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A DISCRETE NETWORK APPROXIMATION FOR EFFECTIVE

CONDUCTIVITY OF NON-OHMIC HIGH-CONTRAST

COMPOSITES∗

ALEXEI NOVIKOV†

Abstract. We develop a discrete network approximation to effective conductivity of high con-
trast, highly packed particulate composites with nonlinear constituent relations. The key tool is
the perforated medium approach, which provides a simple mathematical justification of the discrete
network approximation by variational techniques.
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1. Introduction

The understanding of the overall properties of particulate media is relevant to as-
pects of virtually every branch of science and engineering, especially materials science,
chemical engineering, biology, bioengineering, environmental science, geophysics, and
fluid dynamics. The overall properties of high-contrast particulate media are difficult
to calculate analytically and numerically. When the concentration of inclusions in the
hosting medium (matrix) is high, these properties can be approximated by analogous
properties of a discrete network [1–6, 13, 16, 19, 28].

The discrete network approximation is useful because it is easy to implement
numerically, and at the same time it captures geometric patterns of the location of
inclusions in the matrix. The importance of geometric patterns in the evaluation
of the overall properties of high contrast particulate media can already be seen for
periodic composites. At moderate volume fraction â, the effective conductivity is of
the order of the conductivity of the matrix (see, for example, [23, 24]). If, however,
the contrast ratio of the constituents is assumed to be ∞, then for the same volume
fraction of disks (equal to π/4) for the hexagonal lattice, the effective conductivity
â = O(1) [6], while for the square lattice â = ∞ [18].

The first rigorous mathematical justification of a network approximation was de-
veloped in [7–10] for high-contrast media that arises in imaging. For particulate
composites and suspensions with linear constitutive relations, a network approxima-
tion was developed in [2–6]. The main objective of this paper is to develop and justify
a discrete network for particulate composites where the hosting medium has a nonlin-
ear constitutive relation. The main motivation of this work is to explain a perforated
medium approach, a mathematical tool that allows to construct discrete network ap-
proximations to effective properties of high-contrast materials. This approach allows
a simple derivation and justification of a discrete network approximation.

1.1. Formulation. Consider a two-dimensional model of a two-phase com-
posite that consists of a matrix in which a large number of perfectly conducting
inclusions are randomly distributed. The composite is modeled by a rectangle Π =
[−1, 1] × [−L, L]. The inclusions are modeled by identical non-overlapping disks Bi
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720 DISCRETE NETWORK FOR HIGH-CONTRAST COMPOSITES

of radius R, i = 1, . . . N , where N is the number of inclusions, see figure 1.1. The
concentration of the inclusions is high, that is, the characteristic distance between
two neighboring inclusions is much smaller than their radius. Then the domain

Q = Π \
N⋃

i=1

Bi (1.1)

models the matrix of the composite.

Q

LL

1

1

x

y

Fig. 1.1. Matrix with inclusions

The matrix is a (nonlinear) homogeneous medium, and we will assume that the
current-electric field relation is the power law:

J = |E|p−2
E, p ≥ 2, p ∈ N. (1.2)

The electric field is determined by a potential E = −∇φ(x, y), and the current field
is divergence free, ∇ · J = 0. So in the matrix the electric potential satisfies

∇ · |∇φ|p−2∇φ = 0. (1.3)

The inclusions are assumed to be ideally conducting:

∇φ(x, y) = 0, on Bi, i = 1, . . . , N. (1.4)

There are no sinks or sources inside the disks, which amounts to

∫

∂Bi

n · Jds =

∫

∂Bi

|∇φ|p−2
n · ∇φds = 0. (1.5)
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As it is natural, when bulk effective properties are discussed, we impose the constant
applied field boundary conditions (Dirichlet boundary conditions on the top and the
bottom boundaries and Neumann boundary conditions on lateral boundaries):

a) φ(x,±1) = ±1, b) n · ∇φ(±L, y) = 0. (1.6)

The effective conductivity is

â =
1

2|Y |

∫

Q

J ·Edxdy =
1

8L

∫

Q

|∇φ|pdxdy.

We will ignore the normalizing constant 8L and set

â =

∫

Q

|∇φ|pdxdy. (1.7)

1.2. Discrete network approximation. Our goal is to investigate â in (1.7)
when the concentration of inclusions is high, and their geometric distribution is far
from periodic. For general composite materials homogenization, variational bounds
and other methods are used (see e.g. [25] for a good review of extensive literature
on the subject). These methods, however, do not provide an accurate description of
the effective properties of high-contrast particulate materials at high concentration
of particles, because such properties depend on singularities of the solutions, e.g.,
equations (1.3)–(1.7). These singularities occur exactly in the areas (necks) between
almost touching particles (see figure 1.3). The location of these singularities can be
characterized naturally by the location of edges in the discrete network. Therefore
networks, where vertices are the particles, naturally arise. Asymptotic discrete net-
work approximations on these graphs are then used to characterize these properties in
such materials (see, e.g., [1, 13, 16, 19, 28]). The effective conductivity â (1.7) or, more
generally, other bulk properties of a composite are then determined approximately
by the properties of this network. This representation by a network shows clearly
geometric patterns in a particulate medium, for example clusters of particles.

The discrete network approximation is a discrete network, which models the com-
posite, and a discrete energy, a function that approximates the value of the effective
conductivity. Here we give a conceptual description of the discrete network approxi-
mation, and review the rigorous construction in section 2.

The discrete network is the Delaunay triangulation, associated with the centers
of the inclusions: the vertices are centers of the inclusions and the edges are the
edges of the Delaunay triangulation, as depicted on figure 1.2. In addition to the N
vertices which correspond to inclusions we assign the vertex xN+1 to the whole upper
boundary and xN+2 to the whole lower boundary, respectively. In order to define the
discrete energy we assign a potential1 ti to each vertex xi and assign the local energy
gij = gij(Πij , ti, tj) to each edge Πij . Then the discrete energy is

âd = min
ti,i=1,...,N

∑

Πij

gij |ti − tj |p, tN+1 = 1, tN+2 = −1, (1.8)

where the summation is over all edges Πij .

1Note that condition (1.4) implies that φ is a constant on each inclusion.
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Fig. 1.2. Particulate composite and its network

1.3. Approximation theorems. Rigorous mathematical justification of dis-
crete network approximation is based on geometric and asymptotic arguments which
are coupled together. As a result, all rigorous results [2–10] on construction of asymp-
totic discrete network approximations for high-contrast composites are complicated
and produced on a case by case basis. Such complicated constructions are not attrac-
tive for practitioners. The purpose of this paper is to address this issue by separating
the geometric and the asymptotic arguments.

The geometric argument says that a good approximation to effective conductivity
arises if only take into account nearest neighbor pairwise interactions. Mathematically
it means that it suffices to take into account only interaction of inclusions that are
connected by an edge in the Delaunay triangulation, as it is done in (1.8). Our first
theorem shows the error of such approximation.

Theorem 1.1. (Pairwise interaction approximation) The weights gij in (1.8) could be
chosen so that the effective conductivity â (1.7) could be approximated by the discrete
energy âd (1.8) in the sense that

min
ti,i=1,...,N

∑

Πij

gij |ti − tj |p ≤ â ≤ min
ti,i=1,...,N

∑

Πij

(gij + C)|ti − tj |p, (1.9)

where tN+1 = 1, tN+2 = −1, and the constant C = C(R,L) depends on the radius of
the inclusions R, and the size of the composite L.

Theorem 1.1 follows from variational upper and lower bounds obtained in Sec-
tions 2.2 and 2.3 respectively. The theorem says that if we take into account only
the effect of pairwise interaction between inclusions, then we make at most O(1)
error. Therefore, this theorem is ineffective, if the effective conductivity â is itself
O(1). The effective conductivity, however, becomes large when the concentration of
inclusions is high, because the weights gij in (1.9) tend to ∞ as the interparticle
distance between the inclusions tends to zero (for a pair of inclusions Bi and Bj , con-
nected by the edge Πij , the interparticle distance is the distance between their centers:
δij = |xi − xj | − 2R). The next lemma provides an explicit asymptotic behavior of
gij .

Lemma 1.2. (Asymptotics of gij) Suppose the weights gij are chosen as in Theo-
rem 1.1. Consider any two closely spaced inclusions Bi and Bj, as depicted on figure
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Fig. 1.3. The hatched region is the neck between two neighbors

1.3. Suppose the interparticle distance between them is δij. Then

gij − go
ij

go
ij

→ 0, as δij → 0,

where the constants

go
ij = G(δij) (1.10)

are given in the following table

d = 2 d = 3

p = 2 π
(

R
δij

)1/2

πR ln
(

R
δij

)

p = 3 π
2R

(
R
δij

)3/2
π
2

(
R
δij

)

p = 4 3π
8R2

(
R
δij

)5/2
π
8R

(
R
δij

)2

general
πap

Rp−2

(
R
δij

)p−3/2
π

2p−1(p−2)Rp−3

(
R
δij

)p−2

(1.11)

and ap are the coefficients of the Taylor series

1√
1 − x

= 1 +
x

2
+

3x2

8
+ · · · + apx

p−2 + . . .

For a neck Πij between an inclusion Bi and the flat boundary j = N or j = N + 1.
go

ij is given by

go
ij = 2p−1G(2δij). (1.12)
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The asymptotic argument relies on Lemma 1.2, and it allows us to conclude that if
all interparticle distances are sufficiently small, then âd approximates â, as described
in the following theorem.

Theorem 1.3. Suppose the dimension d = 2 or d = 3. Consider a high-contrast
power-law composite. Suppose for all Πij we have that δij ≤ δ, and the weights gij

are chosen as in the Theorem 1.1. Then for p ≥ d+ 1

|â− âd|
âd

≤ Cδp−3/2, (1.13)

where the constant C1 may depend on R and L only; for p = d = 3

|â− âd|
âd

≤ Cδ,

for p = d = 2

|â− âd|
âd

≤ C
√
δ,

for p = 2, d = 3

|â− âd|
âd

≤ C

| ln δ| .

A few remarks are in order about Theorem 1.3. Firstly, the result estimates the
relative error of two asymptotically large quantities: the effective conductivity and
the energy of the discrete network. The latter is a simple polynomial. Its evaluation
is simpler, especially in three dimensions, than the evaluation of (1.7). This fact is the
main attractive feature of the discrete network approximation. Secondly, the discrete
network provides an approximation. The usefulness of this approximation should be
determined by the problem at hand: if computational complexity is an issue, but the
accuracy is less important, then the discrete network approximation is a good choice
for such computation; if, on the other hand, computational complexity is low, then
other methods, e.g. finite elements, might be more attractive. Thirdly, for composites
with a nonlinear constitutive relation, the constants gij may depend on the value of ti
and tj . In our case gij can be chosen independent of ti. Fourthly, it turns out that the
formulas in table 1.11 depend on the (possibly singular) curvature of the inclusions in
the necks. It implies that the analysis, presented in this paper, is directly applicable
to the case when inclusions are ellipses or rectangles. Finally, the main advantage of
the discrete network approximation can be seen when the concentration of inclusions
is high, for moderate concentrations discrete network approximation should be used
together with other methods of characterization of effective properties of composites.

Also note that the explicit asymptotic formulas for gij are not computed in this
work. In table (1.11) we give go

ij , which are only the leading asymptotic terms of
gij , as δij → 0. Calculation of other singular terms in the asymptotic expansion
of gij could be done as in [4]. If we use go

ij from table (1.11) instead of gij in the
functional (1.8), then with such choice we will obtain worse error estimates, that are
summarized in the next Corollary.



ALEXEI NOVIKOV 725

Corollary 1.4. Suppose the dimension d = 2 or d = 3. Consider a high-contrast
power-law composite. Suppose for all Πij we have that δij ≤ δ. Let

âo
d = min

ti,i=1,...,N

∑

Πij

go
ij |ti − tj |p,

where the weights go
ij are chosen as in the Lemma 1.2. Then for p ≥ d+ 1,

|â− âo
d|

âo
d

≤ Cδ, (1.14)

where the constant C may depend on R and L only; for p = d = 3

|â− âo
d|

âo
d

≤ Cδ| ln δ|;

for p = d = 2

|â− âo
d|

âo
d

≤ C
√
δ;

for p = 2, d = 3

|â− âo
d|

âo
d

≤ C

| ln δ| .
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Fig. 1.4. The conducting cluster in a composite with “holes”.

Further corollaries from Theorem 1.3 could be obtained, when we modify the
assumption that all δij ≤ δ, δ ≪ 1. This is the so-called close packing condition [5].
Composites that satisfy this condition are such that the inclusions form a perturbed
hexagonal close packing (cubic or hexagonal close packing in three dimensions). Hence
the previous theorem and the corollary cover only these composites. It is expected,
however, that the discrete network approximation is applicable to a wider range of
distributions of inclusions in a composite. Thus this assumption is restrictive and it is
desirable to relax it. A possible approach was suggested in [3, 6], where we introduced
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the δ − N close packing condition, which loosely speaking allows for “holes” with
the perimeter of order NR in the conducting spanning cluster (see Fig. 1.4). Such
a generalization, however, cannot easily be generalized to three dimensions [3]. Our
proof of Theorem 1.3 allows us to avoid working with δ − N close packing condition
and obtain a result, which is more general, it is applicable in three dimensions, and,
at the same time, it has a natural physical interpretation. The result is stated in the
next theorem, which we precede with the following definition.

Definition 1.5. We say that a discrete network with vertices xi, i = 1, . . . , N ,
contains a δ-percolation cluster, if there is a sequence of vertices connecting the top
and the bottom boundary of the composite, such that their consecutive interparticle
distances are less than δ. More specifically, there exist vertices

x1, x2, . . . , xk, such that2 δN+1,1 ≤ δ, δk,N+2 ≤ δ, and δi,i+1 ≤ δ, i = 1, 2, . . . , k−1.

Theorem 1.6. Theorem 1.3 and Corollary 1.4 hold for discrete networks that contain
δ-percolation clusters.

The main objective of this work is to show how to separate geometric and asymp-
totic arguments in the construction of the discrete network approximation. This
objective dictated the organization of the paper. Section 2 is the main part of the
paper. We develop there a geometric theory of discrete networks, which is indepen-
dent of any asymptotic approximations. In particular, we prove there Theorem 1.1,
which, in contrast to previous works, does not require any asymptotic analysis. In
section 3 we present the asymptotic theory of discrete networks by proving Lemma 1.2
and Theorem 1.3. In section 4 we prove Theorem 1.6 only, since Corollary 1.4 is its
particular case.

2. Perforated medium approach

We explain here how a discrete network arises for (1.3)–(1.7) using the idea of a
perforated medium.

The key observation was made for a periodic matrix with linear constitutive rela-
tion by J.B. Keller in [18] (p = 2 in (1.3)): the dominant contribution to the effective
conductivity â comes from areas (necks) between closely spaced disks (see shaded
regions on figure 2.1(b)). As it follows from the asymptotic analysis in this paper, the
same observation holds true for power-law media with p ≥ 1.5 in two dimensions and
p ≥ 2 in three dimensions. Since p ≥ 2 in (1.2), the observation is valid in our set-up:

â =

∫

Q

|∇φ|pdxdy ≈
∑

Πij

∫

Πij

|∇φ|pdxdy, (2.1)

where Πij is the neck between the ith and jth disk (see figure 2.1(b)).
We can interpret the approximation (2.1) as an equivalence relation between

effective properties of two composites — the original one and the one perforated by
triangular holes. Physically it means the following. Imagine that the matrix occupies
only necks, and in the triangles we have voids. Then the effective conductivity of
the original composite is almost the same as the effective conductivity of a composite
perforated by triangular voids. Such a point of view is proven to be useful in analysis

2Recall that the bottom boundary is indexed by N + 1, and the top boundary is indexed by
N + 2.
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of diffusion at high Péclet numbers in stationary two-dimensional cell-like flows [27]
and the rate of viscous dissipation of a two-dimensional suspension of rigid particles
in an incompressible Stokesian fluid [4]. We call this matrix with triangular holes a
perforated medium:

Πo = Q \
⋃

i,j,k

∆ikj =
⋃

i,j

Πij . (2.2)

A rigorous construction of the triangular holes is based on the Voronoi tessellation
and it is summarized as follows (see also [6] and [3] for two- and three-dimensional
cases, respectively).

Consider the Voronoi tessellation associated with the centers of the inclusions. If
two Voronoi cells with centers at xi and xj share a common edge (face, in 3D), then
they are neighbors, and we connect them with an edge Πij ; see figure 2.1.

By connecting the centers of inclusions with the corresponding vertices of its
Voronoi cell, we can find the vertices of triangles where the connecting lines intersect
boundaries of inclusions. This construction uniquely determines (up to some degen-
eracies) the triangle-neck partition as on figure 2.1(b), and therefore the perforated
domain. A more detailed description can be found in [6].

x i

x j

x k

xl

x

Ain

A kn

A jn

On

m

Op

A

A

A

A

lp

mp

jp

ip A

A

A

A

ip

lp

mp

kp

∆

∆

∆

ijk

ikl

lnk

Π

Π

ik

jk
A

A

in

jn

(a) Voronoi tessellation (b) Triangle-neck partition

Fig. 2.1. Perforated medium comprises inclusions and necks

The idea of a perforated medium is attractive, because it makes the appearance
of discrete networks intuitively clear. It also is very useful in the construction of
variational bounds. These bounds are based on variational principles, that we review
next.

2.1. Variational Principles. It is well-known [17] that the problem (1.3)–
(1.7) admits a variational formulation as follows. Let the potential φ(x, y), be a
function from the functional space

V =
{
φ ∈W 1,p(Q) : ∇φ(x, y) = 0 on ∂Bi; φ(x,±1) = ±1

}
, (2.3)
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and define an energy functional

I[φ] =

∫

Q

|∇φ|pdxdy, φ ∈ V. (2.4)

Then the effective conductivity (1.7) is the minimum of this energy functional

â = min
eφ∈V

I[φ̃], (2.5)

moreover, the minimizer φ of (2.5) satisfies (1.4), (1.6) a) because φ ∈ V , and (1.3),
(1.5), (1.6) b) because these are the Euler-Lagrange equations of the variational for-
mulation (2.5).

Using the Legendre transform, it is possible [17] to represent the effective con-
ductivity as the maximum value of the dual functional.

I∗[u] =

[
p

∫

y=±1

|u|p−2
n · uds− (p− 1)

∫

Q

|u|pdxdy
]
, u ∈ V ∗, (2.6)

where ds = ±dx for y = ±1, and the dual space

V ∗=

{
u ∈ Lp(Q,R2) : ∇ · |u|p−2

u = 0,

∫

∂Bi

|u|p−2
n · uds = 0,n · u(±L, y) = 0

}
. (2.7)

Above Lp(Q,R2) = Lp(Q)2 denotes the space of vector valued functions u = (u1, u2),
such that u1(x, y) ∈ Lp(Q) and u2(x, y) ∈ Lp(Q).

Then the effective conductivity (1.7) is the maximum of this dual energy func-
tional:

â = max
eu∈V ∗

I∗[ũ], (2.8)

moreover, the maximizer of (2.8) satisfies u = ∇φ, where φ solves (1.3)–(1.6).
The main use of the variational formulation here (as well as in other problems in

Material Science, see [12, 25] for extensive references; and in Fluid Dynamics [26, 27])
is to provide upper and lower estimates for the effective conductivity by choosing
appropriate trial functions from V and V ∗, respectively. Note that, as it is typical in
calculus of variations, the dual variational formulation (2.6), (2.7) is more complicated
than the original one (2.4), (2.3) mainly because the space V ∗ is characterized by
constraints, which are more difficult to handle. As a result ‘good’ lower bounds are
much harder to obtain. A notion of a perforated medium, that we described above is
designed specifically to overcome this difficulty.

2.2. Variational lower bound. Since Πo ⊂ Q, then the effective conductivity
of the perforated domain does not exceed the effective conductivity of the whole
domain

min
φ∈Vo

∫

Πo

|∇φ|pdxdy ≤ â = min
φ∈V

∫

Q

|∇φ|pdxdy, (2.9)

where the space V is defined in (2.3) and

Vo =
{
φ ∈W 1,p(Πo) : φ(x, y) = ti on ∂Bi, φ(x,±1) = ±1

}
. (2.10)
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A significant advantage of the minimization over a perforated domain is that the
global minimization problem over Πo can be split into two consecutive problems: one
of them is on a single neck Πij , and the other one is a minimization problem of discrete
variables ti. This almost trivial observation is the key step in construction of effective
lower bounds for the effective conductivity, and we give this observation in more detail
in the next lemma.

Lemma 2.1. (Iterative minimization lemma). Consider a high-contrast power-law
composite. Let Πo be its perforated domain. Then

min
φ∈Vo

∫

Πo

|∇φ|pdxdy = min
ti,i=1,...,N

∑

Πij

gij |ti − tj |p, with tN+1 = 1, tN+2 = −1, (2.11)

where

gij = min
φ

∫

Πij

|∇φ|pdxdy, φ(x, y) ∈ VΠij
, (2.12)

where the space

VΠij
=
{
φ ∈W 1,p(Πij) : φ(x, y)|∂Bi

= 1/2, φ(x, y)|∂Bj
= −1/2

}
. (2.13)

Moreover the minimizer φ of (2.12) satisfies

∇ · |∇φ|p−2∇φ = 0, for (x, y) ∈ Πij ,

n · ∇φ(x, y)|∂Π±

ij
= 0,

(2.14)

where ∂Π±
ij are ”lateral” boundaries of a neck as depicted on figure 2.2.

Fig. 2.2. Neck Πij and its boundary.

The proof of this lemma is elementary. It is given in [4] for a network model
of suspensions in an incompressible fluid, that satisfies a (linear) Stokes law. In the
general nonlinear case the coefficients gij may depend on ti and tj . For a power-law
medium they do not depend on ti and tj , because if φ is the solution to (2.14), then
(ti − tj)φ+ (ti + tj)/2 is the solution to

∇ · |∇φ|p−2∇φ = 0, for (x, y) ∈ Πij ,

φ(x, y)|∂Bi
= ti,

φ(x, y)|∂Bj
= tj ,

n · ∇φ(x, y)|Π±

ij
= 0.

(2.15)
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A lower bound on gij in (2.12) can be obtained using variational duality3:

gij = max
u∈V ∗

Πij

[
p

2

∫

∂Bi∪∂Bj

|u|p−2
n · u ds− (p− 1)

∫

Πij

|u|pdxdy
]
, (2.16)

where the space

V ∗
Πij

=
{
u ∈ Lp(Πij ,R

2) : ∇ · |u|p−2
u = 0,n · u = 0 on ∂Π±

ij

}
. (2.17)

Compare the spaces V ∗ (2.7) and V ∗
Πij

(2.17) and observe that the complicated
integral condition

∫

∂Bi

|u|p−2
n · uds = 0

in (2.7) has no analog in (2.17). This simplification is raison d’être of the perforated
medium. In our scalar case the simplification does not look so drastic, in vectorial
problems it is significant, see [4]. We conclude that Lemma 2.1 and inequality (2.9)
imply a lower bound on the effective conductivity:

â ≥ min
ti,i=1,...,N

∑

Πij

gij |ti − tj |p, with tN+1 = 1, tN+2 = −1, (2.18)

where gij are given by (2.12).

2.3. Variational upper bound. The perforated medium approach provides
a natural variational lower bound, as described above. It does not, however, provide
an upper bound. In order to obtain such an upper bound, all previous works [2–10]
explicitly constructed trial fields for the direct variational formulation (2.4), (2.5) on
the whole domain Q. These trial fields used the assumption that the inclusions are
closely spaced. As a consequence, the geometric step, and the asymptotic step of
the construction of the discrete network were not separated. Our next lemma allows
to do this separation.

Lemma 2.2. As in Lemma (2.1) we denote

gij = min
φ

∫

Πij

|∇φ|pdxdy, φ(x, y) ∈ VΠij
,

then there is a constant C = C(R,L), that depends on the radius of the inclusions R,
and the size of the composite L, such that we have an upper bound

â ≤ min
ti,i=1,...,N

∑

Πij

(gij + C)|ti − tj |p, with tN+1 = 1, tN+2 = −1. (2.19)

Proof. Let φneck
ij ∈ VΠij

(2.13) be the minimizer of the energy integral (2.12) on
the neck Πij described in Lemma 2.11. As we show in the next subsection 2.4, we
can obtain a crucial estimate

|∇φneck
ij | ≤ C, for (x, y) ∈ ∂Πij , (2.20)

where the constant C = C(R) depends on the radius of inclusions R only. Fix

3There is a factor of 2 in (2.16), compared to (2.6), because φ = ±1/2 on the Dirichlet boundary
(inclusions), whereas φ = ±1 on the corresponding Dirichlet boundary (upper and lower boundaries)
in (2.3).
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φ=
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t i

t j

x i

φ= t k
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x
j

x k

K

0

0

0

Fig. 2.3. Typical ∆ABC ≡ ∆ijk, half-necks are hatched.

an arbitrary ti, i = 1, 2, . . . , N , and for these ti define a function φo(x, y) on the
perforated domain Π as follows:

φo(x, y) =

{
(ti − tj)φ

neck
ij (x, y) + (ti + tj)/2, if (x, y) ∈ Πij ,

ti, if (x, y) ∈ Bi.

Clearly φo ∈ Vo, (defined by (2.10)) and

|∇φo| ≤ C|ti − tj |, C = C(R) for (x, y) ∈ ∂Πij .

By the Kirszbraun theorem (see e.g. [15], p. 202) there is a Lipschitz continuous

extension φtriangle
ijk of φo into each triangle ∆ijk (depicted on figure 2.3) so that

|∇φtriangle
ijk (x, y)| ≤ Cmax (|ti − tj |, |ti − tk|, |tj − tk|) , (x, y) ∈ ∆ijk, C = C(R).

Consider a trial field φ̃ such that

φ̃(x, y) =

{
φo(x, y), if (x, y) ∈ Πo,

φtriangle
ijk (x, y), if (x, y) ∈ ∆ijk.

By construction φ̃ ∈ V (defined by (2.3)), thus using the direct variational princi-
ple (2.4),(2.5) on the whole domain Q we obtain

â ≤
∑

Πij

gij |ti − tj |p + C(R)
∑

∆ijk

(|ti − tj | + |ti − tk| + |tj − tk|)p
Area(∆ijk)

≤
∑

Πij

(gij + C) |ti − tj |p,

where the constant C = C(R,L) depends of the size of the composite L, and the
radius of the inclusions R only.



732 DISCRETE NETWORK FOR HIGH-CONTRAST COMPOSITES

2.4. Uniform Lipschitz estimates at necks’ boundaries. Estimates (2.18)
and (2.19) imply Theorem 1.1. Therefore, we complete its proof by obtaining the
crucial estimate (2.20). We start with a geometric observation. Typically a neck Πij

is not symmetric with respect to the line connecting the centers of the disks Bi and
Bj . An example of a neck is given on figure 1.3, where we used the local coordinate
system when the centers of the both disks lie on the y-axis. In this coordinate system
the width of the left half-neck is |S1|, S1 < 0, and the width of the right half-neck is
|S2|, S2 > 0. Note that inequalities S1 < 0 S2 > 0 are not true in general. We define
the (possibly negative) minimal relative half-neck width as

βij = min
(
− S1

R
,
S2

R

)
, − 1 < βij < 1. (2.21)

Lemma 2.3. For any triangle-neck partition, a neck Πij has either non-small δij:
δij > R/100, or non-small βij > 1/3.

Proof. Consider the construction of the Delaunay triangulation, and the triangle-
neck partition, as depicted on figure 2.1. For a pair of vertices xi and xj let αij be the
smallest angle opposite to xixj : for each xixj there are two angles opposite to xixj ; on
figure 2.1(a) they are ∠xixlxj and ∠xixkxj . For definiteness, assume αij = ∠xixkxj .
Note that βij = cos(αij) = sin(π/2 − αij). If δij ≤ R/100, then we claim that we
have an upper bound cos(αij) > 1/3. Indeed, if δij ≤ R/100 then we have lower
bounds |xkxj | ≥ 200|xixj |/201, and |xkxi| ≥ 200|xixj |/201. Thus αij could be at
most π/3 + ε, for some ε ≪ 1. The estimate βij = cos(αij) > 1/3 now follows from
the law of cosines.

Observe that if a neck Πij has a non-small δij , δij > R/100, then the crucial
estimate (2.20) is immediate. Hence we are left to show the following result.

Proposition 2.4. Consider a neck Πij such that its relative half-neck width βij >
1/3, as on figure 2.2. Suppose φ satisfies

∇ · |∇φ|p−2∇φ = 0, for (x, y) ∈ Πij ,

n · ∇φ(x, y)|∂Π±

ij
= 0,

φ(x, y) = 1/2, (x, y) ∈ ∂Bi,

φ(x, y) = −1/2, (x, y) ∈ ∂Bj .

(2.22)

Then

|∇φ| ≤ C, for (x, y) ∈ ∂Π±
ij , (2.23)

where the constant C = C(R) depends on R only.
Proof. Since φ satisfies homogeneous Neumann conditions on the lateral bound-

aries, we can extend φ periodically by even reflection on a domain Ω, obtained from
Πij by mirror reflections along lateral boundaries, see top domain on figure 2.4. Fur-
ther, it suffices to show the estimate (2.22) for φ that solves

∇ · |∇φ|p−2∇φ = 0, for (x, y) ∈ Πij ,

φ(x, y) = 1/2, (x, y) ∈ top part of ∂Ω0,

φ(x, y) = −1/2, (x, y) ∈ bottom part of ∂Ω0

(2.24)

on a family of smooth periodic domains Ω0 that approximate the periodization of
Πij arbitrarily well. An example of Ω0 is depicted at the bottom of figure 2.4. Once
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Fig. 2.4. (Top) Ω Periodization of the neck Πij , and (bottom) Ω0 smoothening of the boundary.

the boundary of the domain is smooth, we can use classical elliptic regularity theory
as follows. On Ω0 by [21] the solution φ is C1,α(Ω̄0). By the maximum principle
for φ we obtain |∇φ| > 0. Since φ is periodic, it could be thought as a solution
of ∇ · |∇φ|p−2∇φ = 0 on a compact domain. Thus |∇φ| ≥ C > 0. Therefore the
problem (2.24) is nondegenerate elliptic, and φ is C∞(Ω̄0) (see e.g. [22] Chapter 3).

We conclude that on a domain Πij (see figure 2.5) there is φ ∈ C∞(Πij) that
solves

∇ · |∇φ|p−2∇φ = 0, for (x, y) ∈ Πij ,

n · ∇φ(x, y)|
∂Π

±

ij

= 0,

φ(x, y) = 1/2, (x, y) ∈ ∂Π
top

ij ,

φ(x, y) = −1/2, (x, y) ∈ ∂Π
bottom

ij ,

(2.25)

and it suffices to show that (2.23) holds for such φ, where the constant C is indepen-
dent of δij and smoothening of the boundary.

Following e.g. [14] we will now apply a Bernstein-type argument. Let

U(x, y) = f(x)|∇φ|2 + λφ2,

where we will chose later the constant λ and the function f(x). Note that the latter
is a function of the horizontal variable x only. Denote

aij = δij |∇φ|p−2 + (p− 2)|∇φ|p−4∇iφ∇jφ, i, j = 1, 2.

Observe that

∑

i,j=1,2

∇i

(
aij∇jφ

2
)

= 2(p− 1)|∇φ|p, (2.26)

because

∑

i,j=1,2

∇i

(
|∇φ|p−2∇iφ

2 + (p− 2)|∇φ|p−4∇iφ∇jφ∇jφ
2
)

= 2
∑

i,j=1,2

∇i

(
φ|∇φ|p−2∇iφ+ (p− 2)φ|∇φ|p−4∇iφ∇jφ∇jφ

)
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Fig. 2.5. Neck Πij with smoothened boundary, and an annulus A.

= 2(p− 1)
∑

i=1,2

∇i

(
φ|∇φ|p−2∇iφ

)
= 2(p− 1)|∇φ|p.

Let us show that

∑

i,j=1,2

∇i

(
aij∇j |∇φ|2

)
= 2|∇φ|p−2|∇2φ|2 +

p− 2

2
|∇φ|p−4

∣∣∇|∇φ|2
∣∣2

≥ |∇φ|p−2|∇2φ|2,
(2.27)

where

|∇2φ|2 =
∑

i,j=1,2

(∇i∇kφ)2.

Differentiate

∇ ·
(
|∇φ|p−2∇φ

)
= 0

with respect to ∇k to obtain

∑

i,j=1,2

∇i

(
|∇φ|p−2∇i∇kφ+ (p− 2)|∇φ|p−4∇iφ∇jφ∇j∇kφ

)
= 0.

Multiply the above by ∇kφ and obtain

∑

i,j=1,2

∇kφ∇i

(
|∇φ|p−2∇i∇kφ+ (p− 2)|∇φ|p−4∇iφ∇jφ∇j∇kφ

)
= 0.
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It implies that

∑

i,j=1,2

∇i

(
|∇φ|p−2∇i|∇kφ|2 + (p− 2)|∇φ|p−4∇iφ∇jφ∇j |∇kφ|2

)

= 2
∑

i,j=1,2

∇i∇kφ
(
|∇φ|p−2∇i∇kφ+ (p− 2)|∇φ|p−4∇iφ∇jφ∇j∇kφ

)
.

Sum over k to obtain
∑

i,j=1,2

∇i

(
|∇φ|p−2∇i|∇φ|2 + (p− 2)|∇φ|p−4∇iφ∇jφ∇j |∇φ|2

)

= 2|∇φ|p−2|∇2φ|2 +
p− 2

2
|∇φ|p−4

∣∣∇|∇φ|2
∣∣2 ,

which is (2.27).
Combining (2.26) and (2.27) for U = f(x)|∇φ|2 + λφ2 we obtain

∑

i,j=1,2

∇i (aij∇jU)

= |∇φ|2
∑

i,j=1,2

∇i (aij∇jf) + f
∑

i,j=1,2

∇i

(
aij∇j |∇φ|2

)

+2
∑

j=1,2

a1j∇j |∇φ|2f ′(x) + 2(p− 1)λ|∇φ|p ≥ 2f(x)|∇φ|p−2|∇2φ|2

+2(p− 1)λ|∇φ|p − C|f ′(x)| |∇φ|p−1 |∇2φ| − C|f ′′(x)| |∇φ|p

≥
(√

f(x)(p− 1)λ− C|f ′(x)|
)
|∇φ|p−1 |∇2φ| + ((p− 1)λ− C|f ′′(x)|)|∇φ|p,

where we used the Cauchy-Schwartz inequality in the last step.
We are now ready to choose f(x) and λ. Recall that in our notation the distance

between ∂Bi and ∂Bj is the smallest at x = 0 and it equals δij there; see figure 1.3.
Noting that R/6 ≤ βij/2, we set f(x) ≡ 0, for |x| ≤ R/12, f(x) = (|x| − R/12)4 for
R/12 ≤ |x| ≤ R/6. We can further define f(x) to be smooth, R4/124 ≤ f(x) ≤ 1 for
|x| ≥ R/6, and f(x) ≡ 1 near (x, y) ∈ ∂Π±

ij . Then we can choose a large universal
constant λ so that
(√

f(x)(p− 1)λ− C|f ′(x)|
)
|∇φ|p−1 |∇2φ| + ((p− 1)λ− C|f ′′(x)|)|∇φ|p > 0.

Therefore U(x, y) = f(x)|∇φ(x, y)|2+λφ2(x, y) satisfies the maximum principle. Since
U satisfies the maximum principle on Ω0 (see figure 2.4) as well, its maximum is
achieved on the top or the bottom boundaries of Πij . Using −1/2 ≤ φ ≤ 1/2, we
obtain

max
(x,y)∈∂Π

±

ij

|∇φ(x, y)|2 ≤ max
(x,y)∈Πij

U(x, y) ≤ C + max
(x,y)∈∂Π

top
ij ,∂Π

bottom
ij

f(x)|∇φ(x, y)|2.

(2.28)
Hence we only need to obtain estimates for f(x)|∇φ(x, y)|2 on the top and the bottom
boundaries. We will obtain them by using barriers for ∇φ(x, y). Since f(x) ≡ 0, for
|x| ≤ R/12, we need to estimate ∇φ(x, y), for R/12 ≤ |x| ≤ R only. Fix any point

P : (x, y) ∈ ∂Π
bottom

ij , such that R/12 ≤ |x| ≤ R. Consider two concentric circles C1
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and C2 of radii R/600 and R/1200, respectively, such that its interior circle is tangent

to the ∂Π
bottom

ij at the point P and the center of the circles does not lie in Πij (see
figure 2.5). Note that the annulus A between these two circles does not intersect the

top boundary ∂Π
top

ij for any choice of P : (x, y) ∈ ∂Π
bottom

ij with R/12 ≤ |x| ≤ R.
Therefore the function ψ, the solution of

∇ · |∇ψ|p−2∇ψ = 0, for (x, y) ∈ A,

ψ(x, y) = −1/2, (x, y) ∈ C1,

ψ(x, y) = 1/2, (x, y) ∈ C2,

(2.29)

will be a super-solution for φ in A ∩ Πij . Lastly ψ(x, y) = φ(x, y) = −1/2 at P , and
thus ψ is a barrier for φ at the point P . We have |∇ψ(x, y)| ≤ C, C = C(R), and
therefore we obtain

max
(x,y)∈∂Π

bottom
ij

f(x)|∇φ(x, y)|2 ≤ C, C = C(R).

Using the last inequality and a similar inequality at the top boundary in (2.28), we
obtain (2.23).

3. Proofs of Lemma 1.2 and Theorem 1.3

We recall, that for a pair of vertices xi and xj , connected by the edge Πij , the
interparticle distance is the distance between the corresponding inclusions

δij = |xi − xj | − 2R. (3.1)

Similarly, the interparticle distance between an inclusion and one of the special
(boundary) vertices xN+1 and xN+2 is set as the distance between the inclusion and
the boundary. When concentration of inclusions is high, we expect that a typical
δij ≪ 1, and, therefore, we are interested in asymptotic values of gij as δij → 0.

We will prove a slightly stronger version of Lemma 1.2. More specifically, we have
the following result.

Lemma 3.1. Consider a neck Πij between two inclusions Bi and Bj. Suppose gij is
given by (2.12). As δij → 0

gij = go
ij +O(f(δij)), (3.2)

where the constants go
ij = G(δij) are given in table (1.11), and

f(δ) =





1, if p = 2,

ln δ, if p = 3, d = 3,

δ−p+(d+3)/2, otherwise,

(3.3)

where p ≥ 2 is the power of the power-law nonlinearity and the dimension d = 2 or
d = 3. Consider a neck Πij between an inclusion Bi and the flat boundary j = N or
j = N + 1. As δij → 0

gij = go
ij +O(f(δij)),

where go
ij is given by

go
ij = 2p−1G(2δij). (3.4)
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Proof. Consider a neck Πij between two inclusions Bi and Bj . For any φ ∈ VΠij

and u ∈ V ∗
Πij

integrating by parts φ∇ · |u|p−2
u = 0, we obtain the following identity:

1

2

∫

∂Bi∪∂Bj

|u|p−2
n · u ds =

∫

Πij

|u|p−2∇φ · u dxdy. (3.5)

By the direct (2.12) and the dual (2.16) variational principles we have

[
p

2

∫

∂Bi∪∂Bj

|u|p−2
n · u ds− (p− 1)

∫

Πij

|u|p dxdy
]
≤ gij ≤

∫

Πij

|∇φ|pdxdy.

Using identity (3.5) in the last inequality we obtain the following variational bounds:
for any φ ∈ VΠij

and u ∈ V ∗
Πij

∫

Πij

(
p|u|p−2∇φ · u− (p− 1)|u|p

)
dxdy ≤ gij ≤

∫

Πij

|∇φ|pdxdy. (3.6)

Evaluating (3.6) with

φ =
y

H(x)
, u =

(
0,

1

H(x)

)
. (3.7)

we obtain gl
ij ≤ gij ≤ gu

ij for

gl
ij =

∫

Πij

1

[H(x)]p
dxdy, gu

ij =

∫

Πij

[
[yH ′(x)]2

[H(x)]4
+

1

[H(x)]2

]p/2

dxdy. (3.8)

It suffices to show that

|gu
ij − gl

ij | =

∫

Πij

([
[yH ′(x)]2

[H(x)]4
+

1

[H(x)]2

]p/2

− 1

[H(x)]p

)
dx

≤
∫

Πij

[yH ′(x)]2

[H(x)]p+2
dx = O(f(δij))

(3.9)

and

gl
ij =

∫

Πij

1

[H(x)]p
dx = go

ij +O(f(δij)), (3.10)

where gu
ij and gl

ij are defined by (3.8). Using Lemma 2.3 we know that as δij → 0, the
width of Πij stays bounded away from zero and the line segment xixj that connects
the centers of inclusions always crosses Πij . We then verify (3.9) and (3.10) by lengthy,
but straightforward computations.

The argument for the boundary necks is the same, whereas the last estimate (3.4)
is obtained by observing that two identical boundary necks of the height δij glued
along the flat horizontal boundary give one neck between two inclusions, but of height
2δij .

Proof. [Proof of Theorem 1.3] Denoting

g(δ) = min
Πij

gij ,
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and using (1.8) and (1.9) we obtain

âd ≤ â ≤ min
ti

∑

Πij

(1 + C/g(δ))gij |ti − tj |p = (1 + C/g(δ))âd, (3.11)

where the constant C depends on R and L only. It implies that

|â− âd|
âd

≤ C

g(δ)
≡ C

minΠij
gij
.

Theorem 1.3 follows, when we evaluate the right-hand side of the last inequality using
the table (1.11).

4. Proof of Theorem 1.6

In order to avoid considering four different cases we will assume that p ≥ 3.
Proof. We use the notation

âd = min
ti,i=1,...,N

I(t1, . . . , tN ), I(t1, . . . , tN ) =
∑

Πij

gij |ti − tj |p, (4.1)

âo
d = min

ti,i=1,...,N
Io(t1, . . . , tN ), Io(t1, . . . , tN ) =

∑

Πij

go
ij |ti − tj |p. (4.2)

We have (see e.g. [6]) a discrete maximum principle: if all gij > 0 (or all go
ij > 0),

then there exists a unique {t1, t2, . . . tN} that solve the minimization problem (4.1)
or (4.2), with the estimate

−1 ≤ tk ≤ 1,

for any tk. By Lemma 2.2

âd ≤ â ≤ min
ti,i=1,...,N

∑

Πij

(gij + C)|ti − tj |p, (4.3)

with tN+1 = 1, tN+2 = −1, and the constant C in (4.3) depends on R and L only.
Using −1 ≤ tk ≤ 1 inequalities (4.3) become

âd ≤ â ≤ âd + C. (4.4)

Existence of the percolating cluster and (1.11) implies that

âd ≥ Cδ−p+(d+1)/2, âo
d ≥ Cδ−p+(d+1)/2. (4.5)

Thus

|â− âd|
âd

≤ Cδp−(d+1)/2, (4.6)

and it means that Theorem 1.3 holds if there is a δ-percolating cluster. The proof of
Corollary 1.4 requires more work, mainly because in contrast to the case considered
in [6] the quantity

|gij − go
ij | → ∞, as δ → 0, for Πij ∈ Dδ,
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where we denote by Dδ the set of δ-small necks: Dδ = {Πij |δij ≤ δ}. We also denote

go(δ) = min
Πij∈Dδ

go
ij .

From (3.9), (3.10), and (1.11) we estimate

|gij − go
ij | ≤ Cδ−p+(d+3)/2, if Πij 6∈ Dδ.

It means that

(1 − Cδ) go
ij ≤ gij ≤ (1 + Cδ) go

ij , if Πij ∈ Dδ.

Hence for any {t1, t2, . . . tN}, that satisfy −1 ≤ tk ≤ 1, we obtain

(1 − Cδ) Io(t1, . . . , tN ) − Cδ−p+(d+3)/2 ≤ I(t1, . . . , tN )

≤ (1 + Cδ) Io(t1, . . . , tN ) + Cδ−p+(d+3)/2.

It implies that

(1 − Cδ) âo
d − Cδ−p+(d+3)/2 ≤ âd ≤ (1 + Cδ) âo

d + Cδ−p+(d+3)/2.

Using the last inequality, estimates (4.6), and (4.5) we obtain (1.14).
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