pairwise disjoint simple
loops on S and a collection of positive integers {km} so that Q : Δ → S
is a regular covering for which

(1.1) each of the loops wm = αkm
m lifts to a loop, and

(1.2) every loop in Δ is freely homotopic to a product of the liftings of
these loops.

(2) Given any collection {αm} of (homotopically independent) pairwise
disjoint simple loops on S and a collection of positive integers {km},
there is an uniformization (Δ, G, Q : Δ → S) of S so that Q : Δ → S
satisfies (1.1) and (1, 2) above.

We say that the set of loops, {wm = αkm
m }, determines the covering

Q : Δ → S.
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In Theorem 1, the Schottky uniformizations are exactly the ones for
which km = 1, for every m, and the collection of simple loops {αm} cut-
off S into planar surfaces.

1.6. Schottky extension uniformizations

Let K be a Schottky extension group with Ω = Ω(K). Let O = (S,P) be
the natural closed Riemann orbifold defined by Ω/K and let Q : Ω → S
be the natural factor map. Then the uniformization (Ω, K, Q : Ω → S) is
called a Schottky extension uniformization of O.

A closed Riemann orbifold admitting a Schottky extension uniformiza-
tion will be called a Schottky orbifold. In [14] M. Reni and B. Zimmermann
have provided necessary and sufficient conditions for a closed Riemann orb-
ifold to be a Schottky one in terms of the signature of the orbifold.

Proposition 2 ([14]). Let O be a closed Riemann orbifold of a hyperbolic
type with the signature (g; n1, ..., nr). Then O is a Schottky orbifold if and
only if one of the following conditions holds.

(i) g > 0.

(ii) The (unordered) numbers n1, ..., nr occur in pairs.

(iii) Among the numbers n1, ..., nr there are at least two disjoint occurrences
out of the following four situations: (2), (3, 3), (3, 4), or (3, 5) (possible
two times the same).

Another necessary and sufficient condition for a closed Riemann orbifold
(not necessarily of a hyperbolic type) is provided by the following.

Proposition 3. The Schottky orbifolds O are exactly those orbifolds ob-
tained as quotients R/H, where R is a closed Riemann surface, H is a finite
group of conformal automorphisms of R and there is a Schottky uniformiza-
tion (Ω, G, P : Ω → R) of R so that H lifts, that is, for each h ∈ H there is

a conformal automorphism ĥ of Ω so that h ◦ P = P ◦ ĥ.

Proof. Let O = (S,P) be a closed Riemann orbifold. Let R be a closed
Riemann surface and H be a finite group of conformal automorphisms of R
so that O is defined by R/H . Assume there is a Schottky uniformization
(Ω(G), G, P : Ω(G) → R) of R so that H lifts. By lifting H , with re-
spect to this Schottky uniformization, we obtain a group K of conformal
automorphisms of Ω(G) containing G as a finite index normal subgroup.
It is known that Ω(G) is of class OAD; that is, it admits no holomorphic
function with finite Dirichlet norm (see [2, pg. 241]). It follows from this
(see [2, pg. 200]) that every conformal map from Ω(G) into the Riemann
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sphere is a Möbius transformation. In this way, K is a Kleinian group and,
in particular, a Schottky extension group. By the construction, the orb-
ifold O is uniformized by K, so O is a Schottky orbifold. Conversely, let
us assume that O is a Schottky orbifold and consider a Schottky extension
uniformization (Ω, K, P : Ω → S). As already noted before, K contains,
as a finite index normal subgroup, a Schottky group G. As a finite index
subgroup of K has the same region of discontinuity Ω, it is enough to take
R = Ω/G and H = K/G. �

As a consequence of Proposition 2 (also by Proposition 3 and the results
in [5]), the orbifolds with signature of the form (0; a, b, c) are not Schottky
orbifolds.

We will need the following lifting criteria of conformal automorphisms
of closed Riemann surfaces to their uniformizations. This criteria concerns
the existence of an invariant (with respect to the group of automorphisms)
collection of pairwise disjoint simple loops defining the uniformization.

Theorem 4 ([5]). Let (Δ, F, P : Δ → S) be an uniformization of a closed
Riemann surface S, of genus g ≥ 2, and let F be torsion free. Let H be a
group of (conformal/anticonformal) automorphism of S. Then the group H
lifts, with respect to (Δ, F, P : Δ → S), if and only if there is a collection F
of pairwise disjoint simple loops on S defining the covering P : Δ → S which
is invariant under the action of H.

1.7. Lowest uniformizations

The collection of uniformizations of an orbifold O = (S,P) is partially or-
dered. We say that an uniformization (Δ1, G1, P1 : Δ1 → S) of O is higher
than an uniformization (Δ2, G2, P2 : Δ2 → S) of O if there is a (neces-
sarily holomorphic) covering map T : Δ1 → Δ2 so that P1 = P2 ◦ T .
Equivalently, there is a normal subgroup K of G1 and an uniformization
(Δ1, K, T : Δ1 → Δ2) of Δ2 so that P1 = P2 ◦ T .

The highest uniformizations of O = (S, P ) are provided by universal cov-
erings, that is, by the uniformizations (Δ, F, P : Δ → S) of O for which Δ is
simply-connected. If O is of a hyperbolic type, then highest uniformizations
are (equivalent to) Fuchsian ones.

It follows from the defined order that an uniformization (Δ, G, P : Δ →
S) of the orbifold O will be a lowest one if there is no non-trivial normal
subgroup N of G acting freely on Δ and with Δ/N a planar surface.

It is a well known fact [9] that the lowest uniformizations of closed Rie-
mann surfaces are given by the Schottky uniformizations. The main result
of this paper is the following description of the lowest uniformizations of the
Schottky orbifolds.
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Theorem 5. The lowest uniformizations of Schottky orbifolds are given by
Schottky extensions uniformizations.

2. Proof of Theorem 5

2.1. First part

First, we prove that Schottky extension uniformizations are lowest ones.

Let us consider a Schottky extension uniformization of a Schottky orbi-
fold O = (S,P), say (Ω, K, P : Ω → S); in which case Ω = Ω(K). Let G
be a Schottky group, say of rank g, which is a finite index normal subgroup
of K; so the region of discontinuity of G is again Ω. Let us consider the
Schottky uniformization (Ω, G, L : Ω → R), where R = Ω/G.

Let us assume our Schottky extension uniformization is not a lowest one.
It follows that there exists a normal subgroup N of K, N 	= K, so that
Δ = Ω/N is planar and has no conical points (this means that N acts on Ω
without fixed points).

If g = 0, then G is the trivial group and K is necessarily a finite group
and Ω = Ĉ. As any finite group of Möbius transformations, different from
the trivial group, acts with fixed points on Ĉ, it follows that N acts with
fixed points on Ω, a contradiction.

Let us now assume g ≥ 1. We may assume, by the Planarity Theorem [9],
that Δ is a domain in the Riemann sphere and that Γ = K/N acts as a
Kleinian group. In this way, there is an uniformization (Δ, Γ, Q : Δ → S)
of the orbifold O and there is an uniformization (Ω, N, T : Ω → Δ) of the
planar surface Δ so that P = Q ◦ T .

Clearly, N ∩G is a normal subgroup of K. As Ω/N is a planar Riemann
surface, the quotient Σ = Ω/(N∩G) must also be a planar Riemann surface.
Again, using the Planarity Theorem [9], we may assume that Σ is a domain
in the Riemann sphere and that H = G/(N ∩ G) acts as a Kleinian group.
There is a uniformization (Σ, H, V : Σ → R) and there is a uniformization
(Ω, G ∩ N, U : Ω → Σ) so that L = V ◦ U . As the Schottky uniformization
(Ω, G, L : Ω → R) is a lowest one, we must have N ∩G = G, in which case Σ
is a non-planar surface, a contradiction.

2.2. Second part

Secondly, we proceed to prove that every lowest uniformization of a Schottky
orbifold is a Schottky extension one.

Let us consider a lowest uniformization (Δ, K, P : Δ → S) of the orbifold
O = (S,P). By the Selberg lemma [15], there is a torsion free finite index
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Figure 1: Fundamental domain for K

normal subgroup G of K. Set R = Δ/G, which is a closed Riemann surface
of genus g.

If g = 0, then G is the trivial group and K is a finite group of Möbius
transformations; so a Schottky extension group.

If g = 1, then G is either (i) a Schottky group of rank 1, or (ii) an
Abelian group generated by two parabolic transformations with a common
fixed point. In case (i) we have that K is a Schottky extension group. In
case (ii) we are in presence of a universal covering of R and Δ = C. In this
last case, the only possibility for Δ/K to be a Schottky orbifold is to be
of signature (0; 2, 2, 2, 2) (by Theorem 2 and checking the possible orbifold
quotients regularly covered by tori). In this case, as can be seen in the
book [10], K is generated by 4 elliptic elements of order 2, say E1,..., E4,
so that E4E3E2E1 = 1 (see Figure 1). The cyclic subgroup J , generated by
the parabolic transformation E3E1, is a normal subgroup of K so that K/J
is isomorphic to the free product Z2 � Z2 whose topological action of K/J
is equivalent to the one given in Figure 2, we get a contradiction to the fact
that K produces a lowest uniformization.

Assume now on that g ≥ 2. By construction, there is an uniformization
of R, say (Δ, G, Q : Δ → R), and a (branched) regular covering map T :
R → S with Deck(T ) = K/G, a finite group of conformal automorphisms
of R, so that T ◦Q = P . Set H = K/G. As the group H lifts, with respect
to the uniformization (Δ, G, Q : Δ → R), Theorem 4 asserts that there
is a collection F of pairwise disjoint simple loops on R which is invariant
under the action of H and defines the regular planar covering Q : Δ → R.
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Lemma 6 below asserts that (Δ, G, Q : Δ → R) is a lowest uniformization of
the closed Riemann surface R, so it is a Schottky uniformization. It follows
that G is a Schottky group and that K is an extended Schottky group as
desired.

Lemma 6. (Δ, G, Q : Δ → R) is a lowest uniformization.

Proof. In fact, if (Δ, G, Q : Δ → R) is not a lowest uniformization, then we
may add extra simple loops to F in order to obtain a maximal collection N
of pairwise disjoint simple loops which is invariant under H . In this case,
the new collection N produces a Schottky uniformization of R for which H
lifts. Let this Schottky uniformization be (Ω, F, L : Ω → R). There is also
an uniformization (Δ, N, V : Δ → Ω) so that Q = L ◦ V . At this point, we
have that N is a normal subgroup of G. Now, by the lifting property of H
with respect to this Schottky uniformization and the OAD property of Ω [2],

there is a Kleinian group Ĥ containing F as a finite index normal subgroup
and so that H = Ĥ/F . It follows that N is also a normal subgroup of K

so that K/N = Ĥ . This asserts that (Δ, K, P : Δ → S) is not a lowest
uniformization of O, a contradiction. �

3. Final remarks

3.1. More general Riemann orbifolds

Theorem 5 describes the lowest uniformizations of the Schottky orbifolds.
One may ask for a description of the lowest uniformizations of the rest of
closed Riemann orbifolds. We already noted that an orbifold O = (S,P)
of signature of the form (0; a, b, c) is not of Schottky type. In this case, an
uniformization (Δ, K, P : Δ → S) corresponds to a function group (Δ, K) so
that Δ/K describes O. As consequence of results in [7], it happens that such
a function group is in fact a Fuchsian group; that is, the only uniformizations
of such an orbifold is given by the Fuchsian ones. By Theorem 2, the only
closed Riemann orbifolds we are left to study are the hyperbolic ones of
genus zero which are not of Schottky type.

3.2. Topological types

Schottky groups providing uniformizations of closed Riemann surfaces of
the same genus are topologically equivalent, but there are examples of topo-
logically different Schottky extension groups providing uniformizations of
topologically equivalent Schottky orbifolds. For instance, let K1 be the free
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Figure 3: Fundamental domain for K2. The circles intersect orthogonally.

product of two elliptic transformations of order 2, say E1 and E2 (see Fig-
ure 2), and let K2 be generated by three elliptic transformations of order 2,
say F1, F2 and F3 so that (F2F1)

2 = (F3F2)
2 = 1 (see Figure 3). Both

Kleinian groups are Schottky extension groups, in fact, K1 contains as an
index two subgroup the Schottky group G1 = 〈A1 = E2E1〉 and K2 contains
as an index two subgroup the Schottky group G2 = 〈A2 = F3F1〉. Also,
both Kleinian groups K1 and K2 provide uniformizations of orbifolds with
the signature (0; 2, 2, 2, 2) and they are clearly non-isomorphic as abstract
groups; in particular, they cannot be topologically conjugated.
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