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ON THE FORMATION OF SHOCKS TO THE COMPRESSIBLE

EULER EQUATIONS ∗

DONGHO CHAE † AND SEUNG-YEAL HA ‡

Abstract. We present an explicit upper-bound for the life-span of C3-smooth solutions to
the multi-dimensional compressible Euler equations with a certain class of initial data containing
compression vacuum states. We also show that the divergence of a fluid velocity will blow up
along the particle trajectories issued from the compression vacuum states, which represent a shock
formation at the vacuum states.
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1. Introduction The formation of singularities such as shocks, vacuum states,
and the loss of regularity in fluid variables across the fluid-vacuum interface are generic
nonlinear phenomena often found in compressible fluids, and the mathematical study
of singularity formation and its dynamics has been addressed in previous literature
[3, 4, 7, 8, 9, 10, 13, 11, 14, 15, 19, 20, 22, 23]. However, detailed understanding on
the formation and dynamics of singularities is mostly confined to the one-dimensional
case. In this paper, we are interested in the formation of shocks at the compression
vacuum states present in multi-dimensional inviscid, compressible fluids. In this case,
the motion of an inviscid, compressible fluids is governed by the compressible Euler
equations with a suitable equation of state and initial data:

∂tρ+div(ρv)=0, x∈R
d, t>0,

∂t(ρv)+div(ρv⊗v)=−∇p,

∂tS +(v ·∇)S =0,

p=κeSργ , (κ>0, γ >1),

(1.1)

subject to initial data

(ρ,v,S)(x,0)=(ρ0,v0,S0)(x). (1.2)

Here we assumed that the compressible fluid is polytropic with the adiabatic exponent
γ, and ρ,v,S, and p denote the density, velocity, specific entropy, and pressure of a
gas, respectively.

In hyperbolic conservation laws community, the formation of shocks has been
studied extensively in the one-dimensional case [7, 8, 12] using the method of char-
acteristics, whereas for the multi-dimensional case the formation of singularities was
investigated via indirect nonlinear functionals (e.g. total inertia) involving the hydro-
dynamics variables in [16, 20, 21].

Next, we discuss Makino-Ukai-Kawashima’s approach [16] on the break-down of
the smooth solutions to the system (1.1) with a compactly supported initial data. In
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[16], the authors introduced the functional H representing the total inertia:

H(t) :=
1

2

∫

Rd

|x|2ρ(x,t)dx.

Then they showed two ingredients on their blow-up analysis (uniform support of
density and the uniform lower bound of H ′′) under the condition that there exist
global smooth solutions:

∃ R>0 and β =min{2, 3

γ−1
} independent of t satisfying

ρ(x,t)=0, |x|≥R, and H ′′(t)≥βE(t)=βE(0), t≥0,

where E =E(t) is a total energy defined by

E(t) :=

∫

Rd

[1

2
ρ|v|2 +

1

γ−1
p
]

dx.

Note that the functional H satisfies

H(t)≥H(0)+H ′(0)t+
βE(0)

2
t2. (1.3)

Since H is uniformly bounded by a positive constant independent of t, more precisely

H(t)≤
R2

2
||ρ0||L1 ,

we obtain the contradiction in (1.3) as t→∞. This gives the finite time break-down of
smooth solutions with a compactly supported initial data. Unfortunately, this global
and indirect approach does not give us detailed information on the type of singularities
and a blow-up rate, etc.

In this paper, we instead provide a local blow-up analysis which enables us to find
the explicit blow-up dynamics of smooth solutions to the system (1.1) with a restricted
class of initial data containing vacuum states. We use the method of characteristics
as in one-dimensional case. As in [13], a vacuum state denotes any portion of x− t

plane in which ρ=0. We also distinguish two types of vacuum states (compression

vacuum and rarefaction vacuums). In section 3, we will show that shock waves should
form in finite time at compression vacuum states.

For a given initial data (1.2), we define a singular set S leading to the finite-time
blow-up of the divergence of fluid velocity:

S[ρ0,v0,S0] :={a∈R
d | the point a satisfies the constraints (I) and (II)};

(I) The initial fluid velocity v0 is irrotational and compressive at a:

Ω0(a)=0, div(v0)(a) :=

d
∑

i=1

∂iv
i
0(a)<0, ∂i :=

∂

∂xi

.

Here Ω0 is the anti-symmetric part of the velocity gradient ∇v0 (see section
2).
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(II) The initial data is in C3(Ω) and the initial density and entropy satisfy vacuum
and boundedness conditions at a:

∑

|α|≤2

|∂αρ0(a)|=0,
∑

|α|≤2

|∂αS0(a)|<∞.

Here ∂α =∂α1

1 ···∂αd

d , α=(α1,··· ,αd) : multi-index in Z
d.

The main theorem of this paper is as follows.

Theorem 1.1. Suppose the singular set S corresponding to smooth initial data

(ρ0,v0,S0) is nonempty, and let (ρ,v,S) be the local smooth C3-regular solutions in

R
d× [0,T∗) to the system (1.1)–(1.2) with γ∈{2}∪ [3,∞). Then the life-span T∗ of

C3-solutions is finite, and moreover it satisfies

T∗≤ inf
a∈S

d

|div(v0)(a)|
.

Remark 1.1. 1. The local existence theory for the classical smooth solutions to
the system (1.1) with non-vacuum initial data was obtained in [6, 18]. In contrast,
for compactly supported initial data, the local existence of smooth solutions is also
established in [5, 16].

2. The above estimate on the life-span of smooth solution does not depend on the
specific domain. Hence the same result holds for a bounded domain with suitable
boundary conditions.

3. In section 3, we will show that the scalar quantity div(v) :=
∑d

i=1
∂iv

i satisfies the
scalar differential inequality along the particle trajectory issued from a∈S:

D

Dt
div(v)≤−

1

d
(div(v))2, div(v0)(a)<0.

Hence |div(v)| will blow up along the particle trajectories issued from the compression
vacuum states in S.

4. Note that in our setting with d=1, the sound speed c satisfies

dc2

dx

∣

∣

∣

x=a
=κγ(γ−1)eSργ−2(a)

dρ

dx
(a)=0, if a∈S, γ≥2,

where c=
√

∂ρp is the speed of sound of the gas (see Remark 2.1). Hence our setting
for the vacuum boundary problem is completely different from the physical vacuum
singularity problem considered in [12, 14, 23], where the speed of sound c satisfies

0<
∣

∣

∣

dc2

dx

∣

∣

∣
<∞.

2. Basic a priori estimates In this section, we study the time-evolution
of hydrodynamic quantities along the particle trajectories. These estimates will be
employed in the blow-up analysis in next section.
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The Euler equations (1.1) can be rewritten as a quasi-linear hyperbolic system
for smooth solutions:

∂tρ+(v ·∇)ρ=−ρdiv(v), x∈R
d, t>0,

∂tv+(v ·∇)v =−ρ−1∇p,

∂tS +(v ·∇)S =0,

p=κeSργ , (κ>0, γ >1).

(2.1)

Note that the term ρ−1∇p is well-defined even for vacuum states ρ=0 due to the
constitutive relation for p=κeSργ , γ >1.

We next derive the evolution equations for the symmetric and anti-symmetric
parts of the velocity gradient matrix V :=∇v. We use the second equation in (2.1) to
find the Ricatti matrix equation:

∂tV +(v ·∇)V =−V 2−∇(ρ−1∇p). (2.2)

We now decompose the velocity gradient V and ∇(ρ−1∇p) as a sum of a symmetric
part and an anti-symmetric part respectively:

V =D+Ω, D :=
1

2

[

V +V T
]

, Ω:=
1

2

[

V −V T
]

,

∇(ρ−1∇p)=(∇(ρ−1∇p))+ +(∇(ρ−1∇p))−,

(∇(ρ−1∇p))± =
1

2

[

∇(ρ−1∇p)±
(

∇(ρ−1∇p)
)T ]

.

Recall that D and Ω denote the deformation and vorticity tensors of the fluid (see
[1]). Then D and Ω satisfy

D

Dt
D=−D2−Ω2−(∇(ρ−1∇p))+,

D

Dt
Ω=−DΩ−ΩD+(∇(ρ−1∇p))−.

(2.3)

In the following two lemmas, we estimate hydrodynamic quantities ρ,S,Ω and
∇(ρ−1∇p) along the particle trajectories.
Lemma 2.1. Let (ρ,v,S) be a smooth C3-solutions in R

d× [0,T∗) to the system (2.1)
corresponding to initial data (ρ0,v0,S0), and let X =X(a,t) be the particle trajectory

issued from a∈R
d at time t=0. Then we have

(i)
∑

|α|≤2

|∂αρ(X(a,t),t)|≤
∑

|α|≤2

|∂αρ0(a)|exp
[

C

∫ t

0

(

∑

1≤|α|≤3

|∂αv(X(a,s),s)|
)

ds
]

.

(ii)
∑

|α|≤2

|∂αS(X(a,t),t)|≤
∑

|α|≤2

|∂αS0(a)|exp
[

C

∫ t

0

(

∑

1≤|α|≤2

|∂αv(X(a,s),s)|
)

ds
]

.

Here C is a positive constant independent of t.

Proof. (i) We differentiate the continuity equation

Dρ

Dt
:=∂tρ+(v ·∇)ρ=−ρdivv, (2.4)
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up to twice to find

D

Dt
∂jρ=−∂jv ·∇ρ−∂jρdivv−ρdiv(∂jv), j =1,··· ,d,

D

Dt
∂k∂jρ=−(∂j∂kv ·∇)ρ−(∂jv ·∇)∂kρ−(∂kv ·∇)∂jρ

−∂j∂kρdivv−∂jρdiv∂kv−ρdiv(∂j∂kv)−∂kρdiv∂jv, j,k =1,··· ,d.

(2.5)

Then (2.4) and (2.5) imply

D

Dt

∑

|α|≤2

|∂αρ|≤C
[

∑

1≤|α|≤3

|∂αv|
]

∑

|α|≤2

|∂αρ|. (2.6)

We now integrate the above inequality (2.6) along the particle trajectory X(a,t) to
get the desired estimate.
(ii) By direct calculations, we have

DS

Dt
=0,

D

Dt
∂iS =−∂iv ·∇S,

D

Dt
∂j∂iS =−[(∂jv) ·∇]∂iS− [(∂j∂iv) ·∇]S− [∂iv ·∇]∂jS.

(2.7)

The equations (2.7) imply

D

Dt

∑

|α|≤2

|∂αS|≤C
[

∑

1≤|α|≤2

|∂αv|
]

∑

|α|≤2

|∂αS|.

We integrate the above inequality along the particle trajectory to get the desired
result.
Remark 2.1. Note that under the assumption (II) on the initial mass density in
section 1, the mass density and its derivatives up to second order vanishes at a∈S
along the smooth flow, i.e.,

∑

|α|≤2

|∂αρ0(a)|=0 =⇒
∑

|α|≤2

|∂αρ(X(a,t),t)|=0. (2.8)

Lemma 2.2. Let (ρ,v,S) be a smooth C3-solutions in R
d× [0,T∗) to the system (2.1)

corresponding to initial data (ρ0,v0,S0), and let X =X(a,t) be the particle trajectory

mapping issued from a∈R
d at time t=0. Then we have

(i) |Ω(X(a,t),t)|

≤ |Ω0(a)|exp
[

2

∫ t

0

|Dv(X(a,s),s)|ds
]

+

∫ t

0

|(∇(ρ−1∇p))−(X(a,s),s)|exp
[

2

∫ t

s

|Dv(X(a,τ),τ)|dτ
]

ds.

(ii) ∂j

(

ρ−1∂ip
)

=κeS
[(

(∂iS)(∂jS)+∂j∂iS
)

ργ−1

+
(

(γ−1)(∂iS)(∂jρ)+γ(∂jS)(∂iρ)+γ(∂j∂iρ)
)

ργ−2 + γ(γ−2)(∂jρ)(∂iρ)ργ−3
]

.
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Proof. (i) Note that the anti-symmetric part Ω of the velocity gradient ∇v satisfies

D

Dt
Ω=−DΩ−ΩD++(∇(ρ−1∇p))−.

This yields

D

Dt
|Ω|≤2|D||Ω|+ |(∇(ρ−1∇p))−|,

where |M | :=
√

∑d

i,j=1
|Mij |2, for any d×d-matrix M . Hence Gronwall’s lemma

yields the desired result.
(ii) We use the constitute relation for p=AeSργ to find the desired result.

Remark 2.2. For the case γ∈{2}∪ [3,∞), the right hand side of ∂j

(

ρ−1∂ip
)

is

bounded as long as
∑

|α|≤2
|∂αρ| and

∑

|α|≤2
|∂αS| are bounded.

3. The proof of Theorem 1.1 In this section, we study the time-evolution
of the scalar quantity div(v) as in [2], and show that this quantity will blow up along
the particle trajectories issued from points in S. This approach is a multi-dimensional
counterpart of the method employed in the blow-up analysis of the one-dimensional
inviscid Burgers’s equation (see [8]).

Let a∈S be a singular point, i.e.,

Ω0(a)=0, div(v0)(a)<0,
∑

|α|≤2

|∂αρ0(a)|=0,
∑

|α|≤2

|∂αS0(a)|<∞.

Consider a particle trajectory issued from a∈S. Then it follows from Lemmas 2.1
and 2.2 that

∑

|α|≤2

|∂αρ(X(a,t),t)|=0,
∑

|α|≤2

|∂αS(X(a,t),t)|<∞, t∈ [0,T∗),

Ω(X(a,t),t)=0, (∇(ρ−1∇p))±(X(a,t),t)=0.

Then the equation for D becomes

D

Dt
D=−D2, along the particle trajectory X =X(a,t). (3.1)

Let λi, (i=1,··· ,d) be the eigenvalues of D. We now take the trace on both sides of
the equation (3.1), and use the relation Tr[D]=div(v) and an inequality

Tr[D2]=

d
∑

i=1

λ2
i ≥

1

d

(

d
∑

i=1

λi

)2

=
1

d
(div(v))2,

to find

D

Dt
(div(v))≤−

1

d
(div(v))2.

Hence we have an explicit upper bound for div(v) along the particle trajectory:

div(v)(X(a,t),t)≤
ddiv(v0)(a)

d+(div(v0)(a))t
.
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Since divv0(a)<0, divv will blow up before the critical time t= tc(a):

tc(a) :=−
d

div(v0)(a)
.

Therefore the life-span T∗ should satisfy

T∗≤−
d

div(v0)(a)
, a∈S.

This completes the proof of Theorem 1.1.

Remark 3.1. In [17], page 182, the authors stated the following sentences for the
possible phenomena on the boundary of support ”Probably a shock appear on the

boundary of the support. However the verification is a subject of the future study” .
Apparently our result in Theorem 1.1 can answer the shock formation at the point
a∈S∩boundary of support for the Euler equations with γ∈{2}∪ [3,∞).
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