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Abstract. Let G be a Lie-group and G � G a cocompact lattice. For a finite-

dimensional, not necessarily unitary representation o of G we show that the

G-representation on L2ðGnG;oÞ admits a complete filtration with irreducible quotients.

As a consequence, we show the trace formula for non-unitary twists and arbitrary

locally compact groups.

Introduction

For unitary representations of locally compact groups there is a general

spectral theory, expressing such representations as direct integrals of irredu-

cibles or even, if the representation is, say, trace class, as direct sums of

irreducibles. For non-unitary representations there is no spectral theory in

general. In this paper we introduce a spectral theory for representations,

non-unitarily induced from cocompact lattices. These representations occur

naturally in extensions of the trace formula [13]. In this paper we use the

spectral analysis of the group Laplacian to deduce that for a Lie group these

representations admit complete filtrations with irreducible graded steps.

1. Trace class representations

Let G be a locally compact group. For the convenience of the

reader we briefly recall the definition of the space Cy
c ðGÞ of test functions

on G.

Definition 1. First, if L is a Lie group, then Cy
c ðLÞ is defined as the

space of all infinitely di¤erentiable functions of compact support on L. The

space Cy
c ðLÞ is the inductive limit of all Cy

K ðLÞ, where K � L runs through

all compact subsets of L and Cy
K ðLÞ is the space of all smooth functions

supported inside K . The latter is a Fréchet space equipped with the supremum
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norms over all derivatives. Then Cy
c ðLÞ is equipped with the inductive limit

topology in the category of locally convex spaces as defined in [16], Chap II,

Sec. 6.

Next, suppose the locally compact group H has the property that H=H 0

is compact, where H 0 is the connected component of the unit element. Let

N be the family of all normal closed subgroups N � H such that H=N is a

Lie group with finitely many connected components. We call H=N a Lie

quotient of H. Then, by [12], the set N is directed by inverse inclusion

and

HG lim �
N

H=N;

where the inverse limit runs over the set N. So H is a projective limit of

Lie groups. The space Cy
c ðHÞ is then defined to be the sum of all spaces

Cy
c ðH=NÞ as N varies in N. Then Cy

c ðHÞ is the inductive limit over

all Cy
c ðLÞ running over all Lie quotients L of H and so Cy

c ðHÞ again is

equipped with the inductive limit topology in the category of locally convex

spaces.

Finally to the general case. By [12] one knows that every locally com-

pact group G has an open subgroup H such that H=H 0 is compact, so H is

a projective limit of connected Lie groups in a canonical way. A Lie quotient

of H then is called a local Lie quotient of G. We have the notion Cy
c ðHÞ and

for any g A G we define Cy
c ðgHÞ to be the set of functions f on the coset gH

such that x 7! f ðgxÞ lies in Cy
c ðHÞ. We then define Cy

c ðGÞ to be the sum of

all Cy
c ðgHÞ, where g varies in G. Then Cy

c ðGÞ is the inductive limit over all

finite sums of the spaces Cy
c ðgHÞ. Note that the definition is independent of

the choice of H, since, given a second open group H 0, the support of any given

f A CcðGÞ will only meet finitely many left cosets gH 00 of the open subgroup

H 00 ¼ H \H 0. It follows in particular, that Cy
c ðGÞ is the inductive limit over

a family of Fréchet spaces. This concludes the definition of the space Cy
c ðGÞ

of test functions.

Remark 1. (a) Note that the inductive limit topology in the category

of locally convex spaces di¤ers from the inductive limit topology in the

category of topological spaces, as is made clear in [9].

(b) For f A Cy
c ðGÞ and y A G define the function Ly f by Ly f ðxÞ ¼ f ðy�1xÞ.

Note that a linear functional a : Cy
c ðGÞ ! C is continuous if and only

if for any local Lie quotient L of G and any compact subset K � L and

any sequence fn A Cy
K ðLÞ with fn ! 0 in the Fréchet space Cy

K ðLÞ and

every g A G the sequence aðLg fnÞ tends to zero. This is deduced from [16],

Chap II, Sec. 6.1.
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(c) If a locally compact group G is a projective limit of Lie groups Gj ¼ G=Nj,

then it follows from [14, Cor. 12.3], that every irreducible continuous repre-

sentation p factors through some Gj. This reduces many issues related to

distribution characters to the case of Lie groups.

Definition 2. A representation ðp;VpÞ of a locally compact group G

is called a compact representation, if pð f Þ is a compact operator for every

f A Cy
c ðGÞ. It is called a trace class representation, if pð f Þ is trace class for

every f A Cy
c ðGÞ. We say that G is a trace class group, if every irreducible

unitary representation is trace class. See [5] for more on trace class groups.

Definition 3. Let G be a unimodular locally compact group and let

G � G be a discrete subgroup. Then there exists a non-vanishing, G-invariant

Radon measure on the quotient GnG, which is unique up to scaling [4] and

the induced representation RgfðxÞ ¼ fðxgÞ of G on the Hilbert space L2ðGnGÞ
is unitary.

Note that if G admits a cocompact discrete subgroup G, then G is

unimodular and G is a lattice.

Proposition 1. For a unimodular locally compact group G and a discrete

subgroup G � G the following are equivalent:

(a) GnG is compact.

(b) The representation of G on L2ðGnGÞ is trace class.

(c) The representation of G on L2ðGnGÞ is compact.

Proof. (a)) (b) is the classical trace formula argument and can be

found in [4], Chapter 9.

(b)) (c) is trivial.

(c)) (a): Assume that L2ðGnGÞ is a compact representation, but GnG is

not compact. Then for every compact unit-neighborhood U � G and every

compact set K � G there exists x A G such that GxU \ GK ¼q, for otherwise

the element Gx of GnG lies in the compact set GnGKU�1.

Applying this iteratedly, one obtains a sequence x1; x2; . . . A G such that

GxiU
2 \ GxjU

2 ¼q

for all i0 j. Fix a symmetric unit-neighborhood V such that V 3 � U and

let

fj ¼ cj1GxjV 2 ;

where cj > 0 is such that kfjk
2 ¼

Ð
GnG jfjðxÞj

2
dx ¼ 1. Fix some f A Cy

c ðGÞ
with support in V and such that f b 0 and

Ð
G
f ðxÞdx ¼ 1. Now suppðRð f ÞfjÞ

� GxjV
3 � GxjU and therefore the supports of Rð f Þfj for varying j are dis-
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joint, hence these vectors in the Hilbert space L2ðGnGÞ are pairwise ortho-

gonal. As Rð f Þ is a compact operator, the sequence ðRð f ÞfjÞ must have a

convergent subsequence, but as the vectors are pairwise orthogonal, there must

exist a subsequence with kRð f Þfjkk ! 0. Since the integral of f is 1, we have

cj1GxjV aRð f Þfj :

Now assume that V 2 �
Sn

l¼1 Vzl with zl A G, then GxjV
2 �

Sn
l¼1 GxjVzl and

so

1 ¼ kfjk
2 ¼ c2j volðGnGxjV 2Þa nc2j volðGnGxjVÞ

and

kRð f Þfjk
2
b kcj1GxjVk

2
b

c2j

n
volðGxjV

2Þ ¼ 1

n
:

So there is no subsequence with kRð f Þfjkk ! 0.

Remark 2 (Counterexample). In [5], last Remark of Section 4, it is asked,

whether any locally compact group G admitting a cocompact lattice must be

trace class. We now give a counterexample. Let G ¼M2ðRÞz SL2ðRÞ, where
M2ðRÞ is the space of real 2� 2 matrices. Let D be a quaternion division

algebra over Q which splits at infinity. Fix a splitting D ,!M2ðRÞ and thus

consider D a Q-subalgebra of M2ðRÞ. Fix an order O � D (see [15]), and let

O1 � O� be the subgroup of all elements of determinant 1. Set

G ¼ OzO1:

Since O is a cocompact lattice in M2ðRÞ and O1 is a cocompact lattice in

SL2ðRÞ, the group G is a cocompact lattice in G.

Next we need to show that G is not trace class. In [5], Proposition 1.9, it is

shown that H ¼ R2 z SL2ðRÞ is not trace class. Let N � G be the set of all

elements of the form ðA; 1Þ, where the matrix A has zeros in the first column.

Then N is closed and normal in G and G=NGH. So the irreducible represen-

tation of H, which is not trace class, induces an irreducible representation of G,

which is not trace class.

Remark 3. It seems to be an open question whether for any lattice G the

spectral multiplicities in the discrete spectrum of L2ðGnGÞ are finite. In other

words, let G be a lattice in the locally compact group G and let ðp;VpÞ A ĜG be an

irreducible unitary representation, is it true that

HomGðVp;L
2ðGnGÞÞ

is finite-dimensional?
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2. The spectral filtration

By a representation we shall mean a continuous representation on a

Banach space.

Definition 4. Let L be a linearly ordered set. For a < b in L we

consider the closed interval ½a; b� of all x A L with aa xa b. The elements

a < b are called neighbored, if ½a; b� ¼ fa; bg, i.e., if there is no element between

them.

A linearly ordered set C is called complete, if every subset of C possesses

a supremum and an infimum.

For a given linearly ordered set L there is a uniquely defined completion C,

which is a complete ordered set which contains L as a substructure such that

L is dense in C in the sense that every c A C is the supremum or the infimum

of a subset of L.

Definition 5. A sub-tower is a linearly ordered set L, such that every

x A L has a neighbor. A tower is a linearly ordered set which is the comple-

tion of a sub-tower. In particular, a tower L contains a minimum minðLÞ and
a maximum maxðLÞ.

Definition 6. Let L be a tower. Let ðR;VÞ be a representation of a

locally compact group G on a Banach space V . A complete L-filtration on

ðR;VÞ is a family of closed, G-stable subspaces ðFiÞi AL such that the following

hold:

(a) FminðLÞ ¼ 0 and FmaxðLÞ ¼ V ,

(b) if ia j, then Fi � Fj,

(c) if i < j are neighbored, then Fj=Fi is irreducible,

(d) if b A L has no lower neighbor, then Fb is the closure of
S

j<b Fj,

(e) if a has no upper neighbor, then Fa ¼
T

j>a Fj.

Definition 7. Let ðFjÞj AL be a complete L-filtration of ðR;VÞ for the

tower L. For a given irreducible representation ðp;VpÞ of G we define the

multiplicity mLðpÞ to be the number of pairs i < j in L such that the repre-

sentation on Fj=Fi is isomorphic to p. This multiplicity may be zero, a natural

number, or infinity.

Definition 8. Let ðR;VÞ be a representation. A subquotient of ðR;VÞ is
a representation of the form P=Q, where Q � P are closed, G-stable subspaces

of V .

A representation ðR;VÞ is called discrete, if every subquotient has an

irreducible subquotient. This means that for any two closed, G-stable sub-

spaces Q � P there exist closed, G-stable subspaces Q � U �W � P such that

W=U is irreducible.
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Lemma 1. Let ðR;VÞ be a discrete representation of the locally compact

group G.

(a) There exists a complete filtration F of V for some tower L.

(b) If additionally the representation R is trace class, the multiplicities are

finite.

Proof. (a) A filtration F of ðR;VÞ, indexed by a sub-tower, is called

admissible, if every i A L has at least one neighbor j such that Fi=Fj or Fj=Fi

respectively, is irreducible. We apply the Lemma of Zorn to the set of all

admissible filtrations F, where we say that ðF;LÞa ðF 0;L 0Þ if L is a subset

of L 0 and the filtration steps of F and F 0 agree on L. We get a maximal

admissible filtration. We complete L by Dedekind cuts. If D � L is a

Dedekind cut, i.e., a subset with the property x < y A D) x A D, then we

set FD ¼
S

i AD Fi. If D A L already, i.e., there exists a A L such that D ¼
fi A L : ia ag, then FD ¼ Fa, so this filtration extends F. If D has no

neighbor, then it is not in L and FD is the closure of
S

j<D Fj by definition.

On the other hand, we have FD ¼
T

j>D Fj , since otherwise there would be

an irreducible subquotient between FD and this intersection, which would

contradict the maximality of F. Next if D has an upper neighbor, but no

lower, then we get FD ¼
S

j<D Fj again by maximality and likewise, we get

FD ¼
T

j>D Fj if D has a lower neighbor, but no upper. This shows that there

exists a complete filtration.

(b) Assume the representation to be trace class. By choosing an ortho-

normal basis which is compatible with the filtration, we see that the trace of

Rð f Þ equals the trace on the associated graded representation. This implies

finiteness of the multiplicities.

3. Admissible representations

In this section, we assume that G is a Lie group. Choose a left-invariant

metric on G and let D denote the Laplace operator for this metric. We call

such a D a group-Laplacian. Let gR be the real Lie algebra of G and g its

complexification. The universal enveloping algebra UðgÞ can be identified with

the algebra of left-invariant di¤erential operators on G, so D can be viewed as

an element of UðgÞ.
By a representation of G we mean a group homomorphism R : G !

GLðVÞ to the group of invertible bicontinuous linear operators on some

Banach space V such that the map G � V ! V , ðg; vÞ 7! pðgÞv is continuous.

The space of smooth vectors Vy then is defined as the space of all v A V such

that G ! V , x 7! RðxÞv is infinitely di¤erentiable. The universal enveloping

algebra UðgÞ acts on the dense subspace Vy of smooth vectors in V .
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Definition 9. A representation ðR;VÞ of G is called D-admissible, if

(a) there is a dense subset LR � C, such that for each l A LR the operator

RðD� lÞ�1 is defined and extends to a continuous operator on the space

V . For every G-stable closed subspace U � V one has ðD� lÞ�1U
� U ,

(b) for each s A C the generalized eigenspace

VðD; sÞ ¼
[
n AN

kerðD� sÞn � Vy

is finite-dimensional,

(c) the set SpecRðDÞ of all s A C with VðD; sÞ0 0 has no accumulation point

in C,

(d) every v A V can be written as absolutely convergent sum

v ¼
X

s A SpecðDÞ
vs;

each vs A VðD; sÞ is uniquely determined and the projection map v 7! vs is

continuous,

(e) for every s0 A SpecðDÞ the space

VðD; s0Þ0 ¼ 0
s0s0

VðD; sÞ

satisfies V ¼ VðD; s0ÞlVðD; s0Þ0 and the operator D� s0 has a bounded

inverse on VðD; s0Þ0.
The condition (a) needs explaining: We request that there exists a contin-

uous operator T on V which preserves Vy as well as every G-stable closed

subset and satisfies

TRðD� lÞv ¼ RðD� lÞTv ¼ v

for every v A Vy. We denote this operator by RðD� lÞ�1.
We find it convenient to leave out the R in the notation, so we occa-

sionally write ðD� lÞ instead of RðD� lÞ and the same for the inverses.

Lemma 2. Let ðR;VÞ be D-admissible and let U � V be a closed G-stable

subspace, then U is D-admissible.

Proof. The only part of the definition which needs proving, is part (d).

More precisely we need to show that if u A U and u ¼
P

s us is the spectral

decomposition in V , then us A U for every s. For this let s0 A SpecRðDÞ and
let l A LR be closer to s0 than any other s A SpecRðDÞ. Then the operator

T ¼ ðs0 � lÞðD� lÞ�1

241Spectral theory for non-unitary twists



has eigenvalue 1 on VðD; s0Þ and eigenvalue of absolute value < 1 on VðD; sÞ
for every s0 0 s A SpecRðDÞ. We write u ¼ us0 þ us0 , where us0 ¼

P
s0s0

us.

We first show that T nus0 tends to 0 as n!y. For this note that on the

space VðD; s0Þ0 one has

ðD� lÞ�1 ¼ ðD� lÞ�1 � ðD� s0Þ�1 þ ðD� s0Þ�1

¼ ðl� s0ÞðD� lÞ�1ðD� s0Þ�1 þ ðD� s0Þ�1:

Taking operator norms on both sides and using the triangle inequality we infer

that for small values of js0 � lj we have

kðD� lÞ�1ka kðD� s0Þ�1k
1� ðs0 � lÞkðD� s0Þ�1k

;

where we mean the operator norm on the space VðD; s0Þ0. It follows that for

l close enough to s0 the operator norm of T on VðD; s0Þ0 is < 1, which implies

that T nus0 tends to zero.

On VðD; s0Þ we write D ¼ s0 � S where S is nilpotent. So

T ¼ 1þ
Xd�1
j¼1

S j

ðs0 � lÞ j

 !
¼ ð1þNÞ

where N ¼
Pd�1

j¼1
S j

ðs0�lÞ j
is again nilpotent and d ¼ dim VðD; s0Þ. Then on

VðD; s0Þ we have

T n ¼ ð1þNÞn ¼
Xd�1
k¼0

n

k

� �
Nk:

it follows that T n n
d�1
� ��1

tends to Nd�1 as n!y, which implies that Nd�1us0
lies in U . Next T n � n

d�1
� �

Nd�1� �
n

d�2
� ��1

tends to Nd�2 which implies that

Nd�2us0 lies in U . We repeat until we reach N 0us0 ¼ us0 A U as claimed.

Definition 10. Let ðR;VÞ be a representation of the locally compact

group G and let p be an irreducible representation of G. A p-filtration in V is

a sequence

F 01 � F1 � F 02 � F2 � � � � � F 0l � Fl

of closed, G-stable subspaces such that Fj=F
0
j G p for each j.

Theorem 1 (Spectral theorem). Let ðR;VÞ be a D-admissible representa-

tion of the Lie group G.

(a) If V0 � V1 are closed G-stable subspaces, then the sub-quotient S ¼ V1=V0

is D-admissible as well. Each spectral value l of S is a spectral value of V,
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more precisely, one has

SðD; lÞGV1ðD; lÞ=V0ðD; lÞ:

If mðS; lÞ ¼ mðV ; lÞ for all l, then S ¼ V.

(b) Let ðR;VÞ be D-admissible and p an irreducible representation of G. Then

all maximal p-filtrations have the same finite length. We call this length

NG ;oðpÞ A N0 the multiplicity of p in R.

(c) If f A CcðGÞ is such that the operator Rð f Þ ¼
Ð
G
f ðxÞRðxÞdx is trace

class, then pð f Þ is trace class for every p A ~GG with NG ;oðpÞ > 0 and one

has

tr Rð f Þ ¼
X
p A ~GG

NG ;oðpÞ tr pð f Þ:

(d) The representation ðR;VÞ is discrete, so there exists a complete filtration

on ðR;VÞ.

Proof. (a) A submodule is admissible, so it remains to show that a

quotient is admissible. So let U � V be a closed G-stable subspace. We

claim that for l0 A C the map VðD; l0Þ ! V=U induces an isomorphism

VðD; l0Þ=UðD; l0ÞG ðV=UÞðD; l0Þ. The injectivity is clear. For the surjec-

tivity let vþU be in ðV=UÞðD; l0Þ, then ðD� l0Þnv A U for some n. Write

v ¼
P

l AC vl as in the definition of admissibility. We claim that v� vl0 lies

in U . Let x A CnSpecRðDÞ. Write ðD� l0Þnv ¼
P

l wl A U , then each wl lies

in U and

ðD� xÞ�n ðD� l0Þnv|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
AU

¼ ðD� xÞ�n
X
l

wl ¼
X
l

ðD� xÞ�nwl A U :

which implies ðD� xÞ�nwl A U the uniqueness of the l-expansion.

For l0 l0 we let x tend to l0 and find ðD� l0Þ�nwl A U . Next let

ðD� xÞnv ¼
P

l w
x
l and note that wx

l depends continuously on x. As

v ¼ ðD� xÞ�nðD� xÞnv ¼
X
l

ðD� xÞ�nwx
l ;

we deduce vl ¼ ðD� xÞ�nwx
l by uniqueness. For l0 l0 we let x tend to

l0 and we can deduce vl ¼ ðD� l0Þ�nwl A U . This implies v� vl0 A U as

claimed. The rest of part (a) is clear.

For (b),(c) and (d) we argue that for an admissible representation the

property (d) implies (b) and (c). To see that (d) implies (b) we consider a
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maximal p-filtration

F 01 � F1 � F 02 � F2 � � � � � F 0l � Fl

and a complete G-stable L-filtration ðSjÞj AL with irreducible quotients. We

claim that there must exist indices n1 < n 01 < � � � < nl < n 0l in L such that

Sni=Sn 0
i
G p and Sn 0

i
=Sni�1 has no p-sub-quotient, so that l equals the number

of p-sub-quotients within the given L-filtration and this independent of the

chosen maximal p-filtration. If the L-filtration is finite, this is the classical

Jordan-Hölder Theorem. We reduce the present case to a finite filtration as

follows: We choose a l A SpecpðDÞ. Then ðS l
j ¼ Sj \ VðD; lÞÞj is a filtration

of this finite dimensional space. There must exist two neighboring indices

i1 < j1 such that S l
i1
¼ 0 and S l

j1
0 0. Repeating we find indices i1 < j1 < i2 <

j2 < � � � < ik < jk such that in and jn are neighbored for each n and S l
jn
¼ Sinþ1

always holds, which implies that Sinþ1=Sjn has no p-sub-quotient. Further Si1

and V=Sjk both have no p-sub-quotient. Now one can ignore the n with

Sjn=Sin Z p and assume that all quotients are G p. From here on the classical

proof of the Jordan-Hölder Theorem applies to show that k ¼ l. After that,

once we know that NG ;oðpÞ equals the number of p-sub-quotients in the given

L-filtration, part (c) also follows.

So it remains to show (d). Let l A SpecRðDÞ. By Zorn’s lemma there

exists a maximal G-stable subspace V0 such that V0 \ VðD; lÞ ¼ 0. Then its

closure V0 is admissible and thus satisfies the same claim, i.e., V0 \ VðD; lÞ ¼
0, so by maximality, V0 is closed. Let v A VðD; lÞ and let SðvÞ denote the

closure of the span of V0 þ RðGÞv. Among all spaces SðvÞ as v varies in

VðD; lÞnf0g, there is a minimal one V1. Then V1=V0 is irreducible.

4. The spectral theorem

Let G be a locally compact group and let G � G be a cocompact lattice.

This means that G is a discrete subgroup such that the quotient GnG is

compact. Let o : G ! GLðVÞ be a group homomorphism, where V ¼ Vo is

a finite-dimensional complex vector space. Let E ¼ Eo ¼ GnðG � VoÞ, where
G acts diagonally. The projection onto the first factor makes E a vector

bundle over GnG. The space GðEÞ of continuous sections can be identified

with the space CðGnG;oÞ of all continuous functions f : G ! Vo such that

f ðgxÞ ¼ oðgÞ f ðxÞ for all g A G . Choose a hermitian metric on E to define

the space L2ðEÞ of L2-sections. This space can be identified with the space

L2ðGnG;oÞ of all measurable functions f : G ! Vo with f ðgxÞ ¼ oðgÞ f ðxÞ
and

Ð
F
h f ðxÞ; f ðxÞixdx < y, where F � G is a compact fundamental domain

for GnG. The group G acts by right translations on the Hilbert space

L2ðGnG;oÞ. This representation is continuous but in general not unitary.
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Let R ¼ RG ;o denote the right regular representation of G on the Hilbert space

H ¼ L2ðGnG;oÞ.

Theorem 2. Let G be a Lie group and G � G a cocompact lattice. Fix

a group-Laplacian D. Then the representation ðR;VÞ with V ¼ L2ðGnG;oÞ is
D-admissible. In particular, there exists a complete filtration for ðR;VÞ, the

multiplicities mðpÞ of which are finite and given by the maximal lengths of

p-filtrations.

Proof. The element D A UðgÞ acts on CyðGnG;oÞ as a di¤erential oper-

ator of order two whose principal symbol equals the square of the norm given

by the Riemannian metric, such operators are called generalized Laplacians in

[1]. By [17, Theorems 8.4 and 9.3] and [11, Theorem 4.3] it follows that D

has discrete spectrum in L2ðGnG;oÞ, i.e., there exists a sequence lj of complex

numbers which do not accumulate in C such that the space 0y
j¼1 HðD; ljÞ is

dense in H ¼ L2ðGnG;oÞ. Each v A H can uniquely be written as convergentP
j uj with uj A HðD; ljÞ.
One sets LR equal to Cnflj : j A Ng. Then for given l A LR the space

HðD; lÞ which lies in CyðGnG;oÞ, is finite-dimensional. The only tricky

point is to show that for a given closed G-stable subspace U � H one has

ðD� xÞ�1U � U for x A LR. For this note that ðD� xÞ�1 ¼ f ð
ffiffiffiffi
D
p
Þ with

f ðxÞ ¼ ðx2 � xÞ�1. The Fourier transform of f is f̂f ðxÞ ¼ e ijxj
ffiffi
x
p

2
ffiffi
x
p , where

ffiffiffi
x
p

denote the unique complex number a with ImðaÞ > 0 and a2 ¼ x. Let w0 be

a smooth function on R with 0a wa 1, wðtÞ ¼ 1 for ta 0 and w1ðtÞ ¼ 0 for

tb 1. For T > 0 set wT ðtÞ ¼ w0ðt� TÞ and let fT be defined by f̂fT ðxÞ ¼
wTðjxjÞ f̂f ðxÞ. Then f̂fTðxÞ has compact support and by [3] it follows that the

operator fT ð
ffiffiffiffi
D
p
Þ has finite propagation speed. We can view this operator on

the manifold G or on GnG. The connection between the two is as follows:

On G this operator is invariant under left translation by elements of G, hence

it is given by right convolution with a function, which, by finite propagation

speed, has compact support. This function is continuous on G and smooth on

the set Gnf1g. We denote it by x 7! fT ð
ffiffiffiffi
D
p
ÞðxÞ. Then on GnG the operator

fTð
ffiffiffiffi
D
p
Þ has continuous kernel kðx; yÞ ¼

P
g AG fTð

ffiffiffiffi
D
p
Þðx�1gyÞ, the sum being

locally finite. For f A L2ðEÞ one has Rð fT ð
ffiffiffiffi
D
p
ÞÞfðxÞ ¼

Ð
G
fTð

ffiffiffiffi
D
p
ÞðyÞfðxyÞdy

and approximating this integral by Riemann sums, one sees that Rð fTð
ffiffiffiffi
D
p
ÞÞf

lies in U if f A U . It therefore su‰ces to show that Rð fTð
ffiffiffiffi
D
p
ÞÞf converges

to RðD� xÞ�1f as T !y. On the compact manifold GnG this follows if we

show that the kernel of the former converges uniformly to the kernel of the

latter, which is a consequence of Theorem 1.4 of [3].

Theorem 3 (Trace formula). Let G be a locally compact group and let

G � G be a cocompact lattice. Let ðo;VoÞ be a representation of the discrete
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group G on a finite-dimensional complex vector space Vo and define the Hilbert

space H ¼ L2ðGnG;oÞ as above. Then for each f A Cy
c ðGÞ the operator Rð f Þ

is trace class and its trace equals either side of the equation

X
p A ~GG

NG ;oðpÞ tr pð f Þ ¼
X
½g�

volðGgnGgÞOgð f Þ tr oðgÞ;

where NG ;oðpÞ denotes the maximal length of a p-filtration in H, the sum on the

right runs over all conjugacy classes ½g� in G , the groups Gg and Gg are the

centralizers of g in G and G and Og denotes the orbital integral

Ogð f Þ ¼
ð
GgnG

f ðx�1gxÞdx:

The left hand side of the formula is also called the spectral side and the right

hand side is the geometric side.

Proof. First assume that G is a Lie group. By the Theorem of Dixmier

and Malliavin [8], every f A Cy
c ðGÞ is a finite sum of convolution products

g � h with g; h A Cy
c ðGÞ. If f ¼ g � h then Rð f Þ ¼ RðgÞRðhÞ. Now the same

calculus as in the unitary case [4, Chapter 9] implies that Rð f Þ is an integral

operator with smooth kernel kðx; yÞ ¼
P

g AG f ðx�1gyÞoðgÞ, so by [4, Propo-

sition 9.3.1] it is trace class and its trace equals
Ð
GnG tr kðx; xÞdx, which with the

same computation as in the proof of [4, Theorem 9.3.2] is seen to be equal to

X
½g�

volðGgnGgÞOgð f Þ tr oðgÞ:

We this get the geometric side of the trace formula. The spectral side is

obtained from Theorem 1.

To finish the proof, we generalize the trace formula to arbitrary locally

compact groups. So assume now that G is the projective limit of its Lie

quotients,

G ¼ lim �
N

G=N:

A given f A Cy
c ðGÞ will factorize over some Lie quotient G=N. We can

assume the compact group N chosen so small that N \ G ¼ f1g. Then G

induces a cocompact lattice in G=N and the trace formula for this group

implies the trace formula for the given f .

Finally, assume that trace formula holds for an open subgroup H of G,

then G \H is a cocompact lattice in H and the trace formula for H implies

the trace formula for G.

246 Anton Deitmar



5. Semisimple Lie groups

In the case of a semisimple group G we here prove a slightly stronger

spectral theorem which says that the right regular representation on L2ðEÞ is a

direct sum of representations of finite length.

Definition 11. A representation ðR;VÞ of a locally compact group has

finite length, if there exists a filtration

0 ¼ F0 � � � � � Fk ¼ V

of closed G-stable subspaces such that Fj=Fj�1 is irreducible for each j. The

classical Jordan-Hölder Theorem says that then the irreducible quotients Fj=Fj�1
are uniquely determined by V up to order.

Definition 12. We say that a representation ðR;VÞ of a locally com-

pact group G is a Jordan-Hölder representation, if it is a direct sum of

finite length representations. More precisely, we insist that there are closed

G-stable subspaces Vi, i A I such that the direct sum 0
i A I Vi is dense

in V .

Let G be a semisimple Lie group with finite center and let K be a maximal

compact subgroup. Let G � G be a cocompact lattice and let ðw;VwÞ be a

finite dimensional complex representation of G. Then w defines a vector bundle

E ¼ Ew over GnG. The smooth sections can be described as

GyðEÞG ðCyðGÞnVwÞG :

The choice of a hermitian metric on E allows the definition of the Hilbert space

L2ðEÞ of square integrable sections. We equip GyðEÞ with the topology of

L2ðEÞ.
Let Vfin be the space of all sections in GyðEÞ which are K-finite as well

as z-finite, where z is the center of the universal covering algebra UðgCÞ of the
complexified Lie algebra gC of G.

Theorem 4. The ðg;KÞ-module Vfin is dense in GyðEÞ as well as in L2ðEÞ.
The G-representations on GyðEÞ and on L2ðEÞ are Jordan-Hölder representa-

tions.

Proof. For every ðt;VtÞ A K̂K the Casimir element C A z acts on the

t-isotype

GyðEÞðtÞGVt nHomKðVt;G
yðEÞÞ;

as it acts on
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HomKðVt;G
yðEÞÞG ðGyðEÞnVtÞK

G ðCyðGÞnVw nVtÞG�K

GGyðEw; tÞ;

where Ew; t is the vector bundle over GnG=K defined by w� t. On GyðEw; tÞ
the Casimir C induces an operator which has the same principal symbol as

the Laplacian for any given metric. Hence ([17], Theorems 8.4 and 9.3) the

operator C has discrete spectrum on L2ðEw; tÞ consisting of eigenvalues of finite

multiplicity.

Let l A C be an eigenvalue and let GyðEw; tÞðlÞ be the corresponding finite

dimensional generalized eigenspace. The image Vt;l of GyðEw; tÞðlÞ in GyðEÞ
is z-stable and K-stable. Hence the generated ðg;KÞ-module UðgÞVt;l is in

Vfin and by Corollary 3.4.7 of [18] it is admissible and as it is finitely generated,

it is a Harish-Chandra module, so by Corollary 10.42 of [10] it has a finite

composition series:

UðgÞVt;l ¼ Fk � Fk�1 � � � � � F0 ¼ 0

with irreducible quotients Fjþ1=Fj . We repeat this argument with a di¤erent

K-type t 0 not occurring in UðgÞVt;l if it exists. Otherwise, we repeat it with a

di¤erent eigenvalue l to get the claim.
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