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We determine the solutions in integers of the equation y? =
(x + p)x2 + p?) for p = 167, 223, 337, 1201. The method used
was suggested to us by Yu. Bilu, and is shown to be in some
cases more efficient than other general purpose methods for
solving such equations, namely the elliptic logarithms method
and the use of Thue equations.

1. INTRODUCTION

In this paper we study, as typical examples from
the class of elliptic equations, for a few given primes
p, the diophantine equation

y* = (z+p)(2® +p°) (1-1)

in x,y € Z. The elliptic curves defined by these
equations have been studied by Stroeker and Top
[1994], who proved inter alia upper bounds for the
ranks of these curves. In the cases p = 2 and
p = £3 (mod 8) they showed that the rank is
0, so that the only solution of equation (1-1) is
(x,y) = (—p,0), and in the case p = 337 (with rank
3) all the solutions of equation (1-1) have been de-
termined by Stroeker and Tzanakis [1994]. The
results of [Stroeker and Top 1994] on the Selmer
groups and ranks of (1-1) have been generalized
by Schmitt [1997] to composite p.

In the present paper we will solve (1-1) for the
cases p = 167, p = 223, p = 337 and p = 1201,
thus redoing and extending the work of Stroeker
and Tzanakis, but the method we use differs from
theirs. Notice that in these cases the ranks of the
elliptic curves are 1, 1, 3, and 3 respectively; see
[Stroeker and Top 1994]. We will prove:
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Theorem 1. The diophantine equation

y* = (z +167)(2” + 167%)
has only the solution (xz,y) = (—167,0).
Theorem 2. The diophantine equation

y? = (z + 223)(a” + 223%)
has only the solution (x,y) = (—223,0).

Theorem 3 [Stroeker and Tzanakis 1994]. The dio-
phantine equation

y® = (v + 337)(2® + 337%)

has only these solutions:

x y
—337 0
—287 +3130

2113 £105910
56784 +£13571615

Theorem 4. The diophantine equation
y® = (z +1201)(2* + 1201?)
has only these solutions:
z Y
—1201 0
599 +56940

1999 £131920
08849 £14424010

Three methods of a more or less general nature ex-
ist for solving elliptic diophantine equations, which
we will call the “elliptic logarithms method”, the
“Thue approach”, and the “alternative approach”.
The two latter methods use linear forms in log-
arithms of algebraic numbers, all three methods
lead to rather large upper bounds, that are sub-
sequently reduced by computational diophantine
approximation techniques.

The method of elliptic logarithms was developed
independently by Stroeker and Tzanakis [1994], by
Gebel, Pethé and Zimmer [Gebel et al. 1994], and
by Smart [1994]. It was used by Stroeker and Tza-
nakis for solving equation (1-1) in the case p = 337.

It is applicable in general, if one has explicit knowl-
edge of a full set of generators for the group of ra-
tional points on the curve, modulo torsion. Algo-
rithms for finding such generators can be found in
[Cremona 1992; Gebel and Zimmer 1994], but are
not guaranteed to produce an answer, and some-
times rely on the Birch—Swinnerton-Dyer Conjec-
ture. Cremona has implemented his ideas in a
program called mwrank, and the computer algebra
system Simath contains an implementation of the
algorithm of [Gebel and Zimmer 1994]. T am grate-
ful to the referee for pointing out to me that the
Simath system could verify our results for p = 223,
337 and 1201, but not for p = 167, due to the large
height of the generator of the Mordell-Weil group
in this (rank 1) case.

The Thue approach is the most classical; exam-
ples in the literature are [Ellison et al. 1972; Tza-
nakis and de Weger 1989]. Several factorizations
over appropriate number fields, where one some-
times has to distinguish between many cases, lead
to a finite number of Thue equations, and each
Thue equation leads to a finite number of three-
term unit equations. These can be solved in prac-
tice, if in certain fields the generators of unit groups
and decompositions into prime ideals can be found.
Algorithms for such problems have been developed
by many mathematicians; see, for example, [Pohst
and Zassenhaus 1989; Cohen 1993].

The alternative approach is the most recent to
have been applied in practice. It was used in [Mi-
gnotte and Pethé 1995]; a general description of
its application to superelliptic equations is given
by Bilu [1994]. The method (including a p-adic
variant) was also used in [de Weger 1997]. In this
method one does factorizations in a somewhat dif-
ferent way than in the Thue approach, also leading
to a subdivision in several cases, but ending in a
number of four-term unit equations with special
properties. The route to this unit equation seems
to be shorter in general than the Thue approach re-
quires for reaching the three-term unit equations,
the fields one encounters usually have more nonreal
embeddings into C and hence are easier to treat,
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and also it is our impression that the number of
cases to be distinguished is in general less than the
Thue approach leads to, at least in the few cases we
studied in some detail. However, in the alternative
approach it might easily happen that one has to
factor over larger degree fields, which means that
one faces larger unit ranks, and more complicated
fields.

We feel that it is not possible to give a general
statement on the superiority of one method over
any other. This will depend very much on the par-
ticular elliptic equation one wants to solve. For ex-
ample, in [Stroeker and de Weger 1994] it is shown
that the elliptic logarithms method may succeed
when the Thue approach fails (certainly also the
alternative approach will fail there). The choice
of examples p = 167 and p = 223 in this paper is
motivated by the fact that equation (1-1) is more
difficult to solve by the elliptic logarithms method
than by the Thue and alternative approaches. This
is because the group of rational points of the ellip-
tic curve modulo torsion, which has rank 1 in these
cases, has a generator of extremely large height
[Stroeker and Top 1994], whereas the generators of
the unit groups occurring in the Thue and alterna-
tive approaches are much easier to determine. Fur-
ther, we chose the cases p = 337 and p = 1201 as
examples because they are the smallest two primes
for which the rank of the elliptic curve is 3, and
because in these cases the Thue approach seems
more complicated than the alternative approach.
However, note that in these two cases the elliptic
logarithms method of [Stroeker and Tzanakis 1994]
is to be preferred.

Since generators of the group of rational points
of the elliptic curve modulo torsion are known for
the cases p = 167, 223 and 1201 [Stroeker and
Top 1994], the elliptic logarithms method should
be very efficient in solving (1-1), just like the sit-
uation turned out to be in [Stroeker and Tzanakis
1994] for the case p = 337. We did not try this
out. Our point here is that especially in the cases
p = 167 and p = 223 these generators were hard
to find, and that therefore the Thue or alternative

approaches are to be preferred. Further, our point
with the cases p = 337 and p = 1201 is that the
alternative approach is superior to the Thue ap-
proach.

We remark that our equation (1-1) is only an
example, but that the alternative method works in
principle for any equation of the type y" = f(x),
withn > 2, and f a polynomial with integral coeffi-
cients and with at least three distinct linear factors
over C. In practice it works whenever the fields one
encounters are not too complicated, i.e. when n is
not too large, the polynomial f has enough factors
of low degree, and fundamental units can be found.

2. SOME WORDS ON THE THUE APPROACH

Throughout this paper, p is a fixed prime number
congruent to =1 (mod 8).

Although we intend to prove Theorems 1 to 4 by
the alternative approach, we will give some details
of the Thue approach too, so that we can indicate
how easy or difficult this approach might be.

Let D be the squarefree part of x + p. By (1-1),
it is also the squarefree part of 2 + p?. Then

D|(z* +p*) = (z —p)(z +p) = 2p%,
so D € {1,2,p,2p}. Note that x + p > 0 unless
(z,y) = (—p,0). There exist U,V € Z such that

x+p=DU? a*+p*=DV- (2-1)

The Case D =1

We start with the case D = 1. If p|x then p|V,
hence (2-1) implies (z/p)*+1 = (V/p)? in integers
z/p, V/p, from which it follows that z =0, V = p.
This contradicts  + p = U?. Hence (x,p) = 1,
and by z? + p* = V? there exist m,n € Z with
(m,n) =1 and m > n > 0 such that

x=22mn, p=m*—n? V =m?+n’

Since p is prime this implies that m —n = 1 and
m + n = p; hence

r=+i(p’—1), V=1(p*+1),
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k P
3 337
20 3493720040136817
23 691738922446276321
36 6195980350983582340001417521
99 | 10515898470487430435963999984709018013664104902926438406050690509523838430417

TABLE 1. Cases where solutions with D = 1 exist.

from which we derive by U? = x + p that

U?=1ip+1?-1 or UP=-i(p—-1)7+1

It is immediate that the first case holds, and clearly
this can happen only when p = 1 (mod 8). The
theory of Pell equations tells us that

p= L((l 4 \/i)ﬂerl _ (1 _ \/5)2k+1) -1

V2
for some k € Z, kK > 0. Given p, it is easy to
determine whether it is of the above form. In fact,
the above expression on the right hand side yields
a prime number for only a few k& < 100, listed in
Table 1 (we used the isprime functions of Maple
V.3 and Pari 1.38 as primality tests).

For our favourite p’s thus only p = 337 admits
solutions of (1-1) with D = 1, namely (z,y) =
(56784, £13571615). Note that no p < 3.57 x 107"
other than those in Table 1 admit solutions of (1-1)
with D = 1.

This concludes our treatment of the case D = 1.

The Case D = 2

We write the second equation of (2-1) as p*—2V? =
—22, and factor it over Q(v/2). Standard argu-
ments yield that we may write

p+VV2=(1+V2)p*(A+ BV2)?

for an a € {0,1}, and with unknowns A, B € Z.
Comparing coefficients we find

p' " = A*+4AB+2B* = (A+2B)* —2B*, (2-2)

and taking norms we find —x? = —p?*(A% —2B?)?,
so that by the first equation of (2-1)

2U% —p =x = +p*(A* — 2B?). (2-3)

If a = 0 we add (2-2) to (2-3). If in (2-3) the +
holds, we find U? = A(A+42B). Equation (2-2) im-
plies that A and B are coprime and that A is odd.
Hence A and A + 2B are coprime, and there must
exist B, F' € Z such that A = F? and A+2B = E*.
We substitute this into equation (2-2), and thus
obtain a Thue equation

E* 4+ 2E°F? — F* = 2p. (2-4)

Notice that B = $(E? — F?), and this is even. So
(2-2) shows that p =1 (mod 8).

If in (2-3) the — holds, we find U? = 2(A+ B)B.
If p=1 (mod 8) then B is even, and we find A +
B = E? and B = 2F?, leading by (2-2) to the
Thue equation

E* +4FE°F? — 4F* = p. (2-5)

If p = —1 (mod 8) then B is odd, and we find
A+ B =2F? and B = E?, leading by (2-2) to the
Thue equation

E* — 4E°F? — 4F* = —p. (2-6)

If a = 1 then it follows that p | U, so let us write
U = pU,. Then (2-3) yields

U2 —1 =2 = £(A? —2B%).  (2-7)
p

We add (2-2) to (2-7), and if in (2-7) the +
holds, we find pU? = A(A + 2B). Now note that
A is odd, hence so is U;. If p = —1 (mod 8) then
(2-7) is impossible (mod 8), hence p =1 (mod 8).
In the case p| A we find A = pF?, A+ 2B = E?,
leading by (2-2) to the Thue equation

E* + 2pFE°’F? — p’F* = 2. (2-8)
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And in the case p| A+ 2B we find A = E?, A+
2B = pF?, leading by (2-2) to the Thue equation

E* — 2pE°F? — p?F* = -2, (2-9)

Ifin (2-7) the — holds, we find pU} = 2(A+B)B.
Now note that A is odd, and U; and B are even. If
p| A+ B then (2-7) is impossible (mod p), hence
p|B, and we find A+ B = E? and B = 2pF?,
leading by (2-2) to the Thue equation

E* + 4pE*F? — 4p°F* = 1. (2-10)

So we end up with a number of quartic Thue
equations (2-4), (2-5), (2-6), (2-8), (2-9), (2-10),
which one can try to solve explicitly by the method
described in [Tzanakis and de Weger 1989].

The Cases D =pand D = 2p

In the cases D = p and D = 2p we write D =
pDy, x = pz, V = pW, and find from (2-1)
z+1=DU?,

2>+ 1= D pW?2. (2-11)

Now —1 is a quadratic residue (mod p), so this
shows that p = 1 (mod 8), i.e. these cases do not
occur when p = —1 (mod 8). It is easiest to fac-
tor the second equation of (2-11) over Q(7). Let
ao, by € Z be such that ag > by > 0 and p = a3 +b3.
A prime dividing both z + ¢ and z — ¢ must be
1 44, so we find that there are a,b,c,d € {0,1}
and A, B € Z such that

z 41 =i(1+1)"(ap + boi)°(ag — boi)*(A + Bi)*.
Taking the norm we find
DipW? = 2% + 1 = 2"pt4(A% + B?)?,
and it follows that 2° = D; and (¢,d) = (1,0) or
(0,1). We write
(14 1) (ao + boi) (ao — bo)* = r + s,

so a priori we have eight cases: (r,s) = (ag, £by),
(Zl:bo, ao), (ao + bo, ag F bo), (—ao + bo, Qg + bo) We
always have r? + s? = Dip.

So we find
z41i=(r+si)(A+ Bi)’

for unknown A, B € Z, and comparing imaginary
parts leads to

1=sA?+2rAB — sB>. (2-12)
Further, W? = (A? + B?)?, so we find

Z2 e Dlpw2_12
= (r*+5%)(A*+ B?)? — (sA*+2rAB —sB?)?
= (rA*—2sAB —rB?)?,
hence
D\U? —1=7z=+(rA> —2sAB — rB?). (2-13)

We add (2-12) to (2-13), and in the case of +
in equation (2-13) we obtain

D\U? = (r+s)A* +2(r — s)AB — (r + 5)B?

_ (((r+s)A+ (r — s)B)* — 2D,pB?).

r+s

(2-14)
In the left and right-hand sides there are three
quadratic terms here, and there are three ways of
putting two of them on one side of the equality
sign. Hence we can factor in three ways, namely
over Q(/(2/Dy)p), over Q(D:(r + s)), or over
Q(—2p(r + s)). Any of these factorizations will
yield quadratic form expressions for A and B, whose
substitution into (2-12) gives a few Thue equa-
tions, difficult to describe in general but easy to
find for each particular value of p.

In the case of — in equation (2-13) we obtain

D\U? = (s—71)A*+2(r +s)AB — (s — r)B?
1 ; ‘
= —((s =) A+ (r+5)B)" —2D:pB’),
(2-15)
which again can be factored in three ways, namely
over Q(/(2/Dy)p), over Q(D;(s — 1)), or over
Q(—2p(s —r)). As above this leads to a few Thue
equations.
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The quartic Thue equations thus found can in
principle be solved following the method outlined
in [Tzanakis and de Weger 1989].

Some Details for p = 167, 223, 337, 1201

When p = 167 or p = 223 we only have to look at
the Thue equations (2-6) and (2-10). The only bot-
tlenecks in the Thue approach are the determination of
fundamental units in the quartic field associated to the
binary form of the Thue equation, and the determina-
tion of the primes in this field lying above the primes
in the constant term of the Thue equation. In the case
of equation (2-6) we have for each p the same quartic
field, namely the one generated by a root of z* —4x?% —4,
which is an easy field, of discriminant only —21°.

In the case of equation (2-10) we have for p = 167
a quartic field with discriminant —2'°1672, generated
by a root @ of x* 4+ 33422 — 27889. The class number
is 2, the regulator is 135.05459..., and fundamental
units are #02 and one with coefficients over 30 digits
long. This is a bit awesome, but still workable. For
p = 223 the situation with equation (2-10) is much
better, mainly because of the large class number, which
keeps the fundamental units small (notice that the class
group itself is irrelevant to solving Thue equations with
constant term equal to 1). Indeed, we have a quartic
field with discriminant —2'92232, generated by a root 6
of z* 4+ 44612 — 49729. The class number is 20, the reg-

ulator is 14.81172.. ., and fundamental units are 536>
and 1903 — 1980 + 13862 — 32.6%  which is very well
workable.

These remarks show that the Thue approach is prac-
tically possible for p = 167 and p = 223, although a
bit more difficult for p = 167. We will not work out
details, as it is a matter of routine only, following the
arguments outlined in [Tzanakis and de Weger 1989].

When p = 337 or p = 1201 we have to solve the
equations (2-4), (2-5), (2-8), (2-9) and (2-10), and to
work further with equations (2-14) and (2-15). Equa-
tions (2-4) and (2-5) are easy, as they give rise to the
quartic field of discriminant —2'° studied above. Equa-
tions (2-8) and (2-9) are trivial in the cases p = 337
and p = 1201, because in the quartic fields the only
prime ideal of norm 2 is nonprincipal, so there exist no
algebraic integers with norm 2 in these fields. Equation
(2-10) is still doable, although for p = 1201 we get a
fundamental unit with about 10 digit coefficients.

The real problems start when we treat (2-14) and
(2-15). For example, the solution z = 58849 of (1-1)
with p = 1201 (here ap = 25, by = 24) comes from the
solution A = 1, B = 0, U = 5 of equation (2-14) in
the case (r,s) = (49,1). This equation reads 2542 +
48AB — 25B% = U?, and the left-hand side factors over
Q(+v/1201). This quadratic field is quite unpleasant,
since its fundamental unit is

w = 241828415471370634067447

+ 14370833712188846154770 (2-16)

1++1201
—

The above solution comes from the factorization
1+ 1201 \?
954 + 24B + BV1201 = <E + F% > ,
which gives A = £ E? - 2FF + 21 F? and B = EF +
+F?. This substituted into (2-12) yields the Thue equa-
tion
2E*4+4808 E*F — 109288 E*F?+ 1329508 EF3+872977F*
= 1250,

which obviously has the solution E = 5, F = 0. The
quartic field related to the binary form of this equation
is generated by a root of z* — 9822 — 1, and so the Thue
equation is relatively easy to solve.

But we must also study, among others, the case of

2
954 + 248 + ByV1201 = w(E 4 plrvizo “212(”) ,

for w as in (2-16), which leads as above to

76563827781 198903287592E2

A=
25
2729917496091439647751009
+ EF
25
n 48668214164810781620306209F2
50
and

B = 7185416856094423077385 E*
+ 256199249183559480222217 EF

N 4567449362840213326653217F2
5 .
This, substituted into (2-12), yields the horrible Thue

equation shown at the top of the next page—and this
is only one of a number of such equations to be solved.
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2642887061864282492960123394168352279287578443678¢*

+ 188466638606297413117337095284836231611892932710912¢> f

+ 5039896669265154607004227752430288450135480597806868 ¢ £

+ 59899922694732660339870613753737728450324866878518212¢ f*

+ 266969814136940895435179041059948854619355246603967953 f* = 1250,

A typical Thue equation occurring for p = 1201 (see end of preceding page).

We can try to avoid such complicated equations by
writing (2-14) as (254 + 24B)? = 25U% + 1201 B2, and
factoring over Q(+/—1201), which is a much nicer field
from the point of view of units. Let’s see what this
leads to. The field Q(v/—1201) has a cyclic class group
of order 16, the prime 2 ramifies, and the prime 5 splits.
From this it’s easy to conclude that there is an integral
ideal a such that (5U + By/—1201) = (5)%a?, where
a € {0,1}. If p is the ideal of norm 2, which is nonprin-
cipal, then either a or pa is principal, written as (E +
F+/—1201), because a? and p? are principal. From this
it follows that U = £(E? — 1201F?), B = 2dEF, and
A = L(E?* + 48EF + 1201F?), where d € {1,%,5,3}.
We substitute this into A% +98AB — B? = 1, and thus
find the Thue equations

E*+4804F3 F—232944 E*F2 + 5769604 E F°+ 1442401 F*
= 25,100, 625, 2500.

The quartic field we meet here is generated by a root
of #* — 9822 — 1, and is friendly enough to admit an
efficient solution. However, we have treated only one
case of (r,s), so that the number of Thue equations to
be solved will be much larger, although probably not as
large as when factoring over Q(+/1201).

Our conclusion is that the Thue approach is efficient
for p = 167 and p = 223, and, when factoring in the
right way, might be doable for p = 337 and p = 1201, al-
though a large number of cases have to be distinguished.

3. THE ALTERNATIVE APPROACH

Deriving a Four-Term Unit Equation

We start off as in the Thue approach, so our start-
ing point now is the system (2-1) of Section 2. We
have seen that we only have to look at the cases
D =2,p,2p, and if p = —1 (mod 8) we may even
restrict ourselves to D = 2.

From now on we will concentrate only on our
four favourite values for p, namely 167, 223, 337
and 1201. However, we stress that for any reason-
able value of p one should be able to carry out the
method as easily as in the cases worked out below.

We factor the quadratic equation in (2-1) over
Q(7). Let ¢ be the squarefree part of x + pi. We
can write

x + pi = OK?

for an algebraic integer k € Q(¢). If 7 is a prime el-
ement in Q(¢) dividing § but not D, then it divides
also z—pi, hence it must divide (z+pi) — (x —pi) =
2pt. This shows that we can take

6 =i"(1+1)"(a+ Bi) (o — Bi)"

for a,b,c,d € {0,1}, where we take

a=p, p[F=d=0 if p=167 or 223,
a=9, [f=16 if p=337,
a=24, B=25 if p=1201,

so that a+ 1 is a prime element dividing p. Notice
that D is the squarefree part of N(§) = 2°p=te.

We now have the cases given in Table 2. Note
that sometimes we took ¢ = —1 in stead of a = 1,
which is not an essential change.

Let’s pause for a moment and see what happens
to the known solutions, listed in Theorems 1 to
4 in Section 1. For any p there is the solution
x = —p, which occurs in case 11, with § = p — p1,
and Kk = ¢. For p = 167 and p = 223 there are no
other solutions. For p = 337 and p = 1201 we give
data in Table 3 (neglecting the solution z = 56784
for p = 337, since that one has D = 1).
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case a b (c,d) 0 D
I 0,-1 1 (0,0) 144 2
_ (L,1) ifp= 1 (mod38) .
I 0-11 {(1,0) if p=—1 (mod 8) pEp 2
m o0 0 (1,0), (0,1 a+Bi P
IV 1 0 (1,0), (0,1 8+ ai P
Vv 07_]— 1 (170)7(071 (a+ﬂ)i(a_ﬂ)7’ 2p
VI 0,-1 1 (1,0),(0,1) (a=pB)t(a+B)i 2p
TABLE 2. Possibilities for .
p T case 5 K Now we apply complex conjugation to (3-1) and
337 287 1 14+i 13412 (3-2), and obtain
337 2113 I 1+ 37— 12 —
e : DU + 07 = 3%°, (3-3)
1201 599 I 1—1 18 + 25: _ —
1201 1999 I 1—i 324250 DU —0r = o(y)g". (3-4)
1201 58849 VI —1—49: 24+ 25

TABLE 3. Tracing the known solutions.

We continue our general discussion. We elimi-
nate x from z+p = DU? and x+pi = k%, multiply
by D, and thus find

Dp(1 —i) = (DU)? — D§K>.

We factorize this equation over the field K = Q(6),
where #? = D¢. This is a totally complex quartic
field, a quadratic extension of Q(i). Let ¢ be a
fundamental unit in K. Then there exists a finite
set of v € K such that

DU + 0k = e*, (3-1)

for some a € Z. In the Appendix to this paper we
will determine complete sets of nonassociated 7’s
for each 0, and we present the necessary data on
the number fields K.

Let o be the nontrivial Q(7)-automorphism of K
that sends 6 to —#. Then

cos) = ¢
for a fourth root of unity ¢, so we find from (3-1)

DU — 0k = o(v)o(e)* = ("o(y)e " (3-2)

From the four equations (3-1) — (3-4) we eliminate
the variables U, k, which is simply done by noting
that in the left-hand sides

(3-1)+ (3-2) = (3-3) + (3-4).
In the right-hand sides this gives a four-term unit

equation:

Ve + ¢ o(7)e T =7E +C o(7)E T (3-5)

Here only the variable a € Z remains.

Deriving an Upper Bound

We take an embedding of K into C such that |¢]| >
1. Put ¢* = a (mod 4) with a* € {-1,0,1,2}. We
rewrite equation (3-5) as

vet —FE =C o(7)E ¢V a(y)e7",

and deduce from this, for the case a > 0 the in-

equality
‘% (é) _ 1‘ S 2|U(7)| |€|72a7 (3—6)
7 \E il
and for the case a < 0 the inequality
(é) o) (é)_ 1 <o Do 5y
¢/ o(y) \E o (7)]
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Notice that by yo(y) = £Dp(1 £ i) we have

-1
a(v) = (l)

a(7) 7

for a b* € {—1,1} (here n is a generator of the
torsion unit group, i.e. n = =%i). Further, notice
that we always have v = £y, or v = £n*0(v;),
where the numbers 7, for j in a subset of {1,2, 3}
are given in the Appendix. In what follows, each

different ; is treated separately.
Now define ag, oy, a9 € (—m, 7] by

eiao % eiou —

_'y_j’

iotz_ -
7 € _7/7

z
50 ag = /2. Inequality (3-6) now reads
i(£(o—laz)+aar) 1| <92 |0'|(f)|/)| |6|72a
N Y

for an | € Z, that is determined modulo 4 only,
and similarly inequality (3-7) becomes

le

‘62'(:&(0(0710[2)70,0(1) o 1‘ S ) |7| |€|2a.

lo(7)]

So we now put
A=a0+Aa1 —laz

where A = a or A = —a such that the left-hand
sides of (3-6) and (3-7) become |e*™* — 1|, and
where we take [ so that |A| < . This choice of [
ensures that

B =max{|A|,l|} <4+2]A] (3-8)

Then, by (3-6) and (3-7), the following inequality
holds in all cases:

|A| < Kle| 2141 (3-9)

where

o flel b
h=z {W|de}'

In the Appendix we give the values of K and log |¢]
in all our cases.

Note that A = 0 implies by (3-5), (3-6) and
(3-7) that ve equals its complex conjugate, hence

by (3-1) and (3-3) the same is true for #x. Then
by the definition of # we have that x + pi = dk? =
(0K)?/D equals its complex conjugate, which is ob-
viously false. So A # 0, and we are in a position

to apply the theory of linear forms in logarithms.
The result of [Baker and Wiistholz 1993] is

|A] > e s B (3-10)

for a large constant C'. In the Appendix we com-
puted C for all cases. Notice that in all cases ¢/
and /7 lie in a field of degree 8 over Q. Fur-
ther, in case II it appears that the linear form in
fact has only two terms, since then it happens that
oo = 1, so that we can write A = Aay — L /4 for
an L € 7Z, and redefine o, as iw, and «q as 0.

The lower bound (3-10) for |A| contradicts the
upper bound given by (3-9) if B becomes large
enough (and thus, in view of (3-8), |A| too). Pre-
cisely, in this way we find by (3-8), (3-9), and
(3710)7

Clog B > —log|A| > —log K + 2|A|log |¢]|
> —log K —4log |e| + Blog |¢].

From the numerical values of our constants we thus
find

where By is given in the Appendix (and in Table 4
below). In fact, in all cases By < 1.65799 x 10%°.

Reducing the Upper Bound

In reducing the upper bound (3-11) we follow [Tza-
nakis and de Weger 1989]. Take a constant C,
somewhat larger that BF. Put

A:(M;]K&ﬂ)’y:(%gw>’

where [ -] denotes rounding off towards zero. Note
that in case 1l we have y = 0. Consider the lattice

I'={Az:xcZ"},
and put
dl,y) = min_ |u—y|

uwel, uty
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By a variant of the Euclidean algorithm it is easy
to compute d(I',y). For a solution (A,[) of (3-9)
we define A by

(8- ()

As in [Tzanakis and de Weger 1989] we find A% +
A > d([,y)? and |A — CoA| < 14 2By. Using
(3-9), this shows that if d(T',y) > /5B2+4B,+1,
then

1
A — (1 log K
| |<210g|5|<0g00+ 08
~ log(V/d(T,y)” = BE — (1+2By)) ).

We did this reduction in each case, using Cy =
10*3, and in case I for all p subsequently using Cy =
10° and the new B, being 4 + 2x the just found
reduced upper bound for |A]. We present results
in Table 4.

Note that the size of the initial upper bound
By is determined almost entirely by the number
of terms in the linear form in logarithms (2 in case
IT and 3 in the other cases). Further, the size of
the reduced bound is determined almost entirely
by the regulator log|e|. This becomes apparent
in a remarkable way in case Il for p = 167 and
p = 1201, where the bound is reduced in one step
from 1.04804 x 10" to 0, even with a far too large
Cy, and hence far too large d(I',y).

We thus reach |A| < 7 in all cases. For the few
remaining possibilities we checked equation (3-5),
and thus found only the solutions listed in Table 5.

This completes the proof of Theorems 1 to 4.
The total computation time is to be measured in
minutes only on a 486 personal computer.

APPENDIX

Our main task in this Appendix is to compute all pos-
sibilities, up to units modulo torsion, for the parameter
v in equation (3-1). This parameter satisfies

Nijoi)(7) = o () = £Dp(1 £ 1),

(A-T)
Ni/q(v) = 2D?p".

case p j| Co By < dT,y) > |Al <
I 167 1 | 104 6.57394 x 1019 | 4.18793 x 1021 33
10° 70 203.769 6
I 223 1| 10%  6.88974 x 1019 | 3.96114 x 1021 33
10° 70 288.118 6
I 337 1| 10%  7.34120 x 1019 | 6.81355 x 1020 34
10 72 175.413 7
I 337 2| 10%  7.34120 x 1019 | 3.85752 x 1020 35
10° 74 308.084 5
I 1201 1| 10% 8.73426 x 109 | 4.03328 x 102! 33
10° 70 287.868 5
I 1201 2| 10% 8.73426 x 109 | 1.12741 x 102} 34
10° 72 177.341 7
II 167 1| 10% 1.04804 x 105 [ 2.32314 x 1021 0
II 223 1| 10% 1.04804 x 105 [ 2.92249 x 1021 3
II 337 1| 10% 1.04804 x 1015 [ 2.96975 x 1021 2
II 1201 1| 10% 1.04804 x 10'® | 2.91083 x 102! 0
III 337 1| 10% 1.29880 x 1020 | 1.37682 x 1021 4
III 337 2| 10%  1.29880 x 1020 | 8.77527 x 1020 5
III 337 3| 10% 1.29880 x 1020 | 3.78415 x 1020 5
III 1201 1 | 10%  1.58087 x 1020 | 3.07190 x 102! 3
III 1201 2| 10%  1.58087 x 1020 | 1.24798 x 1021 3
IV 337 1| 10% 1.29880 x 1020 | 1.17413 x 10?2 6
IV 337 2| 10% 1.29880 x 1020 | 4.12866 x 102! 7
IV 1201 1 | 10%% 1.58087 x 1020 | 5.52862 x 1020 3
IV 1201 2| 10% 1.58087 x 1020 | 1.63354 x 1021 3
IV 1201 3 | 10%% 1.58087 x 1020 | 2.30565 x 10?2 3
VI 1201 1| 10%  1.65799 x 1020 | 2.44886 x 1021 5
VI 1201 2 | 10%3  1.65799 x 1020 | 3.13041 x 102! 5

TABLE 4. Data of the reduction.
p case Ty a T

337 I Y1, 0'(’71) 0 —287
337 1 Y2 2 2113
337 1 no(y2) -2 2113
1201 I Y1 1 1999
1201 I () -1 1999
1201 I 772 1 599
1201 I o(7y2) -1 599
167 I vy, 0(n), m, no(n) 0 =167
223 1II  m,o0(n),m,no(n) 0 —223
337 Iy, 0(n), nn,mo(n) 0 =337
1201 II v, 0(m), 971, no(m) 0 —1201
1201 VI 772 1 58849
1201 VI no(y2) —1 58849
1201 VI Y2, 0(72) 0 58849

TABLE 5. The solutions of (3-5).
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case p fo fo integral basis 0 A

I all rt—42%+8 zt =222 42 1, @, @2, ¢ [0,2,0,-1] 29

II 167 r*— 668224223112 ot —3342%+55778 1L, ¢, 9% 56" [0,2,0,—-1] 2°-1672

I 223  2*—89222+397832 24— 44622 +99458 1, ¢, 5= 0%, sh=¢® [0,2,0,—1] 292232

II 337  2*—134822+908552 2t — 67422 +227138 1, 9, 5=¢2, =¢® [0,2,0,—1] 293372

I 1201 o*—48042%+11539208 2% —240207+42884802 1, ¢, thr?, mhzp®  [0,2,0,—1]  2°.1201°

III 337  2*—606622+38272753 1t —23-302+415+20 1, @, 2+3ﬁ+@2, 2+*’4+@3 [25, -2, —48,32] 2%-337

I 1201 o — 5764822+ 1732323601 2t —4822+1201 1, ¢, L2 ke’ [0,49,0,—25]  28-1201

IV 337 o*—1078422+38272753 vt — 3222 4337 1, ¢, 20 2ekel [034.0,-9] 28-337

IV 1201 2% —6005022+1732323601 a'—20°—11a2+120+72 1, ¢, 22ke® Sedke’ 49 _6 72 48] 24.1201

V337 z*—3370022+ 306182024 ot — 5022 +674 1, p, S Bete 0,53,0,—7] 2°-337

V1201 z*—23539622+13858588808  a* —98x2+2402 1, ¢, 02, ©° 0,98,0,—1]  2°-1201

VI 337  2%+943622+306182024 ot — 1422 +674 1, p, 8" 18edbe )32 0,25 2°-337

VI 1201 2*+480422+ 13858588808 ot — 242 42402 1, p, B A8pty’ 0,48,0,1]  2°-1201

case p o(p) class group € log |e| 7 ¢

I all —¢  trivial [1,1,0,0] 0.7642854597...  [1,0,—1,0]

I 167 - Cs [1027457199191650425763818161462543, 76.6159777243 ...  [1,0,—1,0] —1
82741477608131079434098049631270,
—92597727070722596905183570301825,
—28846045502914700227671961576290]

I 223 —op Cho [3121, 172, —1337,108] 8.4026350290...  [1,0,—1,0] —1

II 337 —p CsxCy [31679,2274,10783, —288] 11.3807589430...  [1,0,—1,0] —1

II 1201 —p  CsxChi [870467395091137, 18387380204044, 34.7562401985...  [1,0,—1,0] 1
—495880468949768, —14594648896220]

III 337 l—¢p  trivial (115,59, 7, —45] 5.3601764068 ... [1,1,—1,0] —n

I 1201 —¢ Cy (9271, 1752, —2359, —829) 9.5892515738...  [1,0,—1,0] 1

IV 337 —p Cy [38,11,—7,—3] 3.9116856241... [2,0,—1,0] 1

IV 1201 1—¢  trivial 2133, 881, 718, —303] 8.7179705990...  [1,1,—-1,0] 7

Vo337 —p Cy 329,41, —128, —20] 6.1017599984 ...  [4,0,—1,0] —n

V1201 —o Cs [7,1,0,0] 2.6390963699 ... [49,0,—1,0] 7

VI 337 —¢ Cy [1,-1,3,0] 2.3120607729...  [1,0,—1,0]

VI 1201 —¢ Cs [1,-10,49,0] 4.9417454873...  [1,0,—1,0] —1

TABLE 6. Field data. The number 6 is defined on page 250. In each case we give the field in terms of a somewhat
simpler generator . Top: fp and f, are defining polynomials for § and ¢. The notation [a, b, ¢,d] is used for
an algebraic number to denote its coefficients with respect to the given integral basis. (Note that K is always
a quadratic extension of Q(4), and is totally complex.) A is the field discriminant. Bottom: ¢ is the nontrivial
Q(7)-automorphism, € is a generator of the group of units modulo torsion, i is a generator of the group of
torsion units (hence an embedding into C sends n to +i), and { = eo(e).
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We will also compute some other paramaters needed
in Section 3. Numerical values of the «; are given to
50 decimal places, which is sufficient to perform the
reduction steps.

We have to study several quartic fields K = Q(6),
which we did using Pari 1.38. (The number 6 is defined
in Section 3.) The results are presented in Table 6.

Our next task is to compute the decomposition of (2)
and (p) into prime ideals, and from this, all possibilities
for 7, using (A-1). We always have v = £n*y; or v =
+nFo(y;) for k € {0,1}, where v, is given in Table 8.

Note that in the cases V for both p = 337 and p =
1201, and in the case VI for p = 337 we have found a
contradiction: no principal ideal satisfying (A-1) exists.

We next have to compute heights. We made maybe
sometimes rough estimates, but they are sufficient for
our purposes. In fact, in any case we have

h(e/2) < 2h(e) = log ],
h(v;/75) < 2h(7;) < % log Nijq (v) = log V2Dp.

Note that in the cases II for all p we find v, /77 = e>7/4,
so the linear form A can be written as A = Aa; — Lw/4.
So then we have redefined ay as 7/4, and ag as 0.

We now have sufficient data to apply the main theo-
rem of Baker and Wiistholz [1993]. Thus we computed
the constant C' appearing in inequality (3-10) in each
case, and we give C, K, By in Table 7.

Finally we present in Table 9 the numerical values of
the numbers ag, a; to sufficient precision. They serve
as input for the (essentially Euclidean) reduction algo-
rithm.
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case p  decomposition ideals (7) o7
I all (2) =4 q = ([0,1,0,0])
I 167 (167) = po(p) p= ([1 14, -2, —4]) Q°pmo(p) ™ 7 = [12, —4,-20, 3]
I 223 (223) =po(p) p=([99-13]) Q*p"o(p) = [18,16,6, —9]
(337) = pL= ([37 17 1) 1]) 3,m I-mn 1-n = [10 26 0 25]
L 38T oppeo(p2) 2= (L -2,2,2)) q°pTo(pr) " pzo(p2) =[14, 18,8, 17]
(1201) = pL= ([37 27 2 2]) 3.m 1-m,n 1-n = [66 16) _50) _7]
b0 o ppao(ps)  p = ([1,5.0,0) plo(p) o ()T g, = (74, 94, 50,7
(2) =q* q = ([32945578597020996,
—1592306022993617,
—24269413632834339,
1675060839211249)) 5 B
I 167 (167) = po(p) p = ([293555214456623127, 9P 71 =10,0,0,1]
—24269413632834339,
—13820054308344544,
7796624334323841))
(2) = q4 q= ([567 3) _26) _2]) 3 —
228 099 —po(p)  p=([223,-26,223,-2)) TP 7 =0,0.0.1]
II 337 (337) =p2p3 p1, p2 nonprincipal q3p1pa 7 = [0,0,0,1]
pip2 = ([3033, 87, —2696, 120])
(2) =q* q nonprincipal
(1201) = po(p) p1 nonprincipal
qp1 = ([—57159144, 249799, 5 _
I 1201 111027622, 1988755)) 9°pip2 71 =10,0,0,1]

p2 = ([—111677901, 3387622,
8233730, —1145122])

(2) =q’0(a)>  a=([0,0,1,0)) - 71 = [624, 200, —407, 88]
IT 337 (337) = puo(pr)p3  p1 = ([1,-6,4,0)) q"o(9)! " plo(p1)* i 72 =[0,0,337,0]
p2 = ([1,-2,0,0]) = [3580, 3025, —3956, 1117]
(2)=4q" q = ([23,3,-61,7))
_ 2 _ 212 1 = [6001, —2623, 9708, —480)]
HE 0L 200 = pe(pops z; _ &8138% Wi (pr) 2 = [27623, 3603, — 73261, 8407
(2) - q4 q = ([27 17 1)0]) _ _
IV 337 (337) = pio(pu)pi  p1=([3,1,-3,0]) apio(p1)?® 'p3 ez [é?i 33776’313574705]
pz:([07170;0]) ’72_[ ) ) ) ]
(2)=q’0(a)*  a=([2-2,1,0) = [2722, 9668, —9940, —2797]
IV 1201 (1201) = pro(p1)ps  p1 = ([27,17,-30,7]) g™ o(q) "plo(p1)? 'p3 = [2402, —2402, 1201, 0]
p2 = ([1,-2,0,0]) = [6806, 7600, —3635, —2362]
vV 337 (2) =" p1,p2 € A® Splo(p1)?'p3 none
(337) = p1o(p1)p3 9P p2 TPLotp
v o1201 D=9 ) € A* o (p1)>~'p3 none
(1201) = p1o(p1)p3 9P, P2 a°pio(m)*'p3
vioszr JB=C L €Al o(p1)>"'p3 none
(837) =pio(p)py BP0 AP0 (p) "}
(2)=4q" q = ([10,~1,-5,1]) _
VI 1201 (1201) = pio(p1)p3  p1 = ([21,2,—10,—2]) P®pto(py)?'p2 " = [2018, 342, 392, —199]
ps = ([49, —5, —25, 5]) 5 = [12010, 2402, 0, —1201]

TABLE 8. Possibilities for ;. In the column () the parameters m,n run through {0,1}, and [/ runs through
{0,1,2}. In the column “ideals”, A is an ideal class generating the class group.
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case D J

I all 1 a; = 0.42707858639247612548064688331895685930333615088099 . . .

I 167 1 oo = 2.04637251790229010116078165540835617879426934709549 . ..

I 223 1 oo = —0.03925703029925735306974525816603622382406447435049 . ..

I 337 1 ap = —1.7536062071392217780080203473266603322852108928865 . . .

I 337 2 oo = 2.2110346230503769489584456131685011650171155930184 . ..

I 1201 1 oo = 2.9635347463178025795862305781960138740635273317856 . . .

I 1201 2 ap = —3.0562529567499106804509985762022363119923815077681 . ..
II 167 1 a1 = —0.19745572088331441539615662654250512853642884231739 . ..
11 223 1 a1 = —1.28628443917500963152984929655629236963064676941704 . . .
11 337 1 a; = 0.49737573080345337189592038689826874911837531477174 . ..
II 1201 1 o1 = —1.8476993632942805074449396893957480676706619129465 . . .
11 337 1,2,3 o1 = —1.20991586741567359323493945362902447518715319378315 . ..
11 337 1 oo = 2.57820224934360735136631263501690544758445762488863 . . .
11 337 2 oo = 1.11214435505078374419082988153467881138852208272066 . . .
11 337 3 ap = 0.856002328173633730250286581681476650379739734335857 . ..
III 1201 1,2 a1 = —0.657789678520481166779189498837670710091210627217237 . ..

I 1201 1 g = —2.68071431715477348910516378548331217581427470133947 . ..

I 1201 2 ap = 2.68508932945258551223657728687846251819348236314000 . . .
v 337 1,2 a1 = —0.568018734012102541798376583046650557465258549542252 . ..
v 337 1 ap = 1.03045002542603731156213285862393744666379187397820 ...
v 337 2 ap = 0.501388796391397038716472554296550442316663075072650 . . .
IV 1201 1,2,3 a1 = 0.172668798235089931546778117445675675351495031660719 . ..
IV 1201 1 ap = 1.65664292192666408867224763512233981880431662537874 ...
IV 1201 2 oo = 0.807704955972425812187470144570839458385135024414367 . ..
IV 1201 3 oo = —3.01015686533651577121317261181448811087972094426439 . ..
VI 1201 1,2 a1 = 1.55049299476067579365442935933824729518686421685792 ...
VI 1201 1 oo = 1.52323200061915050392055616818253122637170183429667 . ..

1.58094799281200703201976785779050351555444494110236 . . .

V1 1201 2 Qo

TABLE 9. The input data for the reduction algorithm.
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