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Abstract. Masser and others have constructed sequences of ‘‘near miss’’ abc-triples,

i.e., triples of relatively prime rational integers ða; b; cÞ that asymptotically come close

to violating the inequality that appears in the abc Conjecture. In the present paper, we

show various partial generalizations of Masser’s result to arbitrary number fields.

1. Introduction

Masser proved the following theorem in [3]. We refer to Notation 1.2

and Definition 1.3 concerning the notation and terminology that appears.

Theorem 1.1 (Masser). Let P0; g A R>0 be (positive real numbers) such

that g <
1

2
. Then there exists a strict abc-triple ða; b; cÞ in (the field of rational

numbers) Q whose conductor PQða; b; cÞ satisfies the following conditions:
� PQða; b; cÞ > P0;
� jabcj > PQða; b; cÞ3 expððlog PQða; b; cÞÞ1=2�gÞ:

In the present paper, we show the existence of an abc-triple in an arbitrary

number field L that satisfies similar (but slightly weaker) inequalities to the

inequalities in Theorem 1.1. The inequalities that we obtain are weaker than

the inequalities of Theorem 1.1 in the following two respects: the quantity on

the left-hand side of this second inequality will be replaced by the ‘‘height’’ of

the triple, while the quantity on the right-hand side of this second inequality

will be replaced by a quantity of slightly lower order. Moreover, we show, in

the case of a quite substantial class of number fields ‘‘L’’, that the abc-triple

whose existence is asserted may be chosen to satisfy the condition that it does

not arise (even after possible multiplication by a scalar) from an abc-triple that

is contained in some proper subfield of L.

The strategy applied in Masser’s proof of Theorem 1.1 is to construct an

abc-triple such that the prime numbers dividing a or b are bounded, while c is

divisible by a large power of a fixed prime number; these conditions on the
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abc-triple imply that PQða; b; cÞ is relatively small. In the present paper, we

give generalizations of this argument of Masser in two cases, each of which

applies to number fields L more general than Q. One is the case where the

rank (as a finitely generated abelian group) of the group of units O�
L of L is 0,

i.e., the case where L is either the field of rational numbers or an imaginary

quadratic field. In this case, a suitable analogue of the triangle inequality

holds. Such an analogue of the triangle inequality allows us to mimick

Masser’s proof and hence to obtain bounds on the ‘‘size’’ of the abc-triple

in terms of PQða; b; cÞ (cf. Theorem A). The other case is the case where the

rank of the group of units O�
L is positive. In this case, by considering suit-

able powers of a given non-torsion element of O�
L , we construct abc-triples that

satisfy the desired inequalities (cf. Theorem B).

Notation 1.2.

(1) For a finite set X , we shall use the notation aX to denote the cardinality

of X .

(2) For an algebraic number field L, we use the notation OL (resp. L�, O�
L ,

mL, rkL, hL) to denote the ring of integers of L (resp. the multiplicative

group of L, the group of units of L, the group of roots of unity of L, the

rank of the finitely generated abelian group O�
L , the class number of L).

(3) VðLÞ (resp. VarcðLÞ, VnonðLÞ) denotes the set of places (resp. archime-

dean places, non-archimedean places) on L. For v A VnonðLÞ, pv denotes

the maximal ideal of OL associated to v, and pv denotes the residue char-

acteristic of v.

(4) NL denotes the absolute norm on L, i.e., for an ideal a � OL, NLðaÞ ¼
aðOL=aÞ, and for an element a A OL, NLðaÞ ¼ NLðaOLÞ.

(5) For x an element of a topological field isomorphic to R or C, jxj de-

notes the usual absolute value, i.e., if x0 0, then x=jxj is a unit with

respect to the topology. If v A VðLÞarc, then for x A L�, kxkv :¼ jxj½Lv:R�,

where Lv denotes the completion of L with respect to v (so Lv GR or

Lv GC), and x is considered as an element of Lv. If v A VnonðLÞ, then
for x A L�, kxkv :¼ NLðpvÞ�ordvðxÞ, where ordvðxÞ A Z denotes the unique

element A Z such that the fractional ideal x � p�ordvðxÞ
v is generated by v-adic

units A L.

Definition 1.3.

(1) Let a; b; c A Lnf0g. If aþ bþ c ¼ 0, then we say that ða; b; cÞ is an abc-

triple. For a; b; c A L, if a; b; c A OL and aOL þ bOL þ cOL ¼ OL, then we

say that a, b, c are relatively prime. For an abc-triple ða; b; cÞ, if a, b, c
are relatively prime, then we shall say that ða; b; cÞ is a strict abc-triple.

Note that some authors use the term ‘‘abc-triple’’ to refer to a ‘‘strict abc-

triple’’, as defined in the present paper.
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(2) For an abc-triple ða; b; cÞ, we define the conductor of ða; b; cÞ

PLða; b; cÞ :¼
Y

v AVnonðLÞ
afkakv;kbkv;kckvgb2

NLðpvÞ:

Note that if ða; b; cÞ is a strict ða; b; cÞ-triple, then

PLða; b; cÞ ¼
Y

v AVnonðLÞ
kabckv<1

NLðpvÞ:

(3) For an abc-triple ða; b; cÞ, we define

HLða; b; cÞ :¼
Y

v AVðLÞ
maxfkakv; kbkv; kckvg:

and call it the height of ða; b; cÞ (cf. [4, § 2]). Note that if ða; b; cÞ is a

strict ða; b; cÞ-triple, then

HLða; b; cÞ ¼
Y

v AV arcðLÞ
maxfkakv; kbkv; kckvg:

The main theorems of the present paper are the following.

Theorem A. Let L be an imaginary quadratic field (which we regard as

a subfield of Lv GC, where v denotes the unique element of VarcðLÞ) and P0; g A

R>0 be such that g <
1

2
. Then there exists a strict abc-triple ða; b; cÞ in L such

that
� PLða; b; cÞ > P0;
� jabcj2 > PLða; b; cÞ3 expððlog PLða; b; cÞÞ1=2�gÞ:

Theorem B. Let L be a number field, u0 A O�
L nmL, and P0; d A R>0 such

that d < 1. Then there exists a positive integer l such that if we set u :¼ ul
0,

a :¼ �1, b :¼ u, c :¼ 1� u, then the following conditions are satisfied:
� ða; b; cÞ is a strict abc-triple;
� PLða; b; cÞ > P0;
� HLða; b; cÞ > PLða; b; cÞðlog PLða; b; cÞÞ1�d

.

In fact, Theorem A would be somewhat more meaningful if the ða; b; cÞ in

the statement of Theorem A could be chosen in such a way that the following

condition on ða; b; cÞ is satsfied:

ð�QÞ ða; b; cÞ does not arise (even after possible multiplication by a scalar)

from an abc-triple that is contained in Q, i.e., b
a
is not contained

in Q.
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Indeed, it is easy to verify (cf. the argument given below for more details)

that Theorem A in its present form (i.e., in which the condition ð�QÞ is not

necessarily satisfied) follows immediately from Masser’s result (i.e., Theorem

1.1), which yields abc-triples that do not satisfy ð�QÞ. In a similar vein, we

observe that, in Theorem B, it is of interest to know whether or not u can be

chosen so that u is not contained in any proper subfield of L.

With regard to Theorem A, we remark that the argument given in the

present paper is insu‰cient from the point of view of guaranteeing that ða; b; cÞ
may be chosen so that ð�QÞ is satisfied. Nevertheless, we included Theorem A

in the present paper in the hope that some relatively minor modification of

the argument given in the present paper may be su‰cient to prove a variant of

Theorem A of the desired form (i.e., that asserts that ða; b; cÞ may be chosen

so that ð�QÞ is satisfied).

Theorem A may be deduced from Masser’s result as follows. (This expla-

nation is of course di¤erent from the proof of Theorem A given in Section 3.)

If L is an imaginary quadratic field, and ða; b; cÞ is a strict abc-triple as in

Theorem 1.1, i.e.,
� PQða; b; cÞ > P0;
� jabcj > PQða; b; cÞ3 expððlog PQða; b; cÞÞ1=2�gÞ,

then since for v A VnonðLÞ such that pv j abc, afkakv; kbkv; kckvgb 2 and

NLðpvÞb pv, it follows that

PLða; b; cÞbPQða; b; cÞ > P0:

On the other hand, since for any prime number p,

p2 b
Y

v AVnonðLÞ
pvjp

NðpvÞ;

it follows that

jabcj2 bPQða; b; cÞ6 expð2ðlog PQða; b; cÞÞ1=2�gÞ

bPQða; b; cÞ6 expððlog PQða; b; cÞ2Þ1=2�gÞ

bPLða; b; cÞ3 expððlog PLða; b; cÞÞ1=2�gÞ:

With regard to Theorem B, we have the following Corollary C, which may

be regarded as a refined version of Theorem B in the sense that it states that

there exist strict abc-triples as in of Theorem B that do not arise by apply-

ing Theorem B to some subfield L 0 of the given number field L for which

rkL 0 < rkL.
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Corollary C. Let L be a number field which is neither the field of

rational numbers nor an imaginary quadratic field, and P0; d A R>0 such that

d < 1. Then there exists a unit u A O�
L such that if we set a :¼ �1, b :¼ u,

c :¼ 1� u, then the following conditions are satisfied:
� ða; b; cÞ is an abc-triple;
� PLða; b; cÞ > P0;
� HLða; b; cÞ > PLða; b; cÞðlog PLða; b; cÞÞ1�d

;
� if L 0 � L is a subfield such that rkL 0 < rkL, then u B L 0.

In particular, if L is unit-nondegenerate (see Definition 1.4 and Proposition

D below), then b
a
¼ �u B L 0 for any proper subfield L 0 � L.

Definition 1.4. Let L be a number field. If for any proper subfield

L 0 � L, rkL 0 < rkL, then we say that L is unit-nondegenerate. Otherwise, we

say that L is unit-degenerate.

Proposition D. Let L be a totally imaginary Galois extension of Q.

Then the following hold:

( i ) L is unit-nondegenerate if and only if for each v A VarcðLÞ, the decom-

position group of v in GalðL=QÞ is not contained in the center of

GalðL=QÞ.
(ii) If L is unit-nondegenerate and M is a Galois extension of Q containing

L, then M is also unit-nondegenerate.

Example 1.5. L :¼ Q
ffiffiffi
23

p
; exp 2

3 pi
� �� �

� C is a Galois extension of Q with

center-free Galois group (i.e., the symmetric group on 3 letters). Thus, by

Proposition D, any Galois extension of Q containing L is unit-nondegenerate.

In conclusion, for a quite substantial class of number fields L, we can find

abc-triples that do not arise from any proper subfield of L, and that yield

counterexamples of the ‘‘g ¼ 0 version’’ of the abc Conjecture for L.

2. Estimates for ideal counting functions

Let L be a number field.

Definition 2.1. Let x; y A R>0 and a � OL a non-zero ideal.

(1) If a0OL, then LPNðaÞ :¼ maxfNLðpvÞ j v A VnonðLÞ; pvjag. We define

LPNðOLÞ :¼ 1. For a A OL, we define LPNðaÞ :¼ LPNðaOLÞ.
(2) We define

PLðxÞ :¼ fp � OL : non-zero prime ideal jNLðpÞa xg

and

pLðxÞ :¼aPLðxÞ:
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(3) We define

CLðx; yÞ :¼afb � OL : non-zero ideal jNLðbÞa x; LPNðbÞa yg:

(4) We define

CLðx; y; aÞ :¼afb � OL : non-zero ideal jNLðbÞa x;

LPNðbÞa y; aþ b ¼ OLg:

(5) We define

yLðxÞ :¼
X

v AVnonðLÞ
NLðpvÞax

log NLðpÞ:

The following lemma gives an estimate for y (cf. [2, Satz 190], or,

alternatively, [1, § 3.2]; [5, Corollary 3.3]; [5, Corollary 3.4]). In the remainder

of the present paper, we use the notation ‘‘Oð�Þ’’ as it is defined in [5,

Definition 1.4].

Lemma 2.2. Let x A Rb2. Then the following estimates hold:

(1) There exists C A R>0 such that

pLðxÞ ¼
ð x
2

dt

log t
þOðx expð�Cðlog xÞ1=2ÞÞ:

(2)

pLðxÞ ¼
x

log x
þ x

ðlog xÞ2
þO

x

ðlog xÞ3

 !
:

(3)

yLðxÞ ¼ xþO
x

ðlog xÞ2

 !
:

Proof. (1) See [1, § 3.2].

(2) This estimate follows from (1) and the same elementary calculation as in

the proof of [5, Corollary 3.3].

(3) This estimate follows from (2) and the same elementary calculation as in

the proof of [5, Corollary 3.4]. r

We also have an estimate for the function C .

Lemma 2.3. Let x; y; g A R>0, u A Zb1, and q1; . . . ; qu maximal ideals of

OL such that g < 1, xb 1, and NLðqiÞa y ¼ ðlog xÞg for i ¼ 1; . . . ; u. Write
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D :¼
Qu
i¼1

qi. Then the following estimate holds:

CLðx; y;DÞ ¼ exp
1

g
� 1

� �
yþ y

g log y
þOg;u

y

ðlog yÞ2

 ! !

¼ exp
1

g
� 1

� �
ðlog xÞg þ ðlog xÞg

g2 log log x
þOg;u

ðlog xÞg

ðlog log xÞ2

 ! !
:

Proof. Similar to the proof of [5, Theorem 3.9]. In the present situa-

tion, however, we observe that the statement of [5, Proposition 3.5] should be

replaced by the following:

Let x A R>1, y A Rb2. Then the following inequalities hold:

ðlog xÞpLðyÞ

pLðyÞ! �
Q

p APLðyÞ
log NLðpÞ

aCLðx; yÞ þ 1

a
ðlog xÞpLðyÞ

pLðyÞ! �
Q

p APLð yÞ
log NLðpÞ

� 1þ
X

p APLð yÞ

log NLðpÞ
log x

0
@

1
A
pLðyÞ

: r

3. The case of imaginary quadratic fields

In this section, we prove Theorem A. Let L be an imaginary quadratic

field. Let d A R>0, d 0 A R>0 be such that

d < 12; d 0 < 12;
12� d

ðhL þ dÞ1=2
> 12� d 0:

Let q be the smallest prime number such that q2 > P0 and q :¼ qOL is a

maximal ideal. (Note that the existence of such q follows from Chebotarev’s

Density Theorem.) In the following argument, we shall make a suitable choice

of

x0 A R>3

satisfying certain conditions that depend only on L, P0 (e.g., via a depen-

dence on q), d, and d 0. Let x be an element of R>x0 . We define y ¼ yðxÞ :¼
ðlog xÞ1=2 b 1 and G ¼ GðxÞ :¼ 1þ blog xc > log xb 1. (Thus, Ga 1þ log x
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a 2 log x.) Next, observe that it follows from Lemma 2.3 that by taking x0 to

be suitably large (in a way that depends only on L and P0), we may assume

that CLðx; y; qÞ=G > q2. In particular, there exists a unique element I ¼

IðxÞb 1 of Z such that 0 <
1

q2
CLðx; y; qÞaGq2I < CLðx; y; qÞ.

Lemma 3.1. For any x A R>x0 , there exists a pair ða1; b1Þ of elements of

OL such that

(1) LPNða1Þa y, LPNðb1Þa y,

(2) a1OL þ b1OL ¼ OL, a1OL þ q ¼ OL, b1OL þ q ¼ OL,

(3) ja1j2 a xhL , jb1j2 a xhL ,

(4) ja1j2 a jb1j2 a expðhLÞja1j2,
(5) b1 � a1 A qI ,

(6) a1 0 b1:

Proof. First, we observe that since Gq2I < CLðx; y; qÞ, there exist

Gq2I þ 1 distinct ideals a0; a1; . . . ; aGq2I � OL such that NLðaiÞa x, LPNðaiÞa
y, and ai þ q ¼ OL for i ¼ 0; 1; . . . ;Gq2I . Since the hL-th power of every ideal

of OL is principal, there exists a generator s 00 (resp. s 01; . . . ; s
0
Gq2I ) of ahL

0 (resp.

ahL
1 ; . . . ; ahL

Gq2I ). Then since aðOL=q
I Þ ¼ q2I , it follows from the Box Principle

that there exist distinct elements s0; s1; . . . ; sG A fs 00; s 01; . . . ; s 0Gq2I g � OL such that
� LPNðsiÞa y for i ¼ 0; 1; . . . ;G,
� siOL þ q ¼ OL for i ¼ 0; 1; . . . ;G,
� si � sj A qI for i; j ¼ 0; 1; . . . ;G.

By reordering, we may suppose that

1aNLðs0ÞaNLðs1Þa � � �aNLðsGÞa xhL :

If xhL=log xNLðsiÞ < NLðsiþ1Þ for i ¼ 0; 1; . . . ;G � 1, then since G > log x, it

follows that

xhL a xhLNLðs0Þ < xGhL=log xNLðs0Þ < � � � < xhL=log xNLðsG�1Þ < NLðsGÞa xhL ;

a contradiction. Thus, there exists i0 A Z such that 0a i0 aG � 1, and

NLðsi0ÞaNLðsi0þ1Þa xhL=log xNLðsi0Þ ¼ expðhLÞNLðsi0Þ:

Since the ideals si0OL and si0þ1OL are hL-th powers, the ideal si0OL þ si0þ1OL

is also an hL-th power, hence principal. Thus, there exists a pair ða1; b1Þ of

elements of OL such that

a1OL þ b1OL ¼ OL;

b1

a1
¼ si0þ1

si0
:
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Then since NLða1Þ ¼ ja1j2 and NLðb1Þ ¼ jb1j2, one verifies immediately that

ða1; b1Þ satisfies the conditions in the statement of Lemma 3.1. r

Lemma 3.2. There exists a strict abc-triple ða; b; cÞ such that

(1)

PLða; b; cÞ > P0;

(2)

HLða; b; cÞ3bNLðabcÞ ¼ jabcj2 > PLða; b; cÞ3 exp ð12� d 0Þ ðlog PLða; b; cÞÞ1=2

log log PLða; b; cÞ

 !
:

Proof. It follows from Lemma 3.1 that for any x A R>x0 , there exists a

pair ða1; b1Þ of elements of OL which satisfies the conditions in the statement of

Lemma 3.1. Let

a :¼ a1; b :¼ �b1; c :¼ �a1 þ b1:

It follows from conditions (2) and (6) of Lemma 3.1 that ða; b; cÞ is a strict abc-

triple. Since I b 1, it follows from condition (5) of Lemma 3.1 that c A q.

Since, moreover, q ¼ qOL is a maximal ideal and q2 > P0, it follows that

PLða; b; cÞbNLðqÞ ¼ q2 > P0;

i.e., condition (1) of Lemma 3.2 is satisfied.

It remains to show that for a suitable choice of x0, ða; b; cÞ satisfies con-

dition (2) of Lemma 3.2. Since ða; b; cÞ is a strict abc-triple, it follows from

Definition 1.3 (3) that

HLða; b; cÞ ¼ maxfNLðaÞ;NLðbÞ;NLðcÞg

¼ maxfjaj2; jbj2; jcj2g;

and hence that HLða; b; cÞ3 b jabcj2. On the other hand, since, by conditions

(1) and (5) of Lemma 3.1, LPNðaÞa y, LPNðbÞa y, and c A qI , it follows that

PLða; b; cÞ ¼
Y

v AVnonðLÞ
pv j ab

NLðpvÞ

0
BB@

1
CCA Y

v AVnonðLÞ
pvjc

NLðpvÞ

0
BB@

1
CCA

a expðyLðyÞÞ �
NLðcÞ
q2ðI�1Þ

¼ expðyLðyÞÞ �
jcj2

q2ðI�1Þ :
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Thus, it follows from this estimate, together with condition (4) of Lemma 3.1

and the triangle inequality, that

jcj2 a 1þ exp
1

2
hL

� �� �2
jaj2 a 1þ exp

1

2
hL

� �� �2
jbj2;

and hence that

jabcj2 b jcj6

1þ exp 1
2 hL
� �� �4

b
q6ðI�1Þ

1þ exp 1
2 hL
� �� �4 expð�yLðyÞÞ3PLða; b; cÞ3:

Next, recall that it follows from the definition of I and G that

q2I b
CLðx; y; qÞ

Gq2
b

CLðx; y; qÞ
2q2 log x

:

Therefore, if we write

C :¼ 1

8q12 1þ exp 1
2 hL
� �� �4 ;

then it follows that

jabcj2 bC
expð�yLðyÞÞCLðx; y; qÞPLða; b; cÞ

log x

� �3
:

Note that C depends only on L and P0. On the other hand, it follows from

Lemma 2.2 (3) and Lemma 2.3 that

expð�yLðyÞÞCLðx; y; qÞ
log x

¼ exp �ðlog xÞ1=2 þO
ðlog xÞ1=2

ðlog log xÞ2

 ! !

� exp ðlog xÞ1=2 þ 4ðlog xÞ1=2

log log x
þO

ðlog xÞ1=2

ðlog log xÞ2

 ! !
� expð�log log xÞ

¼ exp
4ðlog xÞ1=2

log log x
þO

ðlog xÞ1=2

ðlog log xÞ2

 ! !
:

Thus, for a suitable choice of x0, it follows that

jabcj2 > PLða; b; cÞ3 exp ð12� dÞ ðlog xÞ1=2

log log x

 !
:
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Moreover, since for a suitable choice of x0,

1þ exp
1

2
hL

� �� �2
expðyLðyÞÞa expð2ðlog xÞ1=2Þa xd;

it follows that

PLða; b; cÞa expðyLðyÞÞjcj2

a 1þ exp
1

2
hL

� �� �2
expðyLðyÞÞjbj2

a 1þ exp
1

2
hL

� �� �2
expðyLðyÞÞxhL

a xhLþd

and thus

log PLða; b; cÞa ðhL þ dÞ log x:

Next, since we may assume without loss of generality that

log P0 > expð2Þ;

and the function

R>expð2Þ C z 7! z1=2

log z
A R

is strictly monotone increasing, 12�d

ðhLþdÞ1=2
> 12� d 0, and PLða; b; cÞ > P0, it fol-

lows that for a suitable choice of x0,

exp ð12� dÞ ðlog xÞ1=2

log log x

 !

¼ exp
ð12� dÞ

ðhL þ dÞ1=2
� log log xþ logðhL þ dÞ

log log x
� ððhL þ dÞ log xÞ1=2

logððhL þ dÞ log xÞ

 !

> exp ð12� d 0Þ ððhL þ dÞ log xÞ1=2

logððhL þ dÞ log xÞ

 !

b exp ð12� d 0Þ ðlog PLða; b; cÞÞ1=2

log log PLða; b; cÞ

 !
:

This completes the proof that condition (2) of Lemma 3.2 is satisfied. r
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Now we prove Theorem A.

Proof (This proof is similar to [5, Proof of Theorem 2.2].)

First, observe that there exists M A R>0 that depends only on d 0 and g

such that for z A R>M ,

log z

12� d 0
< zg:

Now we apply Lemma 3.2, where we take ‘‘P0’’ to be maxfP0; expðMÞg, to

obtain a strict abc-triple ða; b; cÞ such that

PLða; b; cÞ > P0; log PLða; b; cÞ > M

and

jabcj2 > PLða; b; cÞ3 exp ð12� d 0Þ ðlog PLða; b; cÞÞ1=2

log log PLða; b; cÞ

 !
:

Then it follows that

log log PLða; b; cÞ
12� d 0

< ðlog PLða; b; cÞÞg:

Thus, we conclude that

jabcj2 > PLða; b; cÞ3 exp ð12� d 0Þ ðlog PLða; b; cÞÞ1=2

log log PLða; b; cÞ

 !

> PLða; b; cÞ3 expððlog PLða; b; cÞÞ1=2�gÞ r

4. Near miss abc-triples via powers of units

In this section, we prove Theorem B. Note that it follows from Diri-

chlet’s Unit Theorem that O�
L nmL 0q if and only if L is neither the field

of rational numbers nor an imaginary quadratic field. Since we are given

u0 A O�
L nmL, it thus follows that L is neither the field of rational numbers nor

an imaginary quadratic field.

Now we prove Theorem B.

Proof. Let I be a su‰ciently large integer ðb 2Þ such that
I � 1

I þ 1
> 1� d.

Write a ¼
Q

s:L ,!C
ð1þ jsðu0ÞjÞ ðb 1Þ, where s ranges over the embeddings of

L into C. Thus, a depends only on u0. Let q be the smallest prime number

ðb 2Þ such that q > P0, NLðqÞ ¼ q½L:Q� b log a, and qOL is a maximal ideal of
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OL. (Note that the existence of such a q follows from Chebotarev’s Density

Theorem.) If we write

lðIÞ ¼aððOL=q
I Þ�Þ ¼ q½L:Q��ðI�1Þðq½L:Q� � 1Þ;

then 0 < lðIÞaNLðqÞI ¼ q½L:Q��I and 1� u
lðIÞ
0 A qI . Moreover, it holds that

NLð1� u
lðIÞ
0 Þ ¼

Y
s:L ,!C

jsð1� u
lðIÞ
0 Þj

a
Y

s:L ,!C
ð1þ jsðu0Þj lðIÞÞ

a
Y

s:L ,!C
ð1þ jsðu0ÞjÞ

 !lðIÞ

a aNLðqÞ I :

Write

a :¼ �1; b :¼ u
lðIÞ
0 ; c :¼ 1� u

lðIÞ
0 :

Then since a, b, c are relatively prime in OL, it follows that

HLða; b; cÞ ¼
Y

v AV arcðLÞ
maxfkakv; kbkv; kckvg

b
Y

v AV arcðLÞ
kckv

¼ NLðcÞ

(cf. Definition 1.3 (3)) and

PLða; b; cÞ ¼
Y

v AVnonðLÞ
pvjc

NLðpvÞ

a
NLðcÞ

NLðqÞI�1

aNLðcÞ

(cf. Definition 1.3 (2)). Thus, it follows that

1a log NLðcÞaNLðqÞI log aaNLðqÞððIþ1Þ=ðI�1ÞÞðI�1Þ;

and hence that

ðlog NLðcÞÞ1�d
a ðlog NLðcÞÞðI�1Þ=ðIþ1Þ

aNLðqÞI�1:

285Near miss abc-triples in general number fields



Therefore,

PLða; b; cÞa
NLðcÞ

NLðqÞI�1

a
NLðcÞ

ðlog NLðcÞÞ1�d

and thus, since PLða; b; cÞb q½L:Q� b 22 b expð1Þ,

NLðcÞbPLða; b; cÞðlog NLðcÞÞ1�d

bPLða; b; cÞðlog PLða; b; cÞÞ1�d:

Hence, we conclude that

HLða; b; cÞbNLðcÞbPLða; b; cÞðlog PLða; b; cÞÞ1�d:

Since PLða; b; cÞb q > P0, this completes the proof of Theorem B. r

Finally, we prove Corollary C.

Proof. In Theorem B, we take u0 A O�
L so that u0 is not contained in O�

L 0

for any subfield L 0 of L such that the rkL 0 < rkL. (Here, we note that by

elementary Galois theory, there exist only finitely many subfields of L.) Then

u obtained by applying Theorem B satisfies the conditions in the statement

of Corollary C. r

5. Unit-nondegenerate number fields

Lemma 5.1. Let L, L 0 be number fields such that L 0 � L. Then rkL 0 ¼
rkL if and only if L 0 is totally real, and L is a totally imaginary extension of L 0

of degree 2.

Proof. Let r (resp. r 0, s, s 0) be the number of real places of L (resp. real

places of L 0, complex places of L, complex places of L 0). By Dirichlet’s unit

theorem, rkL 0 ¼ rkL if and only if ðaVarcðL 0Þ ¼Þ r 0 þ s 0 ¼ rþ s ð¼aVarcðLÞÞ.
Let p : VarcðLÞ ! VarcðL 0Þ be the map induced by restriction.

Suppose that r 0 þ s 0 ¼ rþ s. Then since p is surjective, p is also injective.

Thus, for any v A VðLÞ, ½Lv : L
0
pðvÞ� ¼ ½L : L 0� > 1. In particular, every infinite

place of L 0 (resp. L) is real (resp. complex), and ½L : L 0� ¼ 2.

Conversely, if L 0 is totally real, and L is a totally imaginary extension of

L 0 of degree 2, then a similar argument shows that p is bijective, and hence that

rkL 0 ¼ rkL. r
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Now we prove Proposition D.

Proof.

( i ) Suppose that L is unit-degenerate. Then it follows from Lemma 5.1

that L is totally complex, and that there exists a totally real subfield

L 0 of L such that ½L : L 0� ¼ 2. Let D be the decomposition group

in GalðL=QÞ of some v A VarcðLÞ. Since aðD \GalðL=L 0ÞÞ ¼ 2 ¼
aGalðL=L 0Þ, and aDa 2, it follows that D ¼ GalðL=L 0Þ. There-

fore, for any s A GalðL=QÞ, sDs�1 is equal to the decomposition

group of vs in GalðL=QÞ, hence, by a similar argument, also equal to

GalðL=L 0Þ. Thus, we conclude that D ¼ GalðL=L 0Þ is a normal sub-

group of GalðL=QÞ, which implies that D is contained in the center

of GalðL=L 0Þ since aD ¼ 2.

Conversely, suppose that the decomposition group D in GalðL=QÞ
of some v A VarcðLÞ is contained in the center of GalðL=QÞ. Let

L 0 :¼ LD (i.e., the subfield of D-invariants of L). Then since L is a

totally imaginary Galois extension of Q, and D is contained in the

center of GalðL=L 0Þ, it follows from the definition of D that: (a) L 0

is a Galois extension of Q; (b) ½L : L 0� ¼ 2; (c) the restriction of v to

L 0 is real. Moreover, (a) and (c) imply that L 0 is totally real. Thus,

L is unit-degenerate by Lemma 5.1.

(ii) Suppose that M is unit-degenerate. Then by (i), the decomposition

groups of the infinite places of M in GalðM=QÞ are contained in the

center of GalðM=QÞ. Since the decomposition group of an infinite

place v of L in GalðL=QÞ is equal to the images of the decomposi-

tion groups in GalðM=QÞ of the infinite places of M that lie above

v and thus contained in the center of GalðL=QÞ, L is unit-degenerate

by (i), a contradiction. r
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