
ASIAN J. MATH. c© 2014 International Press
Vol. 18, No. 5, pp. 817–828, November 2014 003

IRREDUCIBLE QUASIFINITE MODULES OVER A CLASS OF LIE
ALGEBRAS OF BLOCK TYPE∗

HONGJIA CHEN† , XIANGQIAN GUO‡ , AND KAIMING ZHAO§

Abstract. For any nonzero complex number q, there is a Lie algebra of Block type, denoted
by B(q). In this paper, a complete classification of irreducible quasifinite modules is given. More
precisely, an irreducible quasifinite module is a highest weight or lowest weight module, or a module
of intermediate series. As a consequence, a classification for uniformly bounded modules over another
class of Lie algebras, the semi-direct product of the Virasoro algebra and a module of intermediate
series, is also obtained. Our method is conceptional, instead of computational.
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1. Introduction. Because of wide applications in many mathematics and
physics branches, the representation theory of the Virasoro algebra has been exten-
sively studied ([CP], [KR]). Recently, many authors investigated Harish-Chandra
modules (or quasifinite weight modules) for several infinite Lie algebras related to the
Virasoro algebra, for example, generalized Virasoro algebras, the Heisenberg-Virasoro
algebra, the loop-Virasoro algebra, truncated Virasoro algebras, the algebra W (2, 2),
Schrödinger-Virasoro algebras, the Virasoro-like algebra, q-analog of Virasoro-like al-
gebras, Block type algebras B and B(q) with q a nonzero complex number. In particu-
lar, irreducible Harish-Chandra modules for the Virasoro algebra, generalized Virasoro
algebras, the Heisenberg-Virasoro algebra, the loop-Virasoro algebra, truncated Vira-
soro algebras, the algebra W (2, 2), and Block algebra B are completely classified (See
[M, GLZ1, GLZ2, LZ1, LZ2, S1, S2, S3]). For other algebras such as Schrödinger-
Virasoro algebras, the Virasoro-like algebra, q-analog of Virasoro-like algebras, Block
type algebras B(q), irreducible Harish-Chandra modules (or quasifinite modules) are
divided into two classes: (generalized) highest or lowest weight modules and uniformly
bounded modules (See [LS, LT1, LT2, SXX1, WT]). Unfortunately, the structure for
the uniformly bounded modules is unclear. In this paper, we solve this problem for
Lie algebras B(q) with nonzero complex numbers q.

Let us first recall the definition for the Lie algebras B(q).
Denote by Z, N, Z+ and C the sets of integers, positive integers, nonnegative

integers and complex numbers respectively. For any complex number q, the Lie algebra
B(q) has a basis {Lm,i, C | m ∈ Z, i ∈ Z+} over C subject to the following Lie brackets

[Lm,i, Ln,j] = (n(i+q)−m(j + q))Lm+n,i+j + δm+n,0δi+j,0
m3 −m

12
C,

[C,Lm,i] = 0

(1.1)
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where m,n ∈ Z, i, j ∈ Z+.
Note that the Lie algebras B(q) are in fact subalgebras of some very special cases

of generalized Block algebras studied in [DZ], the Lie algebra B(0) is a half part of
the well-known Virasoro-like algebra, and B(1) is the Block type Lie algebra studied
in [WT].

The paper is organized as follows. In Sect.2, we determine all ideals of B(q) and
construct all irreducible uniformly bounded modules in a different approach from that
in [SXX1]. In Sect.3, we prove that any nontrivial irreducible uniformly bounded
module for B(q) with q 6= 0 is of intermediate series. Thus we give a complete
classification for irreducible quasifinite modules over B(q). We also classify irreducible
uniformly bounded modules for another class of Lie algebras, the semi-direct product
of the Virasoro algebra and one of its modules of intermediate series.

Throughout this paper, q is always assumed to be a fixed nonzero complex number
unless specified otherwise. For any subset S in C, denote S∗ = S \ {0}. All vector
spaces and (Lie) algebras are over C. For a Lie algebra G, we denote its universal
enveloping algebra by U(G). For a ∈ C and S ⊆ C, δa,S = 1 if a ∈ S and 0 otherwise.

2. Constructing modules over B(q). The algebra B(q) can be realized in

C[x, x−1] ⊗ tqC[t] ⊕ CC as follows: For any m ∈ Z and f(t) =
∑d

i=0 ait
i ∈ C[t], we

denote xmtqf(t) =
∑d

i=0 aiLm,i. In particular, xmtq+i = Lm,i for all m ∈ Z and i ∈
Z+, where we consider tq+i as a formal power of the indeterminant t. Consequently,
the Lie bracket of B(q) in (1.1) can be rewritten as

[xmf(t), xng(t)] = xm+nt1−q (nf ′(t)g(t)−mf(t)g′(t))

+ δm+n,0
m3 −m

12
Res(t−2q−1f(t)g(t))C,

(2.1)

for m,n ∈ Z and f(t), g(t) ∈ tqC[t], where f ′(t) is the usual derivative of f(t) and
Resf(t) is the residue of f(t), namely the coefficient of t−1 in f(t). In what follows,
we will use these two different notations for B(q) alternatively and freely.

The Lie algebra B(q) has a natural Z-gradation B(q) = ⊕m∈ZB(q)m with

(2.2) B(q)m = spanC{Lm,i | i ∈ Z+} ⊕ δm,0CC.

This gradation is with respect to the eigenvalues of ad(L0,0).
It is easy to see that B(q) is perfect, i.e., [B(q),B(q)] = B(q) if and only if −2q /∈ N.

For convenience, denote L = [B(q),B(q)]/(CC ⊕ δ−q,NCL0,−q), i.e., centerless algebra
of [B(q),B(q)]. We use the same notation Lm,i for its image in L. For any ideal

I of [B(q),B(q)], we denote by Ĩ the image of I in L. Note that all the algebras
B(q), [B(q),B(q)],L and their ideals are Z-graded with respect to the gradation (2.2).

The algebra B(q) has a series of ideals, that is,

Ik = spanC{x
mtq+i|m, i ∈ Z, i > k}+ δk,0CC, ∀ k ∈ Z+.

In case that −2q ∈ N, we have some other ideals of B(q), i.e.,

I ′k = spanC{x
mtq+i|m, i ∈ Z, i > k, (m, i) 6= (0,−2q)}+ δk,0CC, ∀ k ∈ Z+.

We shall identify I ′k and Ik if −2q /∈ N. For any k ∈ Z+, I
′
k is an ideal of [B(q),B(q)]

and Ĩ ′k an ideal of L.
Let I be an ideal of L, [B(q),B(q)] or B(q). A polynomial f =

∑
i∈Z+

ait
i ∈ C[t]

is called strange for I if there exists m ∈ Z such that xmtqf(t) ∈ I but xntq+i /∈ I
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for all n ∈ Z and all i with ai 6= 0. If there is a strange polynomial f(t) for I, I is
called a strange ideal. None of the ideals defined above is strange. Indeed, we will
see from the next lemma that there are no strange ideals unless q = −1.

When q = −1, we have the following ideals for both B(q) and [B(q),B(q)]

Ja = I3 ⊕
∑

m∈Z

Cxmtq(t+ amt2), ∀ a ∈ C.

Note that Ja is a strange ideal of B(−1) and [B(−1),B(−1)], while J̃a is a strange
ideal of L for any a 6= 0. Now we can determine all ideals of B(q), [B(q),B(q)] and L.

Lemma 1. Let C′ = δ−q,NL0,−q and C′′ = δ−2q,NL0,−2q.

(1). All ideals of L are: 0, Ĩ ′k for any k ∈ Z+, and δq,−1J̃a for any a ∈ C.
(2). All ideals of [B(q),B(q)] are: K, δq,−1Ja and δq,−1(Ja + CC) for any a ∈ C,

and I ′k +K for any k ∈ Z+, where K is a subspace of CC ⊕ CC′.
(3). Any ideal of B(q) is one of the ideals in (2) or I ′k + K for −2q − k ∈ Z+,

where K is a subspace of CC ⊕ CC′ ⊕ CC′′.

Proof. Suppose I is a nonzero ideal of L. Let k ∈ Z+ be such that I ⊆ Ĩ ′k
but I 6⊆ Ĩ ′k+1. Note that I =

⊕
m∈Z

Im, where Im = {x ∈ I | [L0,0, x] = mqx}. If
Lm,i ∈ I for some m ∈ Z, i ∈ Z+ with (m, i) 6= (0,−q), (0,−2q) and (q, i) 6= (−1, 1),
then we can deduce that Ln,j ∈ I for all n ∈ Z and j > i with (n, j) 6= (0,−2q).

First suppose that I is not a strange ideal. There is Lm,k ∈ I. By the Lie bracket

(2.1), if q 6= −1 or k 6= 1, we have Ĩ ′k ⊆ I, i.e., I = Ĩ ′k. If q = −1 and k = 1 (m 6= 0

in this case), then we have Ĩ ′3 ⊕
∑

m∈Z∗ CLm,1 ⊆ I. If there is n ∈ Z∗ such that

Ln,2 ∈ I, then Ĩ ′1 ⊆ I, i.e., I = Ĩ ′1, otherwise I = Ĩ ′3 ⊕
∑

m∈Z∗ CLm,1 = J̃0.
Now suppose that I is a strange ideal. For any f(t) =

∑
i∈Z+

ait
i ∈ C[t], denote

by ℓ(f) the number of nonzero ai. By the above discussion, we can take a strange

f(t) =
∑l2

i=l1
ait

i with al1 , al2 6= 0 and minimal ℓ(f). Choose m ∈ Z such that
xmtqf(t) ∈ Im. By (2.1), we have

[xmtqf(t), xntq+j ] = xm+ntq+j ((nq −mq −mj)f(t) + ntf ′(t)) ,

∀n ∈ Z, j ∈ Z+.
(2.3)

If m = 0, by taking n = 1, j = 0 in (2.3) we have x1tq(qf(t) + tf ′(t)) ∈ I1. Note that
the coefficient of t−q in f(t) is 0 when −q ∈ N, hence qf(t) + tf ′(t) 6= 0. Moreover,
qf(t) + tf ′(t) is also strange, since the nonzero terms in f(t) and in qf(t) + tf ′(t)
are the same but with different coefficients. Replacing f(t) with qf(t) + tf ′(t), if
necessary, we may assume that m 6= 0. By computing [[xmtqf(t), x1tq], x−1tq] ∈ Im,
we get xmtq((3q + 1)tf ′(t) + t2f ′′(t)) ∈ Im. Set

gj(t) = (3qj + j2)f(t)− ((3q + 1)tf ′(t) + t2f ′′(t))

=

l2∑

i=l1

((3qj + j2)− (3qi+ i2))ait
i, ∀ l1 6 j 6 l2,

then xmtqgj(t) ∈ Im and ℓ(gj) < ℓ(f). By the choice of f , we have gj = 0 for
all l1 6 j 6 l2. This forces f(t) = al1t

l1 + al2t
l2 and (3ql2 + l22) − (3ql1 + l21) =

(l2 − l1)(3q+ l1 + l2) = 0, yielding 3q+ l1 + l2 = 0. By taking n = 0 in (2.3), we have

xmtq+jf(t) = xmtq(akt
l1+j + alt

l2+j) ∈ Im, ∀j ∈ N, j 6= −q.
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Moreover, al1t
l1+j + al2t

l2+j is not strange since 3q + (l1 + j) + (l2 + j) 6= 0 for
all j ∈ N, j 6= −q. If q 6= −1, we have xntq+l1+1 ∈ I for some n ∈ Z and hence
xmtq+l2 ∈ I since l2 > l1 + 1, contradiction.

Thus q = −1 and xntq+l1+2 ∈ I for some n ∈ Z, which implies xmtq+l′ ∈ I for
all l′ > l1+2. This forces l2 = l1+1, which together with 3q+ l1+ l2 = 0 gives l1 = 1
and l2 = 2. It is clear that xntq+i /∈ I for all n ∈ Z, i = 0, 1, 2 and xntq+i ∈ I for all
n ∈ Z, i > 3. Without loss of generality, suppose xmtq(t+ amt2) ∈ I for some a ∈ C∗

and m ∈ Z∗. Using (2.3) we deduce that J̃a ⊆ I. Now we can easily get k = 1, thus

I = J̃a. This completes the proof of (1).
Statements (2) and (3) follow easily from (1).

Now we recall some known results from the representation theory of the Virasoro
algebra and the Heisenberg-Virasoro algebra. The Heisenberg-Virasoro algebra
HVir is the Lie algebra with the basis {Ln, I(n), CD, CDI , CI | n ∈ Z} subject to the
Lie brackets given by

[Lm, Ln] = (n−m)Lm+n + δm,−n

m3 −m

12
CD,

[Lm, I(n)] = nI(m+ n) + δm,−n(m
2 +m)CDI ,

[I(m), I(n)] = mδm,−nCI ,

[CD,HVir] = [CDI ,HVir] = [CI ,HVir] = 0.

The Virasoro algebra Vir is just the subalgebra of HVir spanned by {Ln, CD | n ∈
Z}.

Set G = B(q),Vir, or HVir, we can define weight modules for G relative to the
standard maximal toral subalgebra Z + CL0, where Z is the center of G and L0 =
q−1L0,0 for B(q). Let G± be the span of vectors in G with positive/negative eigenvalues
of ad(L0) respectively. In this paper, all weight modules are referred to the
weight modules with central elements acting as scalars.

A weight G-module V is called highest/lowest weight if V = U(G)v for some
nonzero v with G±v = 0 respectively, is called Harish-Chandra if all its weight
spaces are finitely dimensional (in case G = B(q), it is usually called quasifinite
since B(q)0 is infinite dimensional), is called uniformly bounded if all its weight
spaces have dimension less than a fixed number, and is called a module of the
intermediate series if all its weight spaces are no more than 1-dimensional. The
notion of quasifinite modules was first used by V. Kac and A. Radul [KRa].

It is well known that any nontrivial irreducible uniformly bounded Vir-module is
isomorphic to the irreducible submodule of V (α, β) for some α, β ∈ C. The modules
V (α, β) all have a basis {vn | n ∈ Z} with trivial central actions and

Lmvn = (α+ n+mβ)vm+n.

The module V (α, β) is reducible if and only if α ∈ Z and β = 0, 1. For convenience,
we denote the unique nontrivial irreducible subquotient of V (α, β) by V ′(α, β). It is
easy to see V ′(0, 0) ∼= V ′(0, 1).
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It was shown in [LZ2] that any nontrivial uniformly bounded irreducible HVir-
module is isomorphic to one of the irreducible modules V ′(α, β, F ) for some α, β, F ∈
C. The modules V (α, β, F ) all have a basis {vn | n ∈ Z} and the actions are given by

Lmvn = (α+ n+mβ)vm+n, I(m)vn = Fvm+n, ∀ m,n ∈ Z

and CD, CI , CDI all act trivially. The module V (α, β, F ) is reducible if and only if
F = 0, α ∈ Z and β = 0, 1. We denote the corresponding unique nontrivial irreducible
subquotient module by V ′(α, β, F ). It is clear that V ′(0, 0, 0) ∼= V ′(0, 1, 0).

Note that B(q)/I1 ∼= Vir for all q ∈ C∗ and that if −2q ∈ N then B(q)/I ′1
∼=

(B(q)/I1)⊕ (CL0,−2q), where CL0,−2q is the 1-dimensional trivial center; B(−1)/I2 ∼=
HVir /(CCDI + CCI) and B(−1)/I ′2

∼= (B(−1)/I2) ⊕ (CL0,2), where CL0,2 is the 1-
dimensional trivial center. We now define some B(q)-modules:

(1). V = V (α, β, 0, 0) for all q 6= 0: I1V = 0 and V ∼= V (α, β) as B(q)/I1-modules;
(2). V = V (α, β,K, 0) for −2q ∈ N: I ′1V = 0, V ∼= V (α, β) as B(q)/I1-modules

and the trivial center L0,−2q acts as a scalar K;
(3). V = V (α, β,K, F ) for q = −1: I ′2V = 0, V ∼= V (α, β, F ) as B(q)/I2-modules

and the trivial center L0,2 acts as a scalar K.
Note that the above modules were defined in [SXX1] in a different approach. It

is easy to see that V (α, β,K, F ) is reducible if and only if F = 0, α ∈ Z and β = 0, 1.
We denote the unique infinite-dimensional irreducible subquotient by V ′(α, β,K, F ).
When −2q ∈ N, the module V (α, β,K, 0) has a unique 1-dimensional subquotient for
any α ∈ Z, β ∈ {0, 1}, denoted by T (α, β,K). Since T (α, β,K) is independent of
α, β up to isomorphisms, we simply denote T (K) = T (α, β,K). We will show in the
next section that V ′(α, β,K, F ) and T (K) exhaust all irreducible uniformly bounded
B(q)-modules.

3. Irreducible quasifinite modules. In this section we assume that V is a
nontrivial irreducible uniformly bounded B(q)-module. Then there exists α ∈ C such
that V admits a weight space decomposition V = ⊕n∈ZVn with

Vn = {v ∈ V | tqv = q(α+ n)v}.

For convenience, we first introduce the concept of quasi-ideals of the polynomial
ring C[t].

Definition 2. For any k ∈ N, a subspace K of C[t] is said to be a k-quasi-ideal
of C[t] if tk+iK ⊆ K for all i ∈ Z+.

We can characterize k-quasi-ideals in C[t] as follows.

Lemma 3. Let K be a nonzero subspace of C[t]. Then K is a k-quasi-ideal of
C[t] if and only if there exists a monic polynomial h(t) ∈ C[t] such that tkh(t)C[t] ⊆
K ⊆ h(t)C[t]. In this case, we also say that K is generated by h(t) if further h(t) is
of minimal degree among such polynomials.

Proof. If a subspace K satisfies tkh(t)C[t] ⊆ K ⊆ h(t)C[t] for some polynomial
h(t) ∈ C[t], then we have

tk+iK ⊆ tk+ih(t)C[t] ⊆ tkh(t)C[t] ⊆ K, ∀ i ∈ Z+,

that is, K is a k-quasi-ideal of C[t].
Now suppose that K is a nonzero subspace of C[t] such that tk+iK ⊆ K for all i ∈

Z+. Let h(t) be the greatest common divisor of polynomials in K, then K ⊆ h(t)C[t].
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By Bézout’s Theorem of polynomials, there are polynomials f1(t), f2(t), . . . , fl(t) ∈ K
and u1(t), . . . , ul(t) ∈ C[t] such that

h(t) = u1(t)f1(t) + u2(t)f2(t) + · · ·+ ul(t)fl(t).

Noticing that tk+iK ⊆ K for all i ∈ Z+, we see that t
k+iuj(t)fj(t) ∈ K for all i ∈ Z+

and 1 6 j 6 l. Thus we have tk+ih(t) ∈ K for all i ∈ Z+, i.e., t
kh(t)C[t] ⊆ K, as

desired.

Lemma 4. There exists k ∈ N such that (Ik + CC)V = 0.

Proof. Note that V can be viewed as a uniformly bounded module over the
Virasoro algebra span{C,Lm,0 : m ∈ Z}. From the representation theory of the
Virasoro algebra, we have CV = 0 and there exists p ∈ N such that dimVn 6 p for
all n ∈ Z.

Claim 1. For any m,n0 ∈ Z with m 6= 0, there is a nonzero 2-quasi-ideal Km so
that (xmtqKm)Vn0

= 0.
Choose a basis {v1, v2, · · · , vr} of Vn0

, where 0 6 r 6 p. Consider the following
linear map

ϕm : C[t] → V r
n0+m = Vn0+m ⊕ Vn0+m ⊕ · · · ⊕ Vn0+m,

defined by ϕm(f) = ((xmtqf(t))v1, (x
mtqf(t))v2, . . . , (x

mtqf(t))vr) for any f ∈ C[t].
Then for any f(t) ∈ ker(ϕm), we have (xmtqf(t))Vn0

= 0 and hence

0 = [xmtqf(t), x0tq+i]Vn0
= −m(q + i)

(
xmtq+if(t)

)
Vn0

, ∀i ∈ Z+,

0 = [(q + i)xmtq+if(t), x0tq+j ]Vn0

= −m(q + i)(q + j)
(
xmtq+i+jf(t)

)
Vn0

, ∀i, j ∈ Z+.

(3.1)

We have tif(t) ∈ ker(ϕm) for f ∈ ker(ϕm) and i ∈ Z+ if q 6= −1; and ti+2f(t) ∈
ker(ϕm) for f ∈ ker(ϕm) and i ∈ Z+ if q = −1. So Km = ker(ϕm) is a nonzero
2-quasi-ideal of C[t].

Let Km be generated by the monic polynomial Pm(t) (assuming that n0 is fixed).
By Lemma 3, we have Km ⊆ PmC[t] and degPm 6 dim(C[t]/Km) 6 dim(V r

n0+m) 6
p2.

Claim 2. For any n ∈ Z, there is a 2-quasi-ideal Rn so that (xmtqRn)Vn = 0 for
all m ∈ Z∗.

Fix any n0 ∈ Z. Take arbitrary m,n ∈ Z with mn(m + n) 6= 0. We have
monic polynomials Pm and Pn with respect to n0. Applying (2.1) with f = tq+iPm,
g = tq+jPn, to Vn0

, we have

Pm+n

∣∣∣ti+j
[(

(ni−mj)PmPn

)
+
(
(nq −mq)PmPn + ntP ′

mPn −mtPmP ′
n

)]
,

∀ i, j > 2.
(3.2)

Taking (i, j) = (2, 3) and (i, j) = (3, 2), we deduce that

(3.3) Pm+n

∣∣∣t5PmPn and Pm+n

∣∣∣t5
(
(nq −mq)PmPn + ntP ′

mPn −mtPmP ′
n

)
.

Using (3.3), we can inductively deduce that

(3.4) Pj+2|t
5jP j

1P2 and P−(j+2)|t
5jP j

−1P−2
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for any j ∈ N. Recalling the fact degPm 6 p2, we have Pm|(tP1P2P−1P−2)
p2

and

hence t2(tP1P2P−1P−2)
p2

C[t] ⊆
⋂

j∈Z∗ Kj . Set

Rn0
=

⋂

j∈Z∗

Kj = {f(t) ∈ C[t] | (xjtqf(t))Vn0
= 0, ∀ j ∈ Z∗},

which is easily proved to be a 2-quasi-ideal.
Let Rn be generated by the monic polynomial Qn(t). Then

degQn(t) 6 deg
(
t2(tP1P2P−1P−2)

p2
)
6 p2(4p2 + 1) + 2 6 7p4.

Claim 3. Qk(t) is a power of t for any k ∈ Z.
Choose any m, k ∈ Z with m 6= 0,−1. Let h(t) be the least common multiple

of Qk(t), Qm+k(t) and Qm+k+1(t), then t2h(t) ∈ Rk ∩ Rm+k ∩ Rm+k+1. By taking
f(t) = tq and g(t) = tq+2h(t) in (2.1), we have

(3.5) [xmtq, xntq+2h(t)] = xm+ntq+2
(
(nq −mq − 2m)h(t)−mth′(t)

)
.

Applying the above equation to Vk, we get

xm+ntq+3h′(t)Vk = 0, ∀ n 6= 0,−m.

Replacing m with m+ 1, similarly we get

xm+n+1tq+3h′(t)Vk = 0, ∀ n 6= 0,−m− 1.

Combining the above two formulas, we deduce that

xntq+3h′(t)Vk = 0, ∀ n ∈ Z∗,

which yields t3h′(t) ∈ Rk and Qk|t
3h′(t).

Suppose that there exist a ∈ C∗ and n ∈ Z such that (t−a)|Qn(t). We can choose
d ∈ N and k ∈ Z such that (t− a)d|Qk and (t− a)d+1 ∤ Ql for any l ∈ Z. Then by the
previous result, we have Qk|t

3h′(t) and hence (t − a)d|t3h′(t), where h(t) is defined
as before. On the other hand, we have (t − a)d+1 ∤ h(t) and (t − a)d ∤ h′(t) by the
definition of h(t), contradiction! Thus any Qn(t) must be a power of t.

Since all degQn 6 7p4, there exists k0 ∈ N such that (xmtq+i)Vn = 0 for all
m ∈ Z∗, n ∈ Z and i > k0. Then by the Lie bracket (2.1), we get

0 = [xmtq+k1 , x−mtq+k2 ]Vn = −m(2q + k1 + k2)x
0tq+k1+k2Vn,

for all m ∈ Z∗, n ∈ Z and k1, k2 > k0. Then there exists k ∈ N such that

(xmtq+i)Vn = 0, ∀ m ∈ Z, n ∈ Z and i > k,

that is, (Ik + CC)V = 0, as desired.

Theorem 5. Let V be an irreducible uniformly bounded B(q)-module where q ∈
C∗. Then V is a module of intermediate series. More precisely, V is isomorphic to
T (K) or V ′(α, β,K, F ) for suitable α, β,K, F ∈ C.

Proof. If I ′0V = 0, then V ∼= T (K) for some K ∈ C. Now we suppose that
I ′0V 6= 0.
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By Lemma 4, there exists k ∈ Z+ such that I ′k+1V = 0 and V can be viewed as

an irreducible uniformly bounded module over B(q)(k) = B(q)/I ′k+1. We still denote

by Lm,i its image in B(q)(k).
If k = 0, then B(q)(0) is isomorphic to Vir ⊕ δ−2q,NCL0,−2q and V ∼= V ′(α, β)

for some α, β ∈ C as Vir-modules with action of the center L0,−2q being an arbitrary
scalar. In this case, V ∼= V ′(α, β,K, 0) for some K ∈ C as B(q)-modules.

If k = 1 and q = −1, then B(q)(1) is isomorphic to a one-dimensional trivial
central extension of HVir /(CCDI ⊕ CCI) and V ∼= V ′(α, β, F ) for some α, β, F ∈ C
as HVir-modules with action of the trivial center being an arbitrary scalar. In this
case, V ∼= V ′(α, β,K, F ) for some K ∈ C as B(q)-modules.

Now we suppose that k > 1 if q 6= −1, and k > 2 if q = −1. Denote

H = spanC{Lm,k | m ∈ Z, (m, k) 6= (0,−2q)} ⊆ B(q)(k).

Note that Lm,i = 0 in B(q)(k) for all m, i ∈ Z with i > k and (m, i) 6= (0,−2q). Let
p ∈ N be such that dim Vn ≤ p for all n ∈ Z.

Claim 1. For any 1 6 l 6 k, there is al ∈ C such that (L0,l − al)
pV = 0.

Take any 1 6 l 6 k and w ∈ V . Suppose that we have r ∈ N and a ∈ C
such that (L0,l − a)rw = 0. We denote wi = (L0,l − a)iw for 0 6 i 6 r. Then
(L0,l − a)rLm,jwi = 0 for all 0 6 i 6 r and j > k + 1− l, since [L0,l, Lm,j] = 0.

Now take 0 6 i 6 r and j > k+1− l. Suppose that (L0,l−a)(s+1)rLm,j−s′wi = 0
for all 0 6 s′ 6 s for some 0 6 s 6 k − l. Then we have

(L0,l − a)(s+2)rLm,j−s−1wi

=(L0,l − a)(s+2)r−1[L0,l, Lm,j−s−1]wi + (L0,l − a)(s+2)r−1Lm,j−s−1wi+1

=(L0,l − a)(s+2)r−1Lm,j−s−1wi+1 = · · · = (L0,l − a)(s+1)r+iLm,j−s−1wr = 0.

By induction, we have

(L0,l − a)r(k+2−l)Lm,jw = 0, ∀ 0 6 j 6 k.

Then we conclude that for all x ∈ U(B(q)(k)) there is r′ ∈ N such that (L0,l−a)r
′

xw =
0.

Fix any nonzero weight space Vn0
for some n0. Then there exists nonzero v ∈ Vn0

such that (L0,l−al)v = 0 for some al ∈ C. Take x1, · · · , xs ∈ U(B(q)(k))n−n0
such that

{x1v, · · · , xsv} forms a basis of Vn. Then by the discussion in last paragraph, there
exists rn ∈ N such that (L0,l − al)

rnxiv = 0 for all 1 6 i 6 s, or, (L0,l − al)
rnVn = 0.

Since dimVn 6 p for some p ∈ N, hence (L0,l − al)
pVn = 0 for all n ∈ Z, i.e.,

(L0,l − al)
pV = 0.

Claim 2. HV = 0.
Fix any 1 6 l 6 k with l 6= −q, there is r ∈ Z+ such that (L0,l− al)

r+1V = 0 and
u = (L0,l − al)

rv 6= 0 for some v ∈ V . We have

0 = Lm,k−l(L0,l − al)
r+1v =

r∑

j=0

(L0,l − al)
j [Lm,k−l, L0,l − al](L0,l − a)r−jv

= −m(r + 1)(q + l)Lm,k(L0,l − al)
rv = −m(r + 1)(q + l)Lm,ku,

which gives Lm,ku = 0 for all m ∈ Z∗.



QUASIFINITE MODULES OVER BLOCK ALGEBRAS 825

On the other hand, if there exists 0 6 i < r + 1 such that Lm1,k · · ·Lmi,k(L0,l −
al)

r+1−iV = 0 for all m1,m2, · · · ,mi ∈ N, then

0 = Lmi+1,k−lLm1,k · · ·Lmi,k(L0,l − al)
r+1−iV

= Lm1,k · · ·Lmi,kLmi+1,k−l(L0,l − al)
r+1−iV

= Lm1,k · · ·Lmi,k

r−i∑

j=0

(L0,l − al)
j [Lmi+1,k−l, L0,l − al](L0,l − al)

r−i−jV

= −mi+1(r + 1− i)(q + l)Lm1,k · · ·Lmi,kLmi+1,k(L0,l − al)
r−iV,

which gives

Lm1,k · · ·Lmi,kLmi+1,k(L0,l − al)
r−iV = 0, ∀ mi+1 ∈ N.

Then using induction based on the previous discussion and by the fact (L0,l −
al)

r+1V = 0, we can deduce that

Lm1,k · · ·Lmr+1,kV = 0, ∀ m1, · · ·mr+1 ∈ N.

If k = −2q, for the nonzero vector u ∈ V we have Lm,ku = 0 for all m ∈ Z∗,
that is Hu = 0. Thus HV = 0 since H is an ideal of B(q)(k) and V is an irreducible
B(q)(k)-module.

If k 6= −2q, then there exists s ∈ N such that Ls
1,kV = 0 and Ls−1

1,k V 6= 0 by the
above discussion, then

0 = L−1,0L
s
1,kV = [L−1,0, L

s
1,k]V = s(k + 2q)L0,kL

s−1
1,k V.

Recall that we have (L0,k − ak)
pV = 0 from Claim 1, so ak = 0 and hence Lp

0,kV = 0.

In particular, we have Lp
0,ku = 0. Let r′ ∈ N be such that Lr′

0,ku = 0 and u0 =

Lr′−1
0,k u 6= 0. Now we have

L0,ku0 = 0 and Lm,ku0 = Lm,kL
r′−1
0,k u = Lr′−1

0,k Lm,ku = 0 ∀ m ∈ Z∗,

i.e., Hu0 = 0. This implies HV = 0.
Thus we have obtained that I ′kV = 0. By induction on k, we can deduce that

I ′1V = 0 if q 6= −1 and I ′2V = 0 if q = −1. Our result follows from the discussion at
the beginning of the proof.

Remark 6. In fact, we can also define the ideals Ik of B(0) for all k ∈ Z+

similarly. Then using the same methods as those in the proofs of Lemma 4 and
Theorem 5, we can show that I1V = 0 for any irreducible uniformly bounded Z-
graded B(0)-module, where the gradation is induced from the gradation (2.2). Since
B(0)/I1 is isomorphic to an infinite-dimensional Heisenberg algebra, by the results
of [C] we can determine all irreducible uniformly bounded Z-graded B(0)-module; in
particular, the homogeneous spaces of such modules are no more than 1-dimensional.

Note that the simplest case of Theorem 6 recovers Theorem 1.5 in [SXX1] which
classified all irreducible modules of intermediate series over B(q) whose proof was
based on about ten pages of computations. When we were revising our paper, we
noticed the paper [SXX2], where Theorem 5 for the special case q = 1 is obtained
independently. Right away, we sent the preprint of the present paper to the authors
of [SXX2] on Thursday, Jan 10, 2013.
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Combining the above theorem with Theorem 1.3 in [SXX1], now we give a com-
plete classification of irreducible quasifinite modules over B(q).

Theorem 7. Let q ∈ C∗. Any irreducible quasifinite module over B(q) is isomor-
phic to an irreducible highest weight module or an irreducible lowest weight module,
or a module of the form T (K) or V ′(α, β,K, F ) for suitable α, β,K, F ∈ C.

Recently, the irreducible unitary modules for the algebras B(q) were classified in
[CG].

For any β ∈ C, let L(β) be the Lie algebra which is the semi-direct product of the
Virasoro algebra and one of its intermediate series module V (0, β); more precisely,
L(β) has a basis {Ln, L

′
n, C | n ∈ Z} and the Lie brackets are defined as

[Lm, Ln] = (n−m)Lm+n + δm+n,0
m3 −m

12
C,

[Lm, L′
n] = (n+mβ)L′

m+n + δβ,−1δm+n,0
m3 −m

12
C,

[L′
m, L′

n] = 0

where m,n ∈ Z and C is central. It is clear that L(0) and L(−1) are isomorphic to
HVir /(CCDI⊕CCI) and W (2, 2) respectively; the classification of irreducible Harish-
Chandra modules for these algebras were given in [LZ2] and [GLZ2] respectively.

Note that L(β) ∼= B(q)/I2 where β = −1− 1/q. From Theorem 5 we can have

Corollary 8. Let β ∈ C \ {0,−1}, and H be the ideal of L(β) spanned by L′
n

for n ∈ Z if β 6= 1 or n ∈ Z∗ if β = 1. Assume that V is an irreducible uniformly
bounded module over L(β). Then HV = 0 and V is of intermediate series.
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