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ABSTRACT. Masser and others have constructed sequences of “‘near miss” abc-triples,
i.e., triples of relatively prime rational integers (a,b,¢) that asymptotically come close
to violating the inequality that appears in the abc Conjecture. In the present paper, we
show various partial generalizations of Masser’s result to arbitrary number fields.

1. Introduction

Masser proved the following theorem in [3]. We refer to Notation 1.2
and Definition 1.3 concerning the notation and terminology that appears.

THEOREM 1.1 (Masser). Let Py,y € Ry be (positive real numbers) such
1
that y < 7 Then there exists a strict abe-triple (a,b,c) in (the field of rational
numbers) Q whose conductor Pg(a,b,c) satisfies the following conditions:
. PQ(a,b,c) > Py,
* |abe| > Pg(a,b,c)® exp((log Pg(a,b,c)) /> 7).

In the present paper, we show the existence of an abc-triple in an arbitrary
number field L that satisfies similar (but slightly weaker) inequalities to the
inequalities in Theorem 1.1. The inequalities that we obtain are weaker than
the inequalities of Theorem 1.1 in the following two respects: the quantity on
the left-hand side of this second inequality will be replaced by the “height” of
the triple, while the quantity on the right-hand side of this second inequality
will be replaced by a quantity of slightly lower order. Moreover, we show, in
the case of a quite substantial class of number fields “L”, that the abc-triple
whose existence is asserted may be chosen to satisfy the condition that it does
not arise (even after possible multiplication by a scalar) from an abc-triple that
is contained in some proper subfield of L.

The strategy applied in Masser’s proof of Theorem 1.1 is to construct an
abc-triple such that the prime numbers dividing a or b are bounded, while ¢ is
divisible by a large power of a fixed prime number; these conditions on the
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abe-triple imply that Pg(a,b,c) is relatively small. In the present paper, we
give generalizations of this argument of Masser in two cases, each of which
applies to number fields L more general than @. One is the case where the
rank (as a finitely generated abelian group) of the group of units ¢/ of L is 0,
i.e., the case where L is either the field of rational numbers or an imaginary
quadratic field. In this case, a suitable analogue of the triangle inequality
holds. Such an analogue of the triangle inequality allows us to mimick
Masser’s proof and hence to obtain bounds on the “size” of the abc-triple
in terms of Pg(a,b,c) (cf. Theorem A). The other case is the case where the
rank of the group of units ¢/ is positive. In this case, by considering suit-
able powers of a given non-torsion element of ()}, we construct abc-triples that
satisfy the desired inequalities (cf. Theorem B).

NotATION 1.2.

(1) For a finite set X, we shall use the notation #X to denote the cardinality
of X.

(2) For an algebraic number field L, we use the notation ¢ (resp. L™, O],
U, 1k, hp) to denote the ring of integers of L (resp. the multiplicative
group of L, the group of units of L, the group of roots of unity of L, the
rank of the finitely generated abelian group ¢, the class number of L).

(3) V(L) (resp. V¥(L), ¥Y"™"(L)) denotes the set of places (resp. archime-
dean places, non-archimedean places) on L. For ve V™"(L), p, denotes
the maximal ideal of (/; associated to v, and p, denotes the residue char-
acteristic of v.

(4) N denotes the absolute norm on L, i.., for an ideal a C ¢r, Ny(a) =
#(0p/a), and for an element a € Oy, Ny(a) = Np(a0}).

(5) For x an element of a topological field isomorphic to R or C, |x| de-
notes the usual absolute value, i.e., if x # 0, then x/|x| is a unit with
respect to the topology. If ve V(L)™, then for x e L*, |x]|, := |x|"®,
where L, denotes the completion of L with respect to v (so L, = R or
L, ~ C), and x is considered as an element of L,. If ve V""(L), then
for xe L*, |x||, := N(p,) ™, where ord,(x) € Z denotes the unique
element € Z such that the fractional ideal x - p, ordi(%) g generated by v-adic
units € L.

DErFINITION 1.3.

(1) Let a,b,ce L\{0}. If a+ b+ c =0, then we say that (a,b,c) is an abc-
triple. For a,b,ce L, if a,b,c € Or and aOp + b0 + cOp = O, then we
say that a, b, ¢ are relatively prime. For an abc-triple (a,b,c), if a, b, ¢
are relatively prime, then we shall say that (a,b,c) is a strict abc-triple.
Note that some authors use the term “abc-triple” to refer to a “strict abc-
triple”, as defined in the present paper.
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(2) For an abc-triple (a,b,c), we define the conductor of (a,b,c)

Pr(a,b,c) = H Nz (p,)-

ve V(L)
#{llall,: 1611, llell, } =2
Note that if (a,b,c) is a strict (a, b, c)-triple, then
Pi(a,b,c) = H N (p,)-
)

v EWHOH (L
labe], <1

(3) For an abc-triple (a,b,c), we define
Hi(a,b,¢):= [T max{llall,, 151],, llel,}-
veV(L)
and call it the height of (a,b,c) (cf. [4, §2]). Note that if (a,b,c) is a

strict (a, b, ¢)-triple, then

Hi(a,b,c)= ] max{lal,, |1l lle

ve V(L)

o}

The main theorems of the present paper are the following.

THEOREM A. Let L be an imaginary quadratic field (which we regard as
a subfield of L, =~ C, where v denotes the unique element of V¥*(L)) and Py,y €

R. be such that y < % Then there exists a strict abe-triple (a,b,c) in L such
that

* Pi(a,b,c) > Py

e |abc|* > Pr(a,b,c)® exp((log Pp(a,b,c))"/*7).

THEOREM B. Let L be a number field, uy € O \u;, and Py,0 € R. such
that 6 < 1. Then there exists a positive integer | such that if we set u:= u(/),
a:=—1, b:=u, c:=1—u, then the following conditions are satisfied:

* (a,b,c) is a strict abc-triple;

* Pi(a,b,c) > Py,

e Hi(a,b,c)> Prla,b,c)(log Pr(a,b,c))' ™.

In fact, Theorem A would be somewhat more meaningful if the (a,b,¢) in
the statement of Theorem A could be chosen in such a way that the following
condition on (a,b,c) is satsfied:

(*q¢) (a,b,c) does not arise (even after possible multiplication by a scalar)

from an abc-triple that is contained in @, i.e., g is not contained

in Q.
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Indeed, it is easy to verify (cf. the argument given below for more details)
that Theorem A in its present form (i.e., in which the condition (xq) is not
necessarily satisfied) follows immediately from Masser’s result (i.e., Theorem
1.1), which yields abe-triples that do not satisfy (xg). In a similar vein, we
observe that, in Theorem B, it is of interest to know whether or not u can be
chosen so that u is not contained in any proper subfield of L.

With regard to Theorem A, we remark that the argument given in the
present paper is insufficient from the point of view of guaranteeing that (a, b, ¢)
may be chosen so that (xq) is satisfied. Nevertheless, we included Theorem A
in the present paper in the hope that some relatively minor modification of
the argument given in the present paper may be sufficient to prove a variant of
Theorem A of the desired form (i.e., that asserts that (a,b,c¢) may be chosen
so that (xq) is satisfied).

Theorem A may be deduced from Masser’s result as follows. (This expla-
nation is of course different from the proof of Theorem A given in Section 3.)
If L is an imaginary quadratic field, and (a,b,c) is a strict abc-triple as in
Theorem 1.1, i.e.,

. PQ(a,b,c) > Py;

e |abe| > Po(a, b, c)’ exp((log Po(a, b, c))"/*™),
then since for ve V"™*(L) such that p,|abc, #{lall, |6, |lc|l,} =2 and
Nr(p,) = py, it follows that

Pi(a,b,c) = Pg(a,b,c) > Py.

On the other hand, since for any prime number p,

it follows that
labe|* = Po(a, b, ¢)® exp(2(log Pg(a,b,c))/*7)
2 Pg(a,h,0)° exp((log Py(a,b,¢))'7)
> Pi(a,b,¢)" exp((log Pr(a,b,¢))'* 7).

With regard to Theorem B, we have the following Corollary C, which may
be regarded as a refined version of Theorem B in the sense that it states that
there exist strict abc-triples as in of Theorem B that do not arise by apply-
ing Theorem B to some subfield L’ of the given number field L for which
rk; < rk;.
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COROLLARY C. Let L be a number field which is neither the field of
rational numbers nor an imaginary quadratic field, and Py,0 € R~o such that
0 < 1. Then there exists a unit ue O] such that if we set a:=—1, b:=u,
c¢:=1—u, then the following conditions are satisfied:

* (a,b,c) is an abc-triple;

* Pi(a,b,c) > Py,

e Hy(a,b,c) > Pr(a,b,c)(log Pr(a,b,c)) ™;

e if L' C L is a subfield such that rkp, < rky, then u¢ L'

In particular, if L is unit-nondegenerate (see Definition 1.4 and Proposition
D below), then 2= —u¢ L' for any proper subfield L' C L.

a

DerNITION 1.4. Let L be a number field. If for any proper subfield
L' C L, tk; < rk;, then we say that L is unit-nondegenerate. Otherwise, we
say that L is unit-degenerate.

ProposSITION D. Let L be a totally imaginary Galois extension of Q.
Then the following hold:

(1) L is unit-nondegenerate if and only if for each ve V¥(L), the decom-
position group of v in Gal(L/Q) is not contained in the center of
Gal(L/@).

(i) If L is unit-nondegenerate and M is a Galois extension of Q containing
L, then M is also unit-nondegenerate.

ExampLE 1.5. L := Q(V/2,exp(37i)) C C is a Galois extension of @ with
center-free Galois group (i.e., the symmetric group on 3 letters). Thus, by
Proposition D, any Galois extension of @ containing L is unit-nondegenerate.

In conclusion, for a quite substantial class of number fields L, we can find
abc-triples that do not arise from any proper subfield of L, and that yield
counterexamples of the “y =0 version” of the abc Conjecture for L.

2. [Estimates for ideal counting functions
Let L be a number field.

DerFmNiTION 2.1, Let x, y € Ry and a C (4 a non-zero ideal.

(1) If a# Op, then LPN(a):=max{N.(p,)|ve V™" (L), p,Ja}. We define
LPN(Op) :=1. For ae O, we define LPN(a) := LPN(a0y).

(2) We define

IT;(x) :={p C Op : non-zero prime ideal | N, (p) < x}
and

np(x) = # 1 (x).
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(3) We define
Y (x,y) = #{b C O : non-zero ideal | N, (b) < x, LPN(b) < y}.
(4) We define
Yr(x, y;a) := #{b C Op : non-zero ideal | N.(b) < x,
LPN(b) < y,a+b=0.}.
(5) We define
0x):= 3 log N.(p).
e VIOr(L)

Ne(p,)<x

The following lemma gives an estimate for 6 (cf. [2, Satz 190], or,
alternatively, [1, §3.2]; [5, Corollary 3.3]; [5, Corollary 3.4]). In the remainder
of the present paper, we use the notation “O(—)” as it is defined in [5,
Definition 1.4].

LemMA 2.2. Let x € Rsy. Then the following estimates hold:
(1) There exists C € Rsqy such that

mL(x) = J:lo% + O(x exp(—C(log x)'/?)).

nr(x) = Tog x + (log x)? + 0<(log x)3> .

0r(x)=x+ 0((10gx)2>'

Proor. (1) See [1, §3.2].

(2) This estimate follows from (1) and the same elementary calculation as in
the proof of [5, Corollary 3.3].

(3) This estimate follows from (2) and the same elementary calculation as in
the proof of [5, Corollary 3.4]. O

We also have an estimate for the function ¥.

LEmMa 2.3. Let x,y,y€ Rso, u€Zsy, and qy,...,q, maximal ideals of
Op such that y <1, x> 1, and Np(q;) < y = (logx)” for i=1,...,u. Write
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D:=1]q. Then the following estimate holds:
i=1

1 y Y
Pr(x,y; D) = ex -—1)y+ 0l Goa 2
L(x, y; D) P<<y )y ylogy 7 ((logy)2>>

1 1 4 1 v
= exp <__ 1) (IOg x)7+2(0g7x)+ Oy"u (Lx)z .
Y y* log log x (log log x)

ProoF. Similar to the proof of [5, Theorem 3.9]. In the present situa-
tion, however, we observe that the statement of [5, Proposition 3.5] should be
replaced by the following:

Let xe R.y, yeRs,. Then the following inequalities hold:

(log X)RL(J’)
<Y.(x,y)+1
Ol I logNg(p) = THRY)
pellL(y)
(log x)ﬂL(}’)
T () I log Ni(p)
pelli(y)
7 (y)
f1e 2 log N.(p) . O
by 108X

3. The case of imaginary quadratic fields

In this section, we prove Theorem A. Let L be an imaginary quadratic
field. Let 6 € Ry, 6’ € Roo be such that

12-0 5> 124"

5 < 12, o' < 12, —
(he +0)"

Let ¢ be the smallest prime number such that ¢> > Py and q:=q0@; is a
maximal ideal. (Note that the existence of such ¢ follows from Chebotarev’s

Density Theorem.) In the following argument, we shall make a suitable choice
of

X0 € Ro3

satisfying certain conditions that depend only on L, Py (e.g., via a depen-
dence on g¢), 6, and 6’. Let x be an element of R.,,. We define y = y(x) :=
(logx)'*>1 and G=G(x):= 1+ [logx| >logx>1. (Thus, G <1+ logx
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<2logx.) Next, observe that it follows from Lemma 2.3 that by taking x( to
be suitably large (in a way that depends only on L and Pj), we may assume
that ¥ (x,;q)/G > ¢*>. In particular, there exists a unique element / =

1
I(x) =1 of Z such that 0 < p (x, y;q) < Gg*l < Wr(x, y;q).

LemMA 3.1. For any x € R.,,, there exists a pair (a1,b1) of elements of
such that

LPN(a;) < y, LPN(b;) < y,

a0+ 610, = Op, a10p 4+ q= 0, b0+ q = 0p,

a)? < xhe, |by|* < xhe,

jar|* < |bi]* < exp(h) |,

by —aieq’,

a; # by.

~

(98]

~ o~ o~~~ —~
w B~
220

=)

Proor. First, we observe that since Gg*' < Wi(x,y;q), there exist
Gg* +1 distinct ideals ag,ay,...,ag,2 C Or such that Nz(a;) <x, LPN(q;) <
y,and a;+q= Oy for i=0,1,...,Gg*. Since the h;-th power of every ideal

of Op is principal, there exists a generator s; (resp. s{,...,s&qz,) of aé’L(resp.
a{’L,...,aZLqZ,). Then since #(0r/q’) = ¢*, it follows from the Box Principle
that there exist distinct elements o, 51, .. .,5g € {8),5], - - ,s’GtIz,} C Oy, such that

e LPN(s;)) <y for i=0,1,...,G,

e 500 +q=0, for i=0,1,...,G,

e s;—s;eql fori,j=0,1,...,G.
By reordering, we may suppose that

1 <Nz(so) < Np(s1) < -+ < Np(sg) < x.

If x/°¢ XNy (s5;) < Np(sir1) for i=0,1,...,G—1, then since G > logx, it
follows that

X < xl’LNL(so) < xGhi/log Nr(so) <+ < x”L/'Og’*NL(sG,l) <Ny(sg) < xhe
a contradiction. Thus, there exists iy € Z such that 0 < iy < G — 1, and
NL(siy) < Ni(sig1) < X"/ 8N (s;,) = exp(h)NL(si,)-

Since the ideals s;,¢; and s;,110; are hy-th powers, the ideal s;,Op + s;,+10;
is also an /;-th power, hence principal. Thus, there exists a pair (a;,b;) of
elements of @; such that

a0y + b0 = Oy,

by siyt1
aj Siy
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Then since Nip(a;) = \al|2 and Np(b)) = |b1|2, one verifies immediately that
(a1, by) satisfies the conditions in the statement of Lemma 3.1. ]

LemMA 3.2. There exists a strict abe-triple (a,b,c) such that
(1)
PL(a7b7c) > POa

(2)

Hy(a,b,c)® >Ny (abc) = |abe|> > Pr(a,b, c)’ ex (12—5’)(1‘)“”1)L("’b’"))1/2
r(a,b,c)” >Ny (abc) = |abc r(a,b,c p log log P1(,b.0) |

Proor. It follows from Lemma 3.1 that for any x € RR.y,, there exists a
pair (aj, b) of elements of ¢, which satisfies the conditions in the statement of
Lemma 3.1. Let

a:=ay, b := —by, c:=—a +b.

It follows from conditions (2) and (6) of Lemma 3.1 that (a, b, ¢) is a strict abc-
triple. Since 7 > 1, it follows from condition (5) of Lemma 3.1 that ceq.
Since, moreover, q = ¢(; is a maximal ideal and ¢ > P, it follows that

PL(a,b,c) > NL(C[) = q2 > P(),

i.e., condition (1) of Lemma 3.2 is satisfied.

It remains to show that for a suitable choice of xy, (a,b,c) satisfies con-
dition (2) of Lemma 3.2. Since (a,b,c) is a strict abc-triple, it follows from
Definition 1.3 (3) that

Hy(a,b,c) = max{Ny(a),N.(b),N.(c)}
= max{|a|27 |b‘27 |C|2},

and hence that Hy(a,b,c)’ > |abc|>. On the other hand, since, by conditions
(1) and (5) of Lemma 3.1, LPN(a) < y, LPN(b) < y, and ¢ € q/, it follows that

Pu(abe)=| J[ N I N
eV (L) veVmon(L)
p, | ab Pole

<exp(d.(y)) )

= exp(f . .
p(0L(»)) 2207
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Thus, it follows from this estimate, together with condition (4) of Lemma 3.1
and the triangle inequality, that

2 2
le|* < (1 +exp<%hL>> la* < (1 +exp<%hL>> |b]2,

and hence that

16
|abe|* > L“
(1+exp(ihL))

¢ . 3
= (e "R
xp(5/L

Next, recall that it follows from the definition of / and G that

q2[ > SUL()C, yaq) > SUL(xv 2 q)
T Gg® T 2¢*logx

Therefore, if we write
1

C:= 1
8¢'2(1 4+ exp($hL))
then it follows that
label > C exp(—0.(»)Pr(x, y; Q) Pr(a, b,c)\’
- log x '

Note that C depends only on L and Py. On the other hand, it follows from
Lemma 2.2 (3) and Lemma 2.3 that

exp(—0.(y)) PL(x, y;9)
log x

B (log )12 (log x)'"?
= exp( (log x)"~ + 0<7(log log 2)°

1/2 1/2
- exp ((log x)l/2 + 4log x) + O( (log ) 2)) - exp(—log log x)

log log x (log log x)

— exp 4(log x)l/2 Lo (log x)l/2 .
log log x (log log x)?

Thus, for a suitable choice of xj, it follows that

12 3 _ (log x)l/2
labe|” > Pr(a,b,c)” exp ((12 0) Toglogx |
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Moreover, since for a suitable choice of xy,

1 2 ‘
(1 e (#”)) exp(0.(y)) < exp(2(log x)'/?) < x°,
it follows that

Pr(a,b,c) < exp(0.(y))|c|?

< (1+ pG/)) exp(01.(7)) bl

< (l + exp(%hL>)2 exp(0.(y))x"

< th+(5

and thus
log Pr(a,b,c) < (hy +9) log x.
Next, since we may assume without loss of generality that
log Py > exp(2),

and the function

1/2
: e R

]R>exp(2) ER log Z

is strictly monotone increasing, ﬁ > 12 —¢', and Pr(a,b,c) > Py, it fol-
L

lows that for a suitable choice of X,

(log x)'/2
exp ((12 —0) Tog log x

i Xp((hL 1o F T loglogx log((hr +0) log ¥)

(e +0) log x)'"?
log((hr +6) log x)

(log Py (a, b, c))1/2>

(12—-0) loglog x + log(hL + ) ((hL+5)logx)1/2>

> exp ((12 -9

!
= eXp <(12 ) log log Py (a,b,c)

This completes the proof that condition (2) of Lemma 3.2 is satisfied. ]
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Now we prove Theorem A.

ProoF (This proof is similar to [5, Proof of Theorem 2.2].)
First, observe that there exists M € IR, that depends only on ¢’ and y
such that for ze Ry,

log z
12-¢'

Now we apply Lemma 3.2, where we take “Py” to be max{Py,exp(M)}, to
obtain a strict abc-triple (a,b,c) such that

Py(a,b,c) > Py, log Pr(a,b,c) > M

and

log Py (a,b,c))"?
be|* > P 3 12—\ ik .
|labe|” > Pr(a, b, c) exp(( 5)loglogPL(a,b,c)
Then it follows that

log log Pr(a,b,c)
12-¢'

< (log Pr(a,b,c))’.
Thus, we conclude that

12
labe|? > Pr(a,b, )’ exp<(12 _ 1y Uog Pr(a, b)) )

log log Pr(a,b,c)

> Py(a,b,c)’ exp((log PL(a,b,C))l/ny) O

4. Near miss abc-triples via powers of units

In this section, we prove Theorem B. Note that it follows from Diri-
chlet’s Unit Theorem that O;\yu; # & if and only if L is neither the field
of rational numbers nor an imaginary quadratic field. Since we are given
ug € O \y;, it thus follows that L is neither the field of rational numbers nor
an imaginary quadratic field.

Now we prove Theorem B.

Proor. Let I be a sufficiently large integer (> 2) such that >1-90.

- I+1

Write o = J] (14 |o(uo)|]) (= 1), where o ranges over the embeddings of
o L—C

L into €. Thus, o depends only on uy. Let ¢ be the smallest prime number
(> 2) such that ¢ > Py, Ni(q) = ¢“® > log o, and q@ is a maximal ideal of
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Op. (Note that the existence of such a ¢ follows from Chebotarev’s Density
Theorem.) If we write

(1) = #((0/a")") = =D 1),
then 0 < /(I) < N.(q)" = ¢/“®" and 1 —u") e q/. Moreover, it holds that

Ne(1—ugy= T lo(1 —ug")

o:L—C
< I (+lotw)™)
oL —C
(I
< ( IT a+ |0(”o)|)>
g L—C
S aNL(q)]_
Write
a:=-—1, b= ué(l), c:= l—u(l)(l).

Then since a, b, ¢ are relatively prime in @y, it follows that

Hi(a,b,c)= [ max{lal,, 5]l ll],}

ve ViR (L)
> [T lel,
ve V(L)
= Ng(c)
(cf. Definition 1.3 (3)) and

PL(aabac) NL(pv)

UEW"O“(L)
Pole

NL(C)
Ni(g)"™
< NL(C)

IA

(cf. Definition 1.3 (2)). Thus, it follows that
1 <log N.(¢) < Ny(¢)! log o < Ny (g)! /==
and hence that

(log Nz ()" < (log Np(e)) "V < Ny ()"
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Therefore,

and thus, since Pr(a,b,c) > ¢=% > 22 > exp(1),
N_(¢) > Py(a,b,c)(log N.(c)'™°
> P.(a,b,c)(log Pr(a,b,c)' ™.
Hence, we conclude that
Hi(a,b,¢) = Ny (c) > Pr(a,b,c)(log Pr(a,b,c))' ™.
Since Py (a,b,c) = g > Py, this completes the proof of Theorem B. O
Finally, we prove Corollary C.

Proor. In Theorem B, we take ug € ¢} so that ug is not contained in ¢}
for any subfield L’ of L such that the rk;. < rk;. (Here, we note that by
elementary Galois theory, there exist only finitely many subfields of L.) Then
u obtained by applying Theorem B satisfies the conditions in the statement
of Corollary C. O]

5. Unit-nondegenerate number fields

LemMa 5.1. Let L, L' be number fields such that L' C L. Then tky =
rky if and only if L' is totally real, and L is a totally imaginary extension of L'
of degree 2.

ProoOF. Let r (resp. ¥/, s, s') be the number of real places of L (resp. real
places of L', complex places of L, complex places of L’). By Dirichlet’s unit
theorem, rk;. = rk; if and only if (#V*(L") =) r' +5' =r+s (= #VY¥(L)).
Let 7n: V¥(L) — V*°(L") be the map induced by restriction.

Suppose that #’' +s" = r+5s. Then since « is surjective, n is also injective.
Thus, for any ve V(L), [L,: L] (U)} =[L:L']>1. In particular, every infinite
place of L’ (resp. L) is real (resp. complex), and [L:L'] = 2.

Conversely, if L’ is totally real, and L is a totally imaginary extension of
L’ of degree 2, then a similar argument shows that 7 is bijective, and hence that
I‘kL/ = I‘kL. Ol
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Now we prove Proposition D.

PROOF.

(1)

Suppose that L is unit-degenerate. Then it follows from Lemma 5.1
that L is totally complex, and that there exists a totally real subfield
L' of L such that [L: L] =2. Let D be the decomposition group
in Gal(L/@Q) of some ve V¥(L). Since #(DNGal(L/L"))=2=
#Gal(L/L"), and #D <2, it follows that D = Gal(L/L’). There-
fore, for any o e Gal(L/Q), oDo~! is equal to the decomposition
group of v7 in Gal(L/@), hence, by a similar argument, also equal to
Gal(L/L"). Thus, we conclude that D = Gal(L/L’) is a normal sub-
group of Gal(L/@Q), which implies that D is contained in the center
of Gal(L/L') since #D = 2.

Conversely, suppose that the decomposition group D in Gal(L/®)
of some ve V¥(L) is contained in the center of Gal(L/@Q). Let
L' :=LP (ie., the subfield of D-invariants of L). Then since L is a
totally imaginary Galois extension of @, and D is contained in the
center of Gal(L/L'), it follows from the definition of D that: (a) L’
is a Galois extension of @Q; (b) [L: L'] =2; (c) the restriction of v to
L’ is real. Moreover, (a) and (c) imply that L’ is totally real. Thus,
L is unit-degenerate by Lemma 5.1.

Suppose that M is unit-degenerate. Then by (i), the decomposition
groups of the infinite places of M in Gal(M/Q) are contained in the
center of Gal(M/@Q). Since the decomposition group of an infinite
place v of L in Gal(L/Q@Q) is equal to the images of the decomposi-
tion groups in Gal(M/Q) of the infinite places of M that lie above
v and thus contained in the center of Gal(L/@Q), L is unit-degenerate
by (i), a contradiction. O
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