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ON THE ESTIMATE OF FIRST POSITIVE EIGENVALUE OF A

SUBLAPLACIAN IN A PSEUDOHERMITIAN MANIFOLD∗

YEN-WEN FAN† AND TING-JUNG KUO‡

Abstract. In this paper, we first obtain a CR version of Yau’s gradient estimate for eigenfunc-
tions of a sublaplacian. Second, by using CR analogue of Li-Yau’s eigenvalue estimate, we are able to
obtain a lower bound of the first positive eigenvalue in a pseudohermitian manifold of nonvanishing
pseudohermitian torsion and nonpositive lower bound on pseudohermitian Ricci curvature.
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1. Introduction. Let (M,J, θ) be a closed pseudohermitian (2n + 1)-manifold
(see the Appendix A for basic notions in pseudohermitian geometry). More precisely,
we first recall some notions as in Appendix. Let M be a (2n + 1)-dimensional, ori-
entable, contact manifold with contact structure ξ, dimR ξ = 2n. A CR structure J

compatible with ξ is an endomorphism J : ξ → ξ such that J2 = −1. We also assume
that J satisfies the integrability condition (see Appendix). A CR structure J can
extend to C⊗ξ and decomposes C⊗ξ into the direct sum of T1,0 and T0,1 which are
eigenspaces of J with respect to eigenvalues i and −i, respectively. A pseudohermitian
structure compatible with ξ is a CR structure J compatible with ξ together with a
choice of contact form θ and ξ = ker θ. Such a choice determines a unique real vector
field T transverse to ξ which is called the characteristic vector field of θ, such that
θ(T ) = 1 and LT θ = 0 or dθ(T, ·) = 0.

Let {T, Zα, Zᾱ} be a frame of TM⊗C, where Zα is any local frame of T1,0, Zᾱ =
Zα ∈ T0,1. The pseudohermitian Ricci curvature tensor Rαβ̄ and the torsion tensor
Aαβ are defined on T1,0 by

Ric(X,Y ) = Rαβ̄X
αY β̄

and

Tor(X,Y ) = i
∑

α,β

(Aᾱβ̄X
ᾱY β̄ −AαβX

αY β).

Here X = XαZα , Y = Y βZβ , Rαβ̄ = Rγ
γ
αβ̄ and Rγ

γ
αβ̄ is the pseudohermitian

curvature tensor.
Greenleaf ([Gr]) proved the pseudohermitian analogue of Lichnerowicz’s Theorem

for the first positive eigenvalue λ1 of the sublaplacian ∆b ( see the definition in Ap-
pendix A) in a closed pseudohermitian (2n+ 1)-manifold with n ≥ 3. More precisely,
under a condition on the pseudohermitian Ricci curvature and the torsion tensor

(1.1) [Ric− n+ 1

2
Tor](Z,Z) ≥ k 〈Z,Z〉 ,
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for all Z ∈ T1,0 and for some positive constant k. Then

λ1 ≥ nk

n+ 1

for n ≥ 3. In [LL], Li and Luk proved the same result for the cases n = 1 and n = 2.
However, in the case n = 1, they need an extra condition on a covariant derivative of
the pseudohermitian torsion. Recently, it was proved by Chiu ([C]) that if (M3, J, θ)
is a closed pseudohermitian 3-manifold of nonnegative CR Paneitz operator P0 with

[Ric− Tor](Z,Z) ≥ k 〈Z,Z〉 ,

for all Z ∈ T1,0 and for some positive constant k. Then

λ1 ≥ k

2
.

However, for a nonpositive constant k, the estimate of Lichnerowicz becomes
trivial in this case. In the paper of S.-C. Chang and H.-L. Chiu ([CC2]), they are
able to show that if (M3, J, θ) is a closed pseudohermitian 3-manifold of vanishing
torsion with

Ric (Z,Z) ≥ −k0 〈Z,Z〉Lθ

for all Z ∈ T1,0 and some nonnegative constant k0, then

(1.2) λ1 ≥
(

1 +
√
1 + 2k0d2

)

6d2
e−(1+

√
1+2k0d2).

Here d is the CR diameter as in (A.4).

In this paper, we first obtain a CR version of Yau’s gradient estimate for eigen-
functions of a sublaplacian as in Theorem 1.1 ([Y], [CKL] and [CKT]). Then by
using Li-Yau eigenvalue estimate ([LY2]), we are able to generalize the lower bound
(1.2) of first positive eigenvalue λ1 to a closed pseudohermitian (2n+ 1)-manifold of
nonvanishing pseudohermitian torsion as in Theorem 1.2.

Theorem 1.1. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
Suppose that

(1.3) (Ric− (n− 2)Tor) (Z, Z) ≥ −2k0 〈Z, Z〉Lθ

for all Z ∈ T1,0 and some nonnegative constant k0. If u (x) is an eigenfunction of ∆b

on M with respect to λ (i.e. ∆bu = −λu). Then for any ℓ > 0 such that (u+ ℓ) > 0,
we have

|∇bu|2

(u+ ℓ)
2
+

1

H

u2
0

(u+ ℓ)
2
≤ Q +

ℓ

(ℓ− 1)
λGn.
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Here k1 := maxM {|Aαβ | , |Aαβ,ᾱ|} and

H(k0, k1, ℓ, λ) = {2 (n+ 1) (n+ 3)
2
+ 26n+ 2

[

(n+ 3)
2
+ 1
] 1

k1 + k0
}k1

+2
[

(n+ 3)2 + 1
]

k0 +





2 (n+ 1)
[

(n+ 3)
2
+ 1
]

+ 6

n





ℓ

(ℓ− 1)
λ.

Gn =
2 (n+ 3)4 n+ 2 (n+ 3)4 + 3n (n+ 3)2 + 8 (n+ 3)2 + 3(n+ 3)

3n
.(1.4)

Q (k0, k1, n) =
(n+ 3)

2

3
{2 (n+ 1) (n+ 3)

2
+ 28n+ 2n

[

(n+ 3)
2
+ 1
] 1

k1 + k0
}k1

+
(n+ 3)

2

3

[

2 (n+ 3)
2
+ 3
]

k0.

As a consequence of Theorem 1.1, we have the following first eigenvalue estimate:

Theorem 1.2. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
Suppose that

(Ric− (n− 2)Tor) (Z,Z) ≥ −2k0 〈Z, Z〉Lθ

for all Z ∈ T1,0 where k0 ≥ 0. Then

λ1 ≥ 2

d2Gn

[

1 +
√

1 + 2Qd2
]

e
−
(

1+
√

1+2Qd2

)

where Gn, Q are as in Theorem 1.1.

We briefly describe the methods used in our proofs. In Section 2, we first derive
the CR version of Bochner-type estimate. In Section 3, It contains the crucial steps.
By using the CR version of Yau’s gradient estimate ([Y], [CKT], [CKL]), we are able to
derive the gradient estimate for the eigenfunction of a sublaplacian. As a consequence
([LY2]), we have the lower bound estimate for the first positive eigenvalue. Finally,
for the completeness, we introduce some basic material of pseudohermitian manifold
as in Appendix A.

Acknowledgments. The authors would like to express their thanks to Prof. S.-
C. Chang for constant encouragement and supports during the work. The work is not
possible without his efforts.

2. The CR Bochner-Type estimate. Now we recall the Bochner formula
from A. Greenleaf ([Gr]) and also ([CC2]) and derive some key Lemmas in a closed
pseudohermitian (2n+ 1)-manifold (M,J, θ).

Lemma 2.1. For a real function ϕ,

∆b |∇bϕ|2 = 2
∣

∣

∣

(

∇H
)2

ϕ
∣

∣

∣

2

+ 2 〈∇bϕ, ∇b∆bϕ〉
+(4Ric− 2 (n− 2)Tor) ((∇bϕ)C , (∇bϕ)C) + 4 〈J∇bϕ, ∇bϕ0〉 ,(2.1)

where (∇bϕ)C = ϕᾱZα is the corresponding complex (1, 0)-vector of ∇bϕ.
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Lemma 2.2. For a real function ϕ and any ν > 0, we have

∆b |∇bϕ|2 ≥ 4





n
∑

α,β=1

|ϕaβ |2 +
n
∑

α,β=1,α6=β

∣

∣ϕaβ̄

∣

∣

2



+
1

n
(∆bϕ)

2

+nϕ2
0 + 2 〈∇bϕ, ∇b∆bϕ〉

+

(

4Ric− 2 (n− 2)Tor − 4

ν

)

((∇bϕ)C , (∇bϕ)C)− 2ν |∇bϕ0|2 ,

where (∇bϕ)C = ϕᾱZα is the corresponding complex (1, 0)-vector of ∇bϕ.

Proof. Since

|(∇H)2ϕ|2 = 2

n
∑

α,β=1

(ϕαβϕαβ + ϕαβϕαβ)

= 2

n
∑

α,β=1

(|ϕαβ |2 + |ϕαβ |2)

= 2









n
∑

α,β=1

|ϕαβ |2 +
n
∑

α,β=1
α6=β

|ϕαβ |2 +
n
∑

α=1

|ϕαα|2









and from the commutation relation (A.5)

n
∑

α=1

|ϕαα|2 =
1

4

n
∑

α=1

(

|ϕαα + ϕαα|2 + ϕ2
0

)

=
1

4

n
∑

α=1

|ϕαα + ϕαα|2 +
n

4
ϕ2
0.

It follows that

|(∇H)2ϕ|2 = 2









n
∑

α,β=1

|ϕαβ |2 +
n
∑

α,β=1
α6=β

|ϕαβ |2









+
1

2

n
∑

α=1

|ϕαα + ϕαα|2 +
n

2
ϕ2
0

≤ 2









n
∑

α,β=1

|ϕαβ |2 +
n
∑

α,β=1
α6=β

|ϕαβ |2









+
1

2n
(∆bϕ)

2
+

n

2
ϕ2
0.

On the other hand, for all ν > 0

4 〈J∇bϕ, ∇bϕ0〉 ≥ −4 |∇bϕ| |∇bϕ0|

≥ − 2

ν
|∇bϕ|2 − 2ν |∇bϕ0|2 .

Then the result follows easily from Lemma 2.1.
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Definition 2.3. ([GL]) Let (M,J, θ) be a pseudohermitian (2n+ 1)-manifold.
We define the purely holomorphic second-order operator Q by

Qϕ = 2i

n
∑

α,β=1

(Aᾱβ̄ϕβ),α .

By apply the commutation relations (A.5), one obtains

Lemma 2.4. ([GL], [CKL]) Let ϕ (x) be a smooth function defined on M . Then

∆bϕ0 = (∆bϕ)0 + 2

n
∑

α,β=1

[

(

Aαβϕβ̄

)

ᾱ
+
(

Aᾱβ̄ϕβ

)

α

]

.

That is

2 Im Qϕ = [∆b, T ]ϕ.

Proof. By direct computation and the commutation relation (A.5), we have

∆bϕ0 = ϕ0αα + ϕ0αα

=
(

ϕα0 +Aαβϕβ

)

α
+ conjugate

= ϕα0α +
(

Aαβϕβ

)

α
+ conjugate

= ϕαα0 + ϕαα0 + 2
[(

Aαβϕβ

)

α
++

(

Aᾱβ̄ϕβ

)

α

]

= (∆bϕ)0 + 2
[(

Aαβϕβ

)

α
++

(

Aᾱβ̄ϕβ

)

α

]

.

This completes the proof.

Let u be an eigenfunction of ∆b with respect to λ Then

∆bu = −λu.

Since

0 =

∫

M

∆budµ

= −λ1

∫

M

udµ,

u must change sign. Hence we may normalize u to satisfy min
x∈M

u = −1 and max
x∈M

u ≤ 1.

Let f (x, ℓ) = ln (u+ ℓ) where we choose ℓ > 0 such that (u+ ℓ) ≥ 1 and without any
misunderstanding we denote f (x, ℓ) by f (x). Then

∆bf (x) = − |∇bf |2 −
λu

u+ ℓ
.

We define

V (ϕ) =

n
∑

α,β=1

[

(

Aαβϕβ̄

)

ᾱ
+
(

Aᾱβ̄ϕβ

)

α
+Aαβϕβ̄ϕᾱ +Aᾱβ̄ϕβϕα

]

.
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Lemma 2.5. Let u be an eigenfunction with f = ln (u+ ℓ). Then

∆bf0 = −2 〈∇bf, ∇bf0〉 −
λℓf0

(u+ ℓ)
+ 2V (f) .

Proof. From Lemma 2.4

∆bf0 = (∆bf)0 + 2
n
∑

α,β=1

[

(

Aαβϕβ̄

)

ᾱ
+
(

Aᾱβ̄ϕβ

)

α

]

.

Since

∆bf = − |∇bf |2 −
λu

u+ ℓ
,

it follows from the commutation relation (A.5) that

∆bf0 = (∆bf)0 + 2

n
∑

α,β=1

[

(

Aαβfβ̄
)

ᾱ
+
(

Aᾱβ̄fβ
)

α

]

=

(

− |∇bf |2 −
λu

u+ ℓ

)

0

+ 2

n
∑

α,β=1

[

(

Aαβfβ̄
)

ᾱ
+
(

Aᾱβ̄fβ
)

α

]

= −2 〈∇bf0, ∇bf〉 −
λℓf0

(u+ ℓ)

+2
n
∑

α,β=1

[

(

Aαβfβ̄
)

ᾱ
+
(

Aᾱβ̄fβ
)

α
+Aαβfᾱfβ̄ +Aᾱβ̄fαfβ

]

.

3. The Proof of Main Theorem. In this section, first we derive CR version
of Yau gradient estimate ([Y]) as in Theorem 1.1. Then by using the method of
Li-Yau’s eigenvalue estimate ( [LY2]), we are able to derive the lower bound of the
first positive eigenvalue as in Theorem 1.2.

In the following, we always assume min
M

u (x) = −1 and max
M

u (x) ≤ 1. Recall

f (x, ℓ) = ln (u+ ℓ) where we choose ℓ > 1 such that (u+ ℓ) > 0 and denote f (x, ℓ)
by f (x). Then for ∆bu = −λu

(3.1) ∆bf (x) = − |∇bf |2 −
λu

u+ ℓ
.

We define a function F (x, t, b, ℓ) : M × [0, 1]× (0, ∞)× (1, ∞) → R by

F = t
(

|∇bf (x, ℓ)|2 + btf2
0 (x, ℓ)

)

.

Proposition 3.1. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
Suppose that

(3.2) (2Ric− (n− 2)Tor) (Z, Z) ≥ −2k0 |Z|2
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for all Z ∈ T1,0, where k0 is a nonnegative constant. Then

∆bF ≥ −2 〈∇bf, ∇bF 〉+ t



 4

n
∑

α,β=1

|faβ|2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n
(∆bf)

2

+

(

n− 2btλℓ

u + ℓ

)

f2
0 −

(

2k0 +
2

bt
+

2λℓ

u+ ℓ

)

|∇bf |2 + 4btf0V (f)

]

.

Proof. By CR Bochner inequality in Lemma 2.2 and the assumption (3.2), we
have

∆bF = t
(

∆b |∇bf |2 + bt∆bf
2
0

)

≥ t





n

4
∑

α,β=1

|faβ |2 + 4
n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n
(∆bf)

2 + nf2
0 + 2 〈∇bf, ∇b∆bf〉(3.3)

+

(

−2k0 −
2

ν

)

|∇bf |2 + (2bt− 2ν) |∇bf0|2 + 2btf0∆bf0

]

.

Next, by Lemma 2.5 and (3.1),

(3.4)

2 〈∇bf, ∇b∆bf〉+ 2btf0∆bf0

= 2

〈

∇bf, ∇b

(

− |∇bf |2 −
λu

u+ ℓ

)〉

+ 2btf0

(

−2 〈∇bf, ∇bf0〉 −
λℓf0

(u+ ℓ)
+ 2V (f)

)

= −2

〈

∇bf, ∇b

(

F

t
− btf2

0

)〉

− 2

〈

∇bf,
λℓ∇bu

(u+ ℓ)2

〉

− 2btλℓ

(u+ ℓ)
f2
0

−4btf0 〈∇bf, ∇bf0〉 − 4btf0V (f)

= −2

t
〈∇bf, ∇bF 〉 − 2λℓ

u+ ℓ
|∇bf |2 −

2btλℓ

(u+ ℓ)
f2
0 − 4btf0V (f) .

Finally, substituting (3.5) into (3.4) and choosing ν = bt, we obtain

∆bF ≥ −2 〈∇bf, ∇bF 〉+ t



 4

n
∑

α,β=1

|faβ|2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n
(∆bf)

2

+

(

n− 2btλℓ

u + ℓ

)

f2
0 −

(

2k0 +
2

bt
+

2λℓ

u+ ℓ

)

|∇bf |2 + 4btf0V (f)

]

.

This completes the proof.

Proposition 3.2. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
Suppose that

(2Ric− (n− 2)Tor) (Z, Z) ≥ −2k0 |Z|2
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and for all Z ∈ T1,0, where k0 is a nonnegative constant. Then for all a < −1

∆bF ≥ −2 〈∇bf, ∇bF 〉

+t



 4

n
∑

α,β=1

|faβ|2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n

(

F

at
− λu

u+ ℓ

)2

+
1

n

(

1 + a

a
|∇bf |2 +

bt

a
f2
0

)2
]

+t

[

n− 2btλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 2b

na2
F

]

f2
0 + 4bt2f0V (f)

+t

[−2 (1 + a)

na2t
F − 2k0 −

2

bt
− 2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

Proof. First, for any a < −1, we have

(∆bf)
2
=

(

− |∇bf |2 −
λu

u+ ℓ

)2

=

(

1

at
F − 1

a
|∇bf |2 −

1

a
btf2

0 − |∇bf |2 −
λu

u+ ℓ

)2

=

(

1

at
F − λu

u+ ℓ
− a+ 1

a
|∇bf |2 −

1

a
btf2

0

)2

=

(

1

at
F − λu

u+ ℓ

)2

+

(

a+ 1

a
|∇bf |2 +

1

a
btf2

0

)2

−2

(

1

at
F − λu

u+ ℓ

)(

a+ 1

a
|∇bf |2 +

1

a
btf2

0

)

=

(

1

at
F − λu

u+ ℓ

)2

+

(

a+ 1

a
|∇bf |2 +

1

a
btf2

0

)2

−2 (1 + a)

a2t
F |∇bf |2 −

2b

a2
Ff2

0 +
2λ (1 + a)u

a (u+ ℓ)
|∇bf |2 +

2btλu

a (u+ ℓ)
f2
0 .

Then

(3.5)

∆bF ≥ −2 〈∇bf, ∇bF 〉

+t



 4

n
∑

α,β=1

|faβ |2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n

(

F

at
− λu

u+ ℓ

)2

+
1

n

(

1 + a

a
|∇bf |2 +

bt

a
f2
0

)2

+

(

n− 2btλℓ

u + ℓ
+

2btλu

na (u+ ℓ)
− 2b

na2
F

)

f2
0

+

(−2 (1 + a)

na2t
F − 2k0 −

2

bt
− 2λℓ

u+ ℓ
+

2λ (1 + a)u

na (u+ ℓ)

)

|∇bf |2 + 4btf0V (f)

]

.

Second, since

0 < ℓ− 1 ≤ (u+ ℓ) ≤ ℓ + 1, and a < −1
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in (3.6), we have

−ℓ

u+ ℓ
+

u

na (u+ ℓ)
≥ −

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

and

−ℓ

u+ ℓ
+

(

1 + a

na

)

u

u+ ℓ
=

−ℓ

u+ ℓ
+

u

na (u+ ℓ)
+

1

n

u

u+ ℓ

≥ −
(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)

.

Then

∆bF ≥ −2 〈∇bf, ∇bF 〉

+t



 4

n
∑

α,β=1

|faβ|2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n

(

F

at
− λu

u+ ℓ

)2

+
1

n

(

1 + a

a
|∇bf |2 +

bt

a
f2
0

)2
]

+t

[

n− 2btλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 2b

na2
F

]

f2
0 + 4bt2f0V (f)

+t

[−2 (1 + a)

na2t
F − 2k0 −

2

bt
− 2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

This completes the proof.

Proposition 3.3. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
Suppose that

(Ric− (n− 2)Tor) (Z, Z) ≥ −2k0 〈Z, Z〉Lθ

for all Z ∈ T1,0, where k0 ≥ 0. Then

(3.6)

∆bF ≥ −2 〈∇bf, ∇bF 〉

+t



4 (1− bk1)

n
∑

α,β=1

|faβ|2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2

+
1

n

(

F

at
− λu

u+ ℓ

)2

+

(

1 + a

a
|∇bf |2 +

bt

a
f2
0

)2
]

+t

[

n− 2btλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F

]

f2
0

+t

[−2 (1 + a)

na2t
F − 2k0 − 2k1n (b+ 1)− 2

bt

−2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

Here k1 := maxM {|Aαβ | , |Aαβ,ᾱ|} .
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Proof. Firstly, we recall from Proposition 3.2 that

(3.7)

∆bF ≥ −2 〈∇bf, ∇bF 〉

+t



 4

n
∑

α,β=1

|faβ|2 + 4

n
∑

α,β=1,α6=β

∣

∣faβ̄
∣

∣

2
+

1

n

(

F

at
− λu

u+ ℓ

)2

+
1

n

(

1 + a

a
|∇bf |2 +

bt

a
f2
0

)2
]

+t

[

n− 2btλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 2b

na2
F

]

f2
0 + 4bt2f0V (f)

+t

[−2 (1 + a)

na2t
F − 2k0 −

2

bt
− 2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

In view of (3.8), we need to estimate 4bt2f0V (f). Recall that

V (f) =

n
∑

α,β=1

[

(

Aαβfβ̄
)

ᾱ
+
(

Aᾱβ̄fβ
)

α
+Aαβfβ̄fᾱ +Aᾱβ̄fβfα

]

.

Then

4bt2f0V (f)(3.8)

= 4bt2f0

n
∑

α,β=1

[

(

Aαβfβ̄
)

ᾱ
+
(

Aᾱβ̄fβ
)

α
+Aαβfβ̄fᾱ +Aᾱβ̄fβfα

]

= 4bt2f0

n
∑

α,β=1

[(

Aαβfβ̄ᾱ +Aᾱβ̄fβα
)

+
(

Aαβ,āfβ̄ +Aᾱβ̄,αfβ
)

+
(

Aαβfβ̄fᾱ +Aᾱβ̄fβfα
)]

≥ −8bt2k1

n
∑

α,β=1

|f0|
∣

∣fβ̄ᾱ
∣

∣− 8bt2k1

n
∑

α,β=1

|f0|
∣

∣fβ̄
∣

∣− 8bt2k1

n
∑

α,β=1

|f0| |fᾱ|
∣

∣fβ̄
∣

∣ .

In (3.9), by Young’s inequality and noting that t ≤ 1, we have following estimates:

−8bt2k1

n
∑

α,β=1

|f0|
∣

∣fβ̄ᾱ
∣

∣ ≥
n
∑

α,β=1

(

−4bt2k1
∣

∣fβ̄ᾱ
∣

∣

2 − 4bt2k1f
2
0

)

(3.9)

≥ −4btk1n
2f2

0 − 4btk1

n
∑

α,β=1

∣

∣fβ̄ᾱ
∣

∣

2

and

−8bt2k1

n
∑

α,β=1

|f0|
∣

∣fβ̄
∣

∣ ≥
n
∑

α,β=1

(

−4bt2k1f
2
0 − 4bt2k1

∣

∣fβ̄
∣

∣

2
)

(3.10)

= −4bt2k1n
2f2

0 − 4bt2k1n

n
∑

β=1

∣

∣fβ̄
∣

∣

2

= −4bt2k1n
2f2

0 − 2bt2k1n |∇bf |2
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and

(3.11)

−8bt2k1

n
∑

α,β=1

|f0| |fᾱ|
∣

∣fβ̄
∣

∣ ≥
n
∑

α,β=1

− 4bt2k1

(

|fᾱ|2 +
∣

∣fβ̄
∣

∣

2
)

|f0|

=
n
∑

β=1

− 4bt2k1n |fᾱ|2 |f0|+
n
∑

α=1

− 4bt2k1n
∣

∣fβ̄
∣

∣

2 |f0|

= −4bt2k1n |∇bf |2 |f0|
≥ −2b2t2k1n |∇bf |2 f2

0 − 2t2k1n |∇bf |2

≥ −2b2tk1nFf2
0 − 2tk1n |∇bf |2 .

Finally, substituting (3.10), (3.11), and (3.12) into (3.8), one obtains

∆bF ≥ −2 〈∇bf, ∇bF 〉

+t



4 (1− bk1)

n
∑

α,β=1

|faβ | 2 +
1

n

(

F

at
− λu

u+ ℓ

)2

+

(

1 + a

a
|∇bf |2 +

bt

a
f2
0

)2





+t

[

n− 2btλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F

]

f2
0

+t

[−2 (1 + a)

na2t
F − 2k0 − 2k1n (b+ 1)− 2

bt

−2λ

(

ℓ

ℓ− 1
+

1

n (ℓ − 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

This completes the proof.

Proposition 3.4. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
Suppose that

(2Ric− (n− 2)Tor) (Z, Z) ≥ −2k0 |Z|2

for all Z ∈ T1,0, where k0 ≥ 0. Let b, ℓ be fixed, and p (t) be the maximal point of F.
For each t ∈ (0, 1]. Then at (p (t) , t) we have

(3.12)

0 ≥ t



4 (1− bk1)
n
∑

α,β=1

|faβ |2




+t

[

n− 2bλ

(

ℓ

ℓ− 1
+

1

na (ℓ − 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F

]

f2
0

+

[−2 (1 + a)

na2
F − 2k0 − 2k1n (b+ 1)− 2

b

−2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

Here k1 := maxM {|Aαβ | , |Aαβ,ᾱ|} .
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Proof. Since F (p (t) , t, b, ℓ) = max
x∈M

F (x, t, b, ℓ), at a critical point (p (t) , t)

of F (x, t, b, ℓ), we have

(3.13) ∇bF (p (t) , t, b, ℓ) = 0.

On the other hand, since (p (t) , t) is a maximum point of F , we can apply the
maximum principle at (p (t) , t). Then we have

(3.14) ∆bF (p (t) , t, b, ℓ) ≤ 0.

Substituting (3.13) and (3.14) into (3.7), and again noting that t ≤ 1, one obtains

0 ≥ t



4 (1− bk1)

n
∑

α,β=1

|faβ |2




+t

[

n− 2bλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F

]

f2
0

+

[−2 (1 + a)

na2
F − 2k0 − 2k1n (b+ 1)− 2

b

−2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

This completes the proof.

Proof of Theorem 1.1. We claim that at t = 1, there exists a small constant
H = H (k0, k1, ℓ, n) > 0 such that for any 0 < b ≤ 1

H

F (p (1) , 1, b, ℓ) <
na2

− (1 + a)

[

k0 + k1n (b+ 1) +
1

b
+ λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

.

Here (1 + a) < 0 for some a to be chosen later (say 1 + a = − 3

n
).

We prove it by contradiction. Suppose not, that is

F (p (1) , 1, b, ℓ) ≥ na2

− (1 + a)

[

k0 + k1n (b+ 1) +
1

b

+λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

.

Since F (p (t) , t, b, ℓ) is continuous in the variable t and F (p (0) , 0, b, ℓ) = 0, by
Intermediate-value theorem there exists a t0 ∈ (0, 1] such that

F (p (t0) , t0, b, ℓ)(3.15)

=
na2

− (1 + a)

[

k0 + k1n (b+ 1) +
1

b
+ λ

(

ℓ

ℓ − 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

.
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Now we apply (3.13) at the point (p (t0) , t0), then

0 ≥ t0



4 (1− bk1)
n
∑

α,β=1

|faβ |2


(3.16)

+t0

[

n− 2bλ

(

ℓ

ℓ− 1
+

1

na (ℓ − 1)

)

− 8bk1n
2

−
(

2b2k1n+
2b

na2

)

F (p (t0) , t0, b, ℓ)

]

f2
0

+

[−2 (1 + a)

na2
F − 2k0 − 2k1n (b+ 1)− 2

b

−2λ

(

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

)]

|∇bf |2 .

Next, by using (3.15) and noting that (1 + a) < 0

n− 2bλ

[

ℓ

ℓ− 1
+

1

na (ℓ− 1)

]

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F (p (t0) , t0, b, ℓ)

= n− 2bλ

[

ℓ

ℓ− 1
+

1

na (ℓ− 1)

]

− 8bk1n
2

−
(

2b2k1n+
2b

na2

)[

na2

− (1 + a)

]{

k0 + k1n (b+ 1) +
1

b

+ λ

[

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ − 1)

]}

= n− 2bλ

[

ℓ

ℓ− 1
+

1

na (ℓ− 1)

]

− 8bk1n
2 +

2b

1 + a

(

a2bk1n
2 + 1

)

[k0 + k1n (b+ 1)]

+
2

1 + a

(

a2bk1n
2 + 1

)

+
2bλ

1 + a

(

a2bk1n
2 + 1

)

[

ℓ

ℓ− 1
+

1

n (ℓ− 1)
+

1

na (ℓ− 1)

]

= n+
2

1 + a
+

2b

1 + a

{

a2k1n
2 +

(

a2bk1n
2 + 1

)

[k0 + k1n (b + 1)]
}

− 8bk1n
2

+
2bλℓ

ℓ− 1

[

−1− 1

naℓ
+

1

1 + a

(

a2bk1n
2 + 1

)

(

1 +
1

nℓ
+

1

naℓ

)]

.

Now, choosing (1 + a) = − 3

n
, one obtains

n− 2bλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F (p (t0) , t0, b, ℓ)

≥ n

3
− 2bn

3

{

(n+ 3)
2
k1 +

[

(n+ 3)
2
bk1 + 1

]

[k0 + k1n (b+ 1)]
}

− 8bk1n
2

+
2bℓ

ℓ− 1
λ

{

−1− (n+ 1)

3

[

(n+ 3)
2
bk1 + 1

]

}

.
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By choosing b < 1

k1+k0
, then we have

n− 2bλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F (p (t0) , t0, b, ℓ)

≥ n

3
− 2bn

3

{

(n+ 3)
2
k1 +

[

(n+ 3)
2
+ 1
]

[

k0 +
nk1 (k1 + k0 + 1)

k1 + k0

]

+ 12k1n

}

− 2bℓ

ℓ− 1
λ

{

1 +
(n+ 1)

3

[

(n+ 3)
2
+ 1
]

}

≥ n

3
− n

3
b

{

{2 (n+ 1) (n+ 3)
2
+ 26n+ 2

[

(n+ 3)
2
+ 1
] 1

k1 + k0
}k1

+2
[

(n+ 3)
2
+ 1
]

k0 +





2 (n+ 1)
[

(n+ 3)
2
+ 1
]

+ 6

n





ℓ

(ℓ− 1)
λ.







.

Define

H = H(k0, k1, ℓ, λ)

= {2 (n+ 1) (n+ 3)
2
+ 26n+ 2

[

(n+ 3)
2
+ 1
] 1

k1 + k0
}k1

+2
[

(n+ 3)
2
+ 1
]

k0 +





2 (n+ 1)
[

(n+ 3)
2
+ 1
]

+ 6

n





ℓ

(ℓ− 1)
λ.

Thus for any b such that bH(k0, k1, l, λ) < 1 (Note this condition also implies
b < 1

k1+k0
), we have

n− 2bλ

(

ℓ

ℓ− 1
+

1

na (ℓ− 1)

)

− 8bk1n
2 −

(

2b2k1n+
2b

na2

)

F (p (t0) , t0, b, ℓ) > 0.

This gives a contradiction to (3.17).
Hence, for (1 + a) = − 3

n

|∇bf |2 + bf2
0 <

(n+ 3)
2

3

{

k0 + 2k1n+
1

b
+ λ

[

ℓ

ℓ− 1
+

3

n (n+ 3) (ℓ− 1)

]}

.

Let b → 1
−

H
, and note ℓ > 1, we have

|∇bf |2 +
1

H
f2
0

≤ (n+ 3)2

3

{

k0 + 26k1n+ 2 (n+ 3)2 k1 + 2
[

(n+ 3)2 + 1
]

[

k0 +
nk1 (k1 + k0 + 1)

k1 + k0

]

+
ℓ

(ℓ− 1)
λ

{

6

n
+

2 (n+ 1)

n

[

(n+ 3)
2
+ 1
]

+ 1 +
3

n (n+ 3)

}}

=
(n+ 3)

2

3

{

k0 + 26k1n+ 2 (n+ 3)2 k1 + 2
[

(n+ 3)2 + 1
]

[

k0 +
nk1 (k1 + k0 + 1)

k1 + k0

]}

+
ℓ

(ℓ− 1)
λ

{

(n+ 3)
2

3

[

6

n
+

2 (n+ 1)

n

(

(n+ 3)
2
+ 1
)

+ 1 +
3

n (n+ 3)

]

}

.
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Hence

|∇bf |2 +
1

H
f2
0 ≤ Q+

ℓ

(ℓ− 1)
λGn

where H , Q, and Gn are constants defined in (1.5).
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. As before, we assume min
M

u (x) = −1 and max
M

u (x) ≤ 1.

Let γ : [0, 1] → M be a minimal horizontal geodesic joinging the points between maxu
and min u.

Then
∫ 1

0

d

dt
ln [u (γ (t)) + ℓ] dt = lnmax (u+ ℓ)− lnmin (u+ ℓ)(3.17)

= lnmax (u+ ℓ)− ln (ℓ− 1)

≥ ln

(

ℓ

ℓ− 1

)

.

On the other hand, by Theorem 1.1 one obtains

∫ 1

0

d

dt
ln [u (γ (t)) + ℓ] dt(3.18)

≤
∫ 1

0

|∇b ln (u+ ℓ)| |γ′ (t)| dt

≤ d

{[

Q+ λ
ℓ

ℓ− 1
Gn

]}
1

2

where d = diam (M).
From Theorem 1.1, (3.17) and (3.18), we have

[

λ
ℓ

ℓ− 1
Gn

]

≥ 1

d2

[

ln

(

ℓ

ℓ− 1

)]2

−Q.

Let t = ℓ−1

ℓ
. This implies that for any 0 < t < 1,

λGn ≥
[

1

d2
(ln t)

2 −Q

]

t.

Now, we define a real function

g : R+ × R
+ × (0, 1) → R

by

g (A,B, t) =
(

A (ln t)
2 −B

)

t.

This function has maximum point at t0 = exp
(

−1−
√

1 + 2B
A

)

and

g (t0) = 2A

[

1 +

√

1 + 2
B

A

]

exp

(

−1−
√

1 + 2
B

A

)

.
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Taking A = 1

d2 and B = Q (k0, k1, n), we get

λ ≥ 2

d2Gn

[

1 +
√

1 + 2Qd2
]

exp
(

−1−
√

1 + 2Qd2
)

.

This completes the proof of the Theorem 1.2.

Appendix A. We give a brief introduction to pseudohermitian geometry (see
[L1], [L2] for more details). Let (M, ξ) be a (2n + 1)-dimensional, orientable, con-
tact manifold with contact structure ξ. A CR structure compatible with ξ is an
endomorphism J : ξ → ξ such that J2 = −1. We also assume that J satisfies the
following integrability condition: If X and Y are in ξ, then so are [JX, Y ] + [X, JY ]
and J([JX, Y ] + [X, JY ]) = [JX, JY ]− [X,Y ].

Let {T, Zα, Zᾱ} be a frame of TM⊗C, where Zα is any local frame of T1,0, Zᾱ =
Zα ∈ T0,1 and T is the characteristic vector field. Then {θ, θα, θᾱ}, which is the
coframe dual to {T, Zα, Zᾱ}, satisfies

(A.1) dθ = ihαβθ
α ∧ θβ

for some positive definite hermitian matrix of functions (hαβ̄). Actually we can always
choose Zα such that hαβ̄ = δαβ ; hence, throughout this note, we assume hαβ̄ = δαβ .

The Levi form 〈 , 〉Lθ
is the Hermitian form on T1,0 defined by

〈Z,W 〉Lθ
= −i

〈

dθ, Z ∧W
〉

.

We can extend 〈 , 〉Lθ
to T0,1 by defining

〈

Z,W
〉

Lθ

= 〈Z,W 〉Lθ
for all Z,W ∈ T1,0.

The Levi form induces naturally a Hermitian form on the dual bundle of T1,0, denoted
by 〈 , 〉L∗

θ

, and hence on all the induced tensor bundles. Integrating the Hermitian

form (when acting on sections) overM with respect to the volume form dµ = θ∧(dθ)n,
we get an inner product on the space of sections of each tensor bundle. We denote
the inner product by the notation 〈 , 〉. For example

〈u, v〉 =
∫

M

uv dµ,

for functions u and v.
The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗ C (and

extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = θα
β ⊗ Zβ , ∇Zᾱ = θᾱ

β̄ ⊗ Zβ̄, ∇T = 0,

where θα
β are the 1-forms uniquely determined by the following equations:

dθβ = θα ∧ θα
β + θ ∧ τβ ,

0 = τα ∧ θα,

0 = θα
β + θβ̄

ᾱ.

(A.2)

We can write (by Cartan lemma) τα = Aαγθ
γ with Aαγ = Aγα. The curvature of

Tanaka-Webster connection, expressed in terms of the coframe {θ = θ0, θα, θᾱ}, is

Πβ
α = Πβ̄

ᾱ = dωβ
α − ωβ

γ ∧ ωγ
α,

Π0
α = Πα

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.
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Webster showed that Πβ
α can be written

(A.3) Πβ
α = Rβ

α
ρσ̄θ

ρ ∧ θσ̄ +Wβ
α
ρθ

ρ ∧ θ −Wα
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱγ = Wγᾱβ .

We will denote components of covariant derivatives with indices preceded by
comma; thus write Aαβ,γ . The indices {0, α, ᾱ} indicate derivatives with respect
to {T, Zα, Zᾱ}. For derivatives of a scalar function, we will often omit the comma,
for instance, uα = Zαu, uαβ̄ = Zβ̄Zαu− ωα

γ(Zβ̄)Zγu.

For a real function u, the subgradient ∇b is defined by ∇bu ∈ ξ and 〈Z,∇bu〉Lθ
=

du(Z) for all vector fields Z tangent to contact plane. Locally ∇bu =
∑

α uᾱZα +
uαZᾱ. We can use the connection to define the subhessian as the complex linear map

(∇H)2u : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1

by

(∇H)2u(Z) = ∇Z∇bu.

In particular,

|∇bu|2 = 2uαuα, |∇2
bu|2 = 2(uαβuαβ + uαβuαβ).

Also

∆bu = Tr
(

(∇H)2u
)

=
∑

α(uαᾱ + uᾱα).

Next we recall the following definition.

Definition A.1. A piecewise smooth curve γ : [0, 1] −→ M is said to be the
horizontal if γ′ (t) ∈ ξ whenever γ′ (t) exists. The length of γ is then defined by

l (γ) :=

∫ 1

0

dt
√

〈γ′ (t) , γ′ (t)〉Lθ
.

The Carnot-Carathéodory distance between two points p, q ∈ M is

d (p, q) := inf {l (γ) : γ ∈ Cp,q} ,

where Cp,q denote the set of all horizontal curves joining p and q. By Chow connec-
tivity theorem [Cho], there always exists a horizontal curve joining p and q, so the
distance is finite. The CR diameter d is defined by

(A.4) d := sup {d (p, q) : p, q ∈ M} .

Finally, we state the following commutation relations ([L1]). Let ϕ be a scalar
function and σ = σαθ

α be a (1, 0) form, then we have

(A.5)

ϕαβ = ϕβα,

ϕαβ̄ − ϕβ̄α = ihαβϕ0,

ϕ0α − ϕα0 = Aαβϕβ̄ ,

σα,0β − σα,β0 = σα,γ̄Aγβ − σγAαβ,γ̄ ,

σα,0β̄ − σα,β̄0 = σα,γAγ̄β̄ − σγAγ̄β̄,α,
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and

(A.6)

σα,βγ − σα,γβ = iAαγσβ − iAαβσγ ,

σα,β̄γ̄ − σα,γ̄β̄ = ihαβAγ̄ρ̄σρ − ihαγAβ̄ρ̄σρ,

σα,βγ̄ − σα,γ̄β = ihβγσα,0 +Rαρ̄βγ̄σρ.
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