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ABSTRACT. Let G be an exponential solvable Lie group and H a connected Lie sub-
group of G. Given any discontinuous group /" for the homogeneous space .# = G/H
and any deformation of I', deformation of discrete subgroups may destroy proper dis-
continuity of the action on .# as H is not compact (except the case when it is trivial).
To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a
layering of Kobayashi’s deformation space 7 (I, G, H) into Hausdorff spaces, which
depends upon the dimensions of G-adjoint orbits of the corresponding parameter space.
This allows us to establish a Hausdorffness theorem for 7 (I, G, H).

1. Introduction

Our attention in this paper is focused on the explicit determination of
the deformation space of discontinuous groups acting on certain nilpotent
homogeneous spaces for which the group in question is 3-step nilpotent.
The problem of describing deformations for general settings, is advocated
by Kobayashi in [13] where he formalized the study of the deformation of
Clifford-Klein forms from a theoretic point of view. See [11, 13, 14, 15] for
further perspectives and basic examples. As an application of the general
theory, T. Kobayashi and S. Nasrin studied in [14] properly discontinuous
actions of a discrete subgroup I' ~ Z* which acts on R*! ~ G/H through
a certain 2-step nilpotent affine transformation group G of dimension 2k + 1
when the connected subgroup H in question is R¥. In these circumstances, the
authors gave a complete description of the parameter space

@ is injective, o(I") is discrete and
R(,G,H) :=< ¢ € Hom(I", G) | acts properly and fixed point freely (1)
on G/H
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which is introduced in [11] in full generality. Here, Hom(I", G) denotes the set
of all homomorphisms I — G endowed with the topology of pointwise con-
vergence and the group G acts on Hom(/, G) by inner conjugation. They also
determined the deformation space 7 (I°, G, H) which is the quotient space of
the parameters space given above through the G-action.

Later, a layering of the above parameter and deformation spaces was
described in [4] for the cases of general 2-step nilpotent Lie groups. Further,
the authors show in this case that the deformation space is a Hausdorff space if
all the G-orbits in Z(I", G, H) have the same dimension.

In this paper, we study the setting where the underlying group G is 3-step
nilpotent. We will provide a stratification of both the parameter and defor-
mation spaces based on the dimensions of the G-adjoint orbits on Hom(l, g),
where [ stands for the Lie algebra of the syndetic hull of I (Theorems 3 and
7). We then provide a layering of the deformation space  (I', G, H) into
some Hausdorff subspaces. The algebraic interpretation of these spaces given
in Theorem 1 appears as a fundamental ingredient in this respect. We close
the paper by giving a sufficient condition on (I, G, H) for the Hausdorffness of
J(I',G,H).

2. Backgrounds and notations

We begin this section with fixing some notation, terminologies and record-
ing some basic facts about deformations of Clifford-Klein forms. The readers
could consult the references [7, 8, 9, 10, 12, 13] and some references therein
for broader information about the subject. Concerning the entire subject, we
strongly recommend the papers [8] and [13].

2.1. Proper and fixed point actions. Let .# be a locally compact space and
K a locally compact topological group. A continuous action of the group K
on ./ is said to be:

(1) Proper if, for each compact subset S C .# the set Kg={keK|
k-SNS# g} is compact.

(2) Fixed point free if, for each m € .#, the isotropy group K, = {k € K|
k-m=m} is trivial.

(3) (CI) if for any m € ., the subset K,, of K defined above is compact.
(cf. [8]).

(4) Properly discontinuous if, K is discrete and the action of K on .#
is proper.

(5) The group K is said to be discontinuous, if it is discrete and acts
on ./ properly and fixed point freely.
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Let G be a Lie group and H a closed subgroup of G. In the case where
M = G/H is a homogeneous space and K is a closed subgroup of G, then it
is well known that the action of K on .# is proper if SHS™' N K is compact
for any compact set S in G. Likewise the action of K on .# is free if and only
if for every g€ G, KNgHg~' = {e}. In this context, the subgroup K is said
to be a discontinuous group for the homogeneous space .#, if K is a discrete
subgroup of G and K acts properly and fixed point freely on ..

2.2. Clifford-Klein forms. For any given discontinuous subgroup I” of a Lie
group G for the homogeneous space G/H, the quotient space I'\G/H is said to
be a Clifford-Klein form for the homogeneous space G/H. The following point
was emphasized in [11]. Any Clifford-Klein form is endowed with a smooth
manifold structure for which the quotient canonical surjection = : G/H —
I'\G/H turns out to be an open covering and particularly a local diffeo-
morphism. On the other hand, any Clifford-Klein form I'\G/H inherits any
G-invariant local geometric structure (e.g. complex structure, pseudo-Riemanian
structure, conformal structure, symplectic structure,...) on the homogeneous
space G/H through the covering map .

2.3. Parameter and deformation spaces. The material dealt with in this sub-
section comes from [13]. The reader could also consult the references [9] and
[12] for precise definitions. Throughout this paper, we only consider the case
where I is finitely generated. As in the first introductory section, we designate
by Hom(I", G) the set of group homomorphisms from I" to G endowed with
the point wise convergence topology. The same topology is obtained by
taking generators y;,...,y, of I', then using the injective map

Hom(I",G) — G x --- x G, 9= (e(1), - 0(7))

to equip Hom(7", G) with the relative topology induced from the direct product
G x ---x G. The topology of the parameter space #(I", G, H) in Section 1 is
defined as the relative topology in Hom(I', G). For each 9 € Z(I",G,H), the
space ¢(I')\G/H 1is a Clifford-Klein form which is a Hausdorff topological
space and even equipped with a structure of a smooth manifold for which, the
quotient canonical map is a smooth open covering. Let now pe Z(I", G, H)
and g € G, we consider the element ¢? of Hom(I',G) defined by ¢9(y) =
g 'o(y)g for ye I'. Tt is then clear that the element ¢¢ is in #(I", G, H) and
that the map:

o(I)\G/H — ¢*('\G/H,  ¢(I'\xH — ¢°(I'\g~'xH
is a natural diffeomorphism. Following [13], we then consider the orbit space

T(I',G,H) = #(T",G,H)/G
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instead of #(I",G,H) in order to avoid the unessential part of deformations
arising inner automorphisms and to be quite precise on parameters. The quo-
tient space 7 (I',G,H) is called the deformation space of the discontinuous
action of I' on the homogeneous space G/H.

2.4. Algebraic description of the parameter and deformation spaces. Let g be
a finite dimensional real exponential solvable Lie algebra and G its asso-
ciated Lie group. This means that the exponential map exp:g— G is a
global C*-diffeomorphism from g into G. That is, G is connected and simply
connected. Let log: G — g denote the inverse map of exp: g — G. The Lie
algebra g acts on g by the adjoint representation ad, that is adr(Y) = [T, Y]
for T, Y eg. The group G acts on g by the adjoint representation Ad, defined
by

for g=exp T € G. Let H be a closed connected subgroup of G and denote
by b the Lie algebra of H. Let I' be a discrete subgroup of G of rank k and
define the parameter space #Z(I',G,H) as given in (1) in Section 1. Let L be
the syndetic hull of I" which is the smallest (and hence the unique) connected
closed subgroup of G which contains I co-compactly (see [3]). Recall that the
Lie subalgebra [ of L is the real span of the lattice log I in g, which is
generated by {log y,,...,log y;} where {y,,...,7;} is a set of generators of I.
The group G also acts on Hom(l, g) by:

g-y=Ad,o. (2)

Here Hom(l,g) is the set of homomorphisms of Lie algebras from [ to g
endowed with the trace topology of #(l,g), the set of linear maps from [ to
g. Let Homi“j(l7 g) be the set of injective homomorphisms from [ to g. The
following useful result was originated in [14] and obtained in [3].

THEOREM 1. Let G = exp g be a completely solvable Lie group, H =exp |
a closed connected subgroup of G, I' a discontinuous group for the homogeneous
space G/H and L = expl its syndetic hull.  Then up to a homeomorphism, the
parameter space R(I',G,H) is given by:

2(1,8,h) = {y € Hom™ (1, q) |exp(y(1)) acts properly on G/H}.

The deformation space 7 (I',G,H) is likewise homeomorphic to the space

y(lvgvb) - %(Ivgab)/Ad7

where the action Ad of G is given as in (2).
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2.5. On the structure of the parameter space. Let L be a closed subgroup
of G. We remark that if L acts on G/H properly, then the L-action is (CI) by
definition. The converse claim is not true in general (see [17]).

DerIniTION 1. Let G be an exponential solvable Lie group and H a con-
nected and closed subgroup of G. A pair (G, H) is said to have the Lipsman
property if for any connected closed subgroup L of G acting on G/H with the
property (CI), the L-action on G/H is proper.

When for instance G is nilpotent and of n-step n < 3, any pair (G, H) has
the Lipsman property (cf. [1, 16, 18]).

DeriNITION 2 (cf. [5]). A subset V' of R” is called semi-algebraic if there
exist some polynomial functions P; ; (i=1,...,s, j=1,...,r;) and binary rela-
tions ¢; € {>,=, <} such that

s
V= U{x e R"|P; j(x)g;0 for j=1,...,r}.
i=1

The following proposition shows that the parameter space is semi-algebraic
whenever the pair (G, H) has Lipsman’s property with G a connected and
simply connected nilpotent Lie group.

ProposITION 1 (cf. [4]). Let (G,H) be a pair having the Lipsman property
with G a connected simply connected nilpotent Lie group, I' a discontinuous
subgroup for G/H, and | the Lie algebra of the syndetic hull of I'. Then the
parameter space R(I',G,H) is semi-algebraic in Z(1,g).

2.6. Some preliminary results.

Fact 2.1. Let V be a vector space, E and F two subspaces of V such that
V=E®F. Then for any veV

(v+E)NF = P(v),
where P is the projection of V on F parallel to E.

Proor. Let ve V and write v =v; + v, with vy € E and v, € F. Then
Pv)=v; and v+ E=v+E. Let ue(v+ E)NF, then there exists we E
such that u = v, +w and we have

ueF=mn+weF=weF=weENF={0}.

Thus u = v,. ]



200 Ali Bakrouti, Mariem BoussoFrFaRA and Imed KEDpIM

Fact 22. Let F, K be two finite dimensional vector spaces and % =
{e1,...,em} a basis of F.
(1) If pe L(F,K) of rank t >0, then there exists {e;,...,e;,} a subset
of # such that Im ¢ = R-span{p(e;,),...,p(e;)}.
(2) Let S={ej,...,e,} be a subset of A, then the set

A(S) ={p e L(F,K)|dim R-span{g(e;,), ... p(e;)} =t}
is open in ¥L(F,K).

Proor. (1) As {p(e1),...,p(em)} is a generating family of Im(p), we can
extract from this family a basis of Im(p). (2) Let r = dim K, fix a basis 4’ of
K and identify Z(F,K) to the set of matrices M, ,,(IR) as a topological space.
In this context, the set A(S) is identified to

A'(S)={M e M, ,(R) |tk(M") = ¢}

where M’ € M, ,(R) is the matrix obtained from M by deleting all the columns
of index k¢ {ji,...,j:}. Let now

J(t,r)={(ki,....k)eN"|1 <k <--- <k, <r}.

For o= (ky,...,k;) and M' e M, ,(R), we denote by M, the square matrix
obtained from M’ by deleting all the lines of index k ¢ {k|,...,k;}. Then the
condition rk(M') =t is equivalent to

> [det(M])] #0

oel(t,r)
which proves that 4’(S) is open and therefore A4(S) is also open. O

Fact 2.3. Let F be a finite dimensional vector space, V a subspace of F
and t =dim F —dim V. For all integer n, let S, = {uy p,...,u.n} be a family
of linearly independent vectors in F such that

(1) F=R-span(S,) ® V.

(2) For all 1 <i<t, the sequence (u;,), converges to some vector u.

(3) S=A{wu,...,u;} is formed by linearly independent vectors and F =

R-span(S) @ V.
Let P, denote the projection of F on V parallel to R-span(S,) and P the pro-
jection of F on V parallel to R-span(S). Then the sequence (P,), converges in
LV) to P.

n

Proor. Let m=dim F and # = {ej,...,e,} a basis of F such that
{ei1,...,en} is a basis of V. By hypothesis (1), the set

By =A{uiny. . Upps€rils. . €m}
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is a basis of F for all n and the matrix of P, in the basis %, is
Q _ 0]R—span(S,,) . 0 .
0 ldV
If Pyy, is the transition base matrix, then the matrix of P, in % is

Ou = Pyy,0P) .

Now by (2) and (3), (Pss,), converges to Pyy, where %' = {ui,...,u,
€r1,-.-,€,}. Then (Q,), converges to the matrix Q' :R%%/QPp;;j,, which
is the matrix of P in 4. O

Fact 2.4. Let V, W be two finite dimensional vector spaces, B = {ey, ...,
en} a basis of V and f:V — W a linear map such that {f(e1),..., f(ex)} is a
basis of Im f. Assume that

Sflews;) = o jf(er) + -+ o ;i f (ex), l<j<n-k
Then the family of vectors
Uj = ejrj — Oy je1 — =+ — Ol j€k, l<j<n—k
is a basis of ker f.

Proor. Clearly the family {u;,1 < j <n —k} is a family of linearly inde-
pendent vectors and we have f(u;)) =0forall 1 < j<n—k. Asdimker =
n —k, the result follows. ]

Fact 2.5. Let V, W be two finite dimensional vector spaces, B = {ey, ...,
em} a basis of V and (f,: V — W), a sequence of linear maps such that:

(1) (fa), converges to a linear map f:V — W.

(2) The family {f.(e1),..., fulex)} is a basis of Im f, for all n.

(3) The family {f(e1),...,f(ex)} is a basis of Im f.
Assume that for all n >0 and 1 < j <m—k, we have

Sulews) = of jfuler) + -+ o fuler)
and
Sewry) = o jf(er) + -+ o i f (ex).

Then for all 1 < j<n—k and 1 <1<k, the sequence (u];), converges to
o -

PrOOF. As (fy), converges to f, we have (f,(exs;) — f(ex+j)), converges
to zero. Let now dim W =r and let uy,...,u,_x € W be such that %' =
{f(e1),...,f(ex),u1,...,ur—r} is a basis of W. As (f,(e;)), converges to
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f(e;) for all 1 <i <k, there exists N > 0 such that for all n» > N the family
{fuler),-., fulex),ur,...,u—x} is also a basis of W. Let

Sn = {J{n(eZ)a s 7fn(ek)7u1a ) urfk}a

F = R-span{f(e;)} and ¢, the projection of W on F parallel to R-span(S,).
Then by Fact 2.3, (g,), converges to the projection ¢ of W on F parallel to
R-span(S), where S = {f(e2),..., f(ex),u1,...,u—r} and (qa(fu(ex+;))), con-
verges to Q(.f(elc+j))~ Note that qn(ﬁt(ek+j)) = Qn(aﬁj.fn(el)) = O‘ﬁjqn(fn(el))
and q(f(ex+;)) = o1,;f(er).  As (o1,;4u(fule1))), converges to oy ;f(er), the
sequence ((af ; —a1,j)ga(fu(e1))), converges to zero. But (g.(fu(e1))), con-
verges to the non-zero vector f(e1), then (af ;), converges to oy ;. Using the
same argument, we can show that (o] ), converges to o;; for all 1 </ <k and
I<j<n—k. ]

Fact 2.6. Let (x,), be a sequence in RY such that

(1) Any subsequence of (xn),

(2) Two convergent subsequences of (x,)
Then (x,), is convergent.

contains a convergent subsequence.

, converge to the same element.

n

Proor. Suppose that (x,), is not bounded, then for every integer k
there exists (xy, ), such that [x,| >k. Then obviously (x,), contains a
subsequence (Xy), such that lim[x, || =+oo, then (xy,), does not have
convergent subsequence. Thus by (1), (x,), is bounded. Let (x,), be a
convergent subsequence of (x,), which converges to y and let 4 > 0 such that
|x, — »|| < 4 for all n that is (x,), belongs to the closed ball B(y, 4) of center
y and radius 4. Let U be a neighborhood of y. If B(y,A)\U contains
an infinite terms of (x,),, then we can find a subsequence which converges to
y' # y and then by (2) only finite terms of (x,), are not in U, thus (x,),

converges to J. ]

Fact 2.7. Let (f,:RRY —IR"™), be a sequence of linear maps and (x,),
a sequence in RY such that:

(1) (fa), converges to a linear map f :R? — R™.

(2) For all n, f, and [ are injective.
(3) There exists x € RY such that (f,(xn))
Then (x,), converges to X.

. converges to f(x).

Proor. If for all N >0, there exists n > N such that x, =0 then (x,),
contains a subsequence (xnk)nk such that x, =0 for all k¥ and we have
S (xn,) = 0 then (f,(xy)), converges to zero. Let (x, )nk1 be a subsequence
of (x,), such that Xing, # 0 for all k; and we have to prove that (xnk1 )nk1

converges to zero. Note that f,, (xy, ) = |,

n

X
Ju | == ]. As the sequence
T T
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- ) .
(ﬁ) is bounded, we can assume that it converges to some y # 0. Now
ey

suppose that ([, 11, . does not converge to zero, then up to the choice of a
subsequence, we can assume that (||x,, ||)nkl converges to some a € 0, +o0] then
( S, (xnkl))nk] converges to af(y) #0 because y #0 and f is injective which
is a contradiction. Now assume that there exists N > 0 such that x, # 0 for
all n> N. In this case we have to show that (x,), satisfies the conditions

(1) and (2) of Fact 2.6. Let (xy), be a subsequence of (x,),, then we can
find a subsequence (x,,),, of (xy,),, such that (H ), converges to some y # 0

and using (1), we see that (fnz(ux”’O) converges to f) As (fi,(Xny)),, =
Xny ny

<\|x,,2|| fnz( i )) converges to f(x), we deduce that (||x,,][),, converges to
ny

[l |
” ;((J))H In particular, the sequence (xy,),, is bounded and contains a conver-

gent subsequence. This shows that any subsequence of (x,), contains a
convergent subsequence. Let (x,1),; and (x,2),, be two convergent sub-
sequences of (x,), such that (x,, 1)n , converges to y; and (x,, 2)n , converges to
2. Then (fu,1(xu1)),; and (f 2 (x,hz)) ., converge to f(y1) and f(y,) respec-
tively. By (3), f(»1) = f(»2). Then f(y1 — »2) =0 and using (2) we deduce
that y; = y,. Then two convergent subsequences of (x,), converge to the
same element. Using Fact 2.6, we conclude that (x,), is convergent. ]

n

n

3. On the quotient space Hom(l, g)/G

3.1. Describing Hom(I,g). We assume henceforth that g is a 3-step nilpotent
Lie algebra and [ a subalgebra of g. We consider the decompositions

g=[0,50l®g ®g and [=[[LISLOL 3)

where g, (respectively [;) designates a subspace of g (of I respectively) such that
[9,[8,6]] ® g, = [g,g] (respectively [, [L]]] ®1; =[L1]). g, (respectively I,) is a
subspace of g (of I respectively) supplementary to [g,g] (to [I,1] respectively) in
g (in I respectively). Denote by g, = [g,[g,d]] and Iy = [I,[[,]]]. Obviously we
can see that g, (respectively Iy) lies in the center of g (of I respectively). Any
pe L(l,g) can be written as

~O
S

4)

‘S& S
sh sb &
ehq ‘Sm eQ

Where A(ﬂ € 3(107 g()); B € c*g(llaq()) C¢ € (127 gO) I¢ € 3’(10, gl)) D(” €
gahgl)? E(/Jeg(lzagl)? J Eg(IO7QZ) K(ﬂ (11792) and F(ﬂeg(lzaQZ)'
For each g e Z(l,g), we deﬁne p, € Z(,g) by
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4, B, 0
p=10 D, E, (5)
0 0 F,

We first remark the following assertion.

LEmMA 1. An element p € ¥ (1,9) is a Lie algebra homomorphism if and
only if I,=0, J,=0, K, =0 and ¢, € Hom(l,g).

Proor. We point out first that if ¢ e Hom(l, g), then ¢(ly) = o([|, [I,1]]) =
lp(D), [p(1), p(1)]] C gy, in particular I, =0 and J, =0. Now ¢(I;) C o([L,1])
[p(D, 9(D] C [g, 9], s0 K, =0 and

4, B, G,
Y= 0 D, E, (6)
0 0 F,

Let us take pe Z(l,g) with [, =0, J,=0, K, =0. Then for each x=
Xo+x1+x and x' =xj+x]+x)el where x;,x/e€l;, i=0,1,2, we have
the following:

[p(x), p(x")] = [Ap(x0) + By(x1) + Dy(x1) + Cp(x2) + Ep(x2) + Fy(x2), Ay (xp)
+ By(x1) 4+ Dy(x1) + Cp(x3) 4+ Ep(x3) 4 Fp(x5)]
= [Dy(x1) + Ey(x2) + Fy(x2), Dy(x1) + Ey(x3) + Fy(x3)]
= o1 (), 01 (X)]. ()
On the other hand:
o([x,x']) = o([xo0 + x1 + x2, X0 + x| + x3])
= (1 + x2,x] + x3])
= o(lx1, x3]) + o([x2, x1]) + 9([x2, x3])
= Ap([x1,33]) + Ay ([x2, 11]) + (g + By + Dy)([x2,%2])
= o1 ([x, X)) (®)

Conversely, let I, =0, J, =0, K, =0 and ¢, e Hom(l, g), then ¢ is as in (6).
Hence,

o(lx,xT) = pi([x, x)) by (8)
= [p1(x), 01 (x")]
= lp(x),p(x")] by (7).
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Then for each ¢ € Z(l,g) with I, =0, J, =0, K, =0, we have ¢ € Hom(, g)
if and only if ¢, € Hom(l, g). O

3.2. The G-action on Hom(l,g). For any X € g, the adjoint representation
ady can be written making use the decomposition (3) as

0 2X) 213(X)
adX = 0 0 22’3()() (9)
0 0 0

for some maps 2)2:g9— Z(g;,80), 213:9— ZL(a,9,) and 2Xr3:9—
Z(9,,9;). The adjoint representation Adc,x) reads therefore

1
Adexp(y) = 1d +ady +5 ady

I, Z12(X) Zis(X) +120(X) 2 5(X)
=10 I, 253(X)
0 0 I,

Here I, I, and I, denote the identity maps of g,, g, and g, respectively.
The group G acts on Hom(l,g) through the following law:

g-9=Adgop

AV’ B¢+2172(X)D¢ C¢+Z],2(X)E¢+2173(X)F¢
+%21,2(X)2273(X)F¢
10 D, E,+ 2 3(X)F, ’
0 0 F,

where g = exp(X), 4,, By, Cy, Dy, E, and F, are as in formula (4) and X »,
23 and 2,3 are as in (9). Let now

Hom; (I, g) := {¢ € Hom(l, g) | C, = 0}. (10)

By Lemma 1, the correspondence ¢+— ¢, gives a map: Hom(l,g) —
Hom,(I,g). Then G also acts on Hom;(l,g) as follows:

A(p B¢+2172(X)D¢ 0
gxp; =1 0 D, E,+2,3(X)F, |. (11)
0 0 F,

In other words, g * ¢, is defined by (g-¢,), where (g-¢,) € Hom(l,g). One
can easily check that g * ¢, defines a group action of G on Hom;(l,g). Hence,
G acts on Hom,(l,g) x Z(I»,g,) as:
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g- ((017 C(/I)
1
= (g * 01, Cp+ Z12(X)E, + 21 3(X)F, +§21,2(X)2273(X)F¢>- (12)

We first have the following:
LemMa 2. The map
¥ : Hom(l,g) — Hom (1, ) x Z(1>, )
9 (p1,Cp)
is a G-equivariant homeomorphism, where ¢, is as in (5).

Proor. The fact that i is a well defined homeomorphism comes directly
from Lemma 3.1. Let g =exp(X) e G and ¢ € Hom(l, g), then

W(g-9) =w(Adgog)

1
= (9201 G+ D120 By + D12(OF, + 351200 72(00F, )

which proves the lemma. O

3.2.1. Decomposition of Hom,(l,g). Now we consider the linear subspace 4
of #(l,g) defined by

I

A,=0,1,=0, J, =0, D, =0,
i=foesta| 0B 0 40 Do)

Z(1 Z(1 .
K(ﬂ:07 C{p:() and F¢:0 (I’QO)X (2791)

For ¢, e Hom,(l,g), we consider the linear map

lpy:5— 4
0 2 (X)D,, 0
X—10 0 253(X)F,,
0 0 0

Then from equation (11) of the definition of the action of G on Hom;(,g),
we obtain immediately the following description of the orbits in Hom; (I, g).

LEMMA 3. The orbit G+ ¢; = ¢y + (N, + Im(l,,)), where
A, 0 0 0 B, 0
po=| 0 D, O and N,y=10 0 E,
0 0 F, 0 0 0
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Let m=dim 4 and ¢ =dimg. For t=0,...,q, we define the sets
Hom{ (1, g) := {9, e Hom, (I, g) | rk(/,,) = }.

Then clearly,

q
Hom; (L, g) = UHomI’(L q). (13)
=0

We fix a basis {ej,...,en} of 4 and let
Im,m—1) ={(i1,...,imy) e N" |1 <y <+ <ip <m}.
For f = (i1,...,im—) € I(m,m —t), we consider the subspace Vj := @/’Zt Re;
and for any ¢, € Hom{(l,g), let P, : 4 — 4/Im(l, ) and
Homyj ,(1,g) := {p; € Homj (L, g) | det(Py, (¢3), .-, Py, (e;,.,)) # 0}
Then we have the following:

LemmA 4. For each t=0,...,q = dim g, the family {Homj 5(1,8)}sc rn m—s)
of subsets in Hom{(l,g) gives an open covering of Homi(l,g).

Proor. We know that for all p; € Hom{(1,g), the set Im(/,, ) is a linear
subspace of 4 of dimension ¢. There exists therefore (iy,...,in—;) € I(m,m— 1)
such that the family {P, (e;),..., Py (e, )} forms a basis of 4/Im(/, ) and
consequently det(P,, (e;,),..., Py (e, ,)) #0. This shows that Hom{(l,g) =
Use rmm—ry Hom{ 4(1,8). Now det(Py, (ey), ..., Py (e, ) # 0 if and only if
the family {P, (e;),..., Py (e, )} is a basis of 4/Im/, which is equivalent
to 4=Im/, @ V. AsdimIml/, =t we get by Fact 2.2 (1) that there exists
(Ji,---,Ji) € I(g, t) such that the family {/, (Y;,),...,1, (Y;),ei,...,e;, ,} forms
a basis of 4, or similarly

2
[det(ly, (Y)i)s- -5 Ly (X)) €0y -5, )] # 0.
(WAL ()

Then
Homj 4(1, g)

={ g eHom{(Lg) | > [det(ly, (¥),.. 1y (Y;),€irs- 5, )] #0

which is open by continuity of the determinant. O
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ProPOSITION 2. We have:
Hom (1, g) U U Homyj 4(1,9)
=0 fel(m,m—i)
as a union of G-invariant subsets, where G acts on Hom(l,g) as in (11).

Proor. The decomposition is given by Lemma 4 and equation (13). To
see the G-invariance, observe that D, = Dy, and F, = F,, which means
that [, = Iy, and P, = P,., for all p; e Hom(l,g) and ge G. Then for all
pel(mm—t) and 0 <t<gq the set Homj 4(I,g) is G-invariant. O

Let us fix t=0,...,¢ and f§ = (il,.. yim—i) € I(m,m —t). Recall that Vg
is a subspace of A spanned by {e; },_; We define the subset %ﬂ’(l, g)
of Homl,ﬂ(l g) by

ﬂé([,g) = {(ﬂl € Homltﬁ/f(lv g) |N(01 € Vﬂ}
and we consider the map
n[tf : Homlth/:’(la q)/G - %/;([7 Q)
Gy gy + P, |V,,(N(/7| +1Im(/,,)).
We next prove the following lemmas:

LemMA 5. For each ¢, € Hom{ 4(1,q), the intersection of the G-orbit G * ¢,
and M(1,g) in Homj 4(1,9) is the singleton {oo+ P, 1, (Ny, +1Im(l,))}. In
particular, the map

o1l Vg

g« Hom{ 4(1,8)/G — (1, g); G+ — ¢y + Pg;l}Vﬁ(N% + Im(1,,))
is well defined.

PrOOF. Let ¢y = @) + N, € Homj 4(I,g). Then from Lemma 3 the orbit
G % 01 =0 =+ (N(DI + Im l%) and

9o+ P, W( o HIml,) =g+ (N, +1Im 1, ) N Vg e 41, g).

Thus 75 is well defined. Note now that the intersection of G * ¢, and (1, g)
in Homj 4(I,g) is not empty as it contains ny(G*@). Let ¢, ¢f be two
elements in the intersection. Then there exist v,w e Im(/, ) such that ¢, =
@y + Ny, +v and ¢} = ¢, + N, +w with N, +0v,N, +we Vg In particular
v—Wwe V/; NIm(/, ) = {0}, which means that ¢; = ¢;. O
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LemMMA 6. The map
h: Homj 4(1,9) — #4(1, g)
¢1— ¢y + qull\v,,(Ncal +1Im ly,)
is continuous.
ProOF. To show this lemma, we prove the following fact:
Fact 3.1. The map
Hom\(1,9) — (g, 4)
91— Iy,
is continuous.

ProOF. Let (gofm)n be a sequence which converges to some element ¢,.

Then obviously (Dw("))" converges to D, and (Fw(n))n converges to F, . Then
(Za(’”)" converges tollw ! O
1

Now to prove the lemma, let (¢, ,), be a sequence in Homj 4(I, g) which

converges to an element ¢; € Homj 4(I,g). We have to show that ((g, ,)),
converges to /(p;). Note first that for all ¢, e Homyj 4(I,9), h(p;) = ¢y +
(Ny, +Im I, )N Vp. As 4 =1Iml, @ Vp, by Fact 2.1 we see that i(p;) = ¢y +

4y, (Ny,), where g, is the pI‘Q]CCthIl on Vj parallel to Im /, . Let {X1,...,X,}
be a basis of g, using Fact 2.2 (1), one can find Xj,,..., X e {Xl, ..., X} such
that

Im /[, = R-span{/, (X ),..., 1, (X;)}.

Now by Fact 3.1, we get the convergence of the sequence (/,, ), to /,. By
Fact 2.2 (2), for S={X;,..., X},

A(S) = {l e Z(g,4)|dim R-span{/(Xj), ..., 1(X;)} = 1}
is open in ¥(g,4). Then there exists N >0 such that for all n > N,
Im [, = R-span{l,, (X ),...,1, (X;)}.

As (I, ), converges to [, , the sequence (/, (X)), converges to /[, (X;) for
all 1 <k <t By Fact 2.3, let ¢, be the projection of 4 on Vp parallel to
Im(/,, ), the sequence (g,), converges to the projection g, of 4 on Vy parallel
to Im /, . Finally, as (g, ,), converges to ¢, and (N, ), converges to N, , we
get (h(py ,)), converges to h(p,). O
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Lemma 7. The map nj: Homj 4(1,9)/G — .44(1,9) defined above is a
homeomorphism.

Proor. To see that 7y is surjective, observe that .#(l,g) C Homj 4(1, g)
and for ¢, € .Z4(l,g) we have n4(G*¢,) = ¢;. Let ¢,& € Homj 4(1,g) such
that 74(G * ) = ng(G* &p). Then obviously ¢, = &, and

PWV/?(N +Im/,) = g‘V/},(N;l—i—lmlc)

As [, depends only on ¢, we deduce that [, =/;, which implies that
PrmV/f =P ‘IV Hence, N, +Im/, = N¢ +1Im [ and in particular G * ¢, =
Gx*¢y. Thus nﬁ is injective. Now the following diagram commutes

Homj 4(1, )
Hom| ﬁ( q)/G -, /%ﬁ(l )

where h(p;) =@y + P, ‘Vﬁ(N(,,l +1Im/, ). Since by Lemma 6, / is continuous
and since n is open then n/§ is continuous. The quotient canonical map
(71[’;)71 = (1) is continuous and then the map n[’; is a homeomorphism.

O
CoROLLARY 1. For all t=1{0,...,q}, the collection
S/tf = (”/t;,Homlt,/;(Ia g)/G)ﬁel(mJnft)
forms a family of local sections of the canonical surjection
n' : Hom{(l,g) — Hom{(l,g)/G.
In particular,

) » eHomf,ﬂ(I, g) }

IH t — H
wj(tomy(1.)/G) ~{pr € Homi(L.g)| 1 <"

3.2.2. Decomposition of Hom(l,g). Let ¢, eHomf‘ﬁ(I, g) and

Gy, ={g9eGlg*op, =0}

be the isotropy group of ¢;. The group G, acts on {¢;} x Z(I,q,) through
the following law

eXp(X) : ((pla C) = (§017 C+21,2(X)E(/)| +21‘3(X)F¢1)7

where X, and X3 are as in (9). Indeed, for any g =exp(X)e G,, we
have g * ¢; = ¢, then X ,(X)D, =0 and X5 3(X)F, =0. We get therefore
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from (12):
g+ (91, C) = (91, C + Z12(X)Ep, + Z13(X)F,,).

Let Sur(Gepy) = log(G, 71(Groy) y) and f, be the linear map defined by
Jo : 8a(Grpy) — L (12,99)
X — lez(X)Eﬂ/;(Gw,) + 21,3(X)F7z/’;(6*(p|)'

Then the range of f, is a linear subspace of #(I,g,) and we can see
immediately that:

LemMmA 8. For any ge G we have f, = fy.,. In addition,

G n(Gx)) (n/tf(G*(pl)vC) = (n/l}(G*(pl)7C+Im(f¢1))'

Let m' = dim(%(lz,g,)) and ¢’ = dim(g, (G*(ﬂ)). For ' =0,...,q', we
define the sets

Homyp /;(I g) = {p, € Homj 4(1,9) [rk(f,,) = '}

Then clearly
Homj 4(1, 9) U Hom; % ( /f (14)

Let us fix a basis {ef,...,e ’} of Z(,g,). For B =(ij,....i\, .)€

I(m',m' —t') and ¢, e Hom;} B(I g), we consider the subspace Vi :=
"' Re!,, the quotient ma
Dt Rej, the g p

P‘;I 1 L (b, gy) = Lz, 90)/Im(fy,)

and the set
Hom! (1) = {p, € Hom{"}(1,a) | det(P (c}), ... P}, (¢, ) # 0},

Then we get the following:

LEeMMa 9. For each t=0,...,q= dim g t'=0,...,q' = dnn(g7I (G*rﬂ.))
and /)’el(m m—1), the family {Hom' oy (I )t m—rry O subsets i
Hom; ﬁ(I g) gives an open covering of Hom (I g).

Proor. For all ¢, € Homli ,;(1,9), the set Im(f,, ) is a linear subspace of
Z(lp,g,) of dimension /. There exists therefore (if,...,i, ,)el(m',m' —1)
such that the family {P;, (¢;),..., P, (¢j )} forms a basis of #(I, go)/Im(fp,)
and consequently 'l —t

! / ’
det(Py (¢f), - Py (ef ) #0.

PN
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This shows that Homf:%([,g) = Up cr(mrmr—1m) Homf’zﬁ,(l,g). Now to prove

that Hom1 [}/3 (I,g) is open in Homlt:g(l, g), we need the following facts:

Facr 3.2, Let ¢, € Homj 4(1,9) and assume that np(G* ;) = y,. Then
gy, = ker [y,

PRrROOF.
w = (X eglexp(X) «yy =y}
= {X egln +1y (X) =}
= {X eglly(X) =0}
= ker [, . O

Let #={X,...,X,} be a basis of g, ¢ eHom{‘ﬁ(I, g) and Y, =
ng(G*¢y). Fory=(ji,..., i) € I(g,1) such that Im , = R-span{/y, (Xj),...,
ly,(X;)}, we define a linear map /, , : RY”" — g given by

lwl y uz Xs, § Oy, s; ],

where {uy,...,u,} is the canonical basis of R?™, {s; <--- <s,} ={1,...,
q}\{]la s ajt} and

l‘//l Z‘xr v,lz//] Vi<i< q-—r.

Facr 33. We have: Iml, , =g, .

Proor. By Fact 2.4 and Fact 3.2, we have Im(/, ,) =kerl, =g,.
O]

Consider now the map /, , : R9™" — #(I,g,) defined by [, , = f, 01, ;.
Then we have the following result

Fact 3.4. We have:
(1) 1, is a linear map.
(2) Im(l,, ) =1Im f,.

PROOF. As I, , and f, are linear maps, the map /, , is also linear.
Now by Fact 3.3,

Im(/, oy) = Jo,(Im Ly ) = /o, (g.pl) = Im(fy,). 0
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Now for y = (ji,...,j:) € I(q,1), let

Hom"l, () = {py € Hom{"}, ..(L,a) | tk(ly, (X;,), -y, (X)) = 1}

Then obviously,

Hom 1ﬁﬁlg UHomlﬁﬁ

vel(q,1)

To conclude that Horn1 ﬁ P (1, g) is open in Homf";(l g), we have to show that

for all y € I(q, 1), the set Hom1 Y ,(y) is open in Hom| ﬁ(I g). First note that

tk(ly, (XG,), -+ Ly, (X)) = 1
det(P;, (€}),.--, P} (¢} /));éo}-

(4] m'—

!

Homl’:;yﬁ,(y) = {gol € Homf";),(l, g)

The set
A5"(y) = {p, € Hom{ (1, q) [ tk(l,, (X;), ... .1y, (X;)) = 1}

is open in Homf’Z(L g) and

Homy'} . (7) = {p1 € 45" (7) |det(Py, (e})), ..., Py (e} ) #O}.

m'—t

Then to obtain our result, it is sufficient to prove that Hom1 ﬂ y ,(y) is open in
A/tfl (y). Indeed, the condition det(P;, (e lf],), Py (e '{,'7,1,,/)) # 0 is equivalent to
L(ly,99) =Im f, @ V. By Fact 3.4, we get:
!/ ! !
det(P,, (ei() cs Py ey ) #0

mr ¢

g Im(l_?’l-,}’) S) V/ﬁ” = 3(127 gO)
< 30el(lqg—t,t'), 0= (s1,...,5)/

det(l y(ts)y oy Ly, (us, ),el/,...,el{/ ) #0

m!—t!

& Z det(1,, , uyl),...,l_wh;,(ust,),el,,...,el, )]? #0.
Oel(qg—t,t')

Then

Hom1 /f[i ()

=pedi" ()] > [det(Zp, (s )s -+ oy 5145, ) €€l N2 #0

m!—t!
Oel(q—t,t")

which is clearly an open subset of A;’Z/(y).
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As a consequence, we get the following:

ProposITION 3.  We have the following decomposition:

Hom(l,g) = UU U U Hompy, (g

1=01'=0 pel(m,m—1) B’ eI(m',m'—t')

as a union of G-invariant subsets, where G acts on Homi(l,g) as in (11).

Proor. The decomposition is given by Proposition 2, Lemma 9 and
equation (14). We showed already that for f e I(m,m—1t) and 0 < < g, the
set Homy 4(I,g) is G-invariant. Likewise, by Lemma 8 we have f, = fy.,
and then P, =P, for all ge G and ¢, € Homi(l,g). As a consequence,
for all Bellmm-—1), plelim' ,m—1t), 0<t<q and 0<1t <q' the set
Hom; ﬁ P (I,g) is G-invariant. O

Using the map  defined as in Lemma 2, we will identify in the rest of
this section the set Hom(l,g) to Hom;(l,g) x ¥(l2,q,). Let first for fe
Imm—1), Blelim’' ,m —t'), 0<t<qgand 0<t <q,

Homﬁﬂ (Lg) = Hom]’ﬁ/),,(l g) X L (1, gy)- (15)
Then we have the following:
ProPOSITION 4. We have:
q 4 ,
Hom(l, g) U U U U Hom;”fg,(l, g)
1=01t'=0 pel(m,m—1t) B’ eI(m',m'—t")
as a union of G-invariant subsets.

PrOOF. As in Proposition 3, for all pelimm—t), B el(im’,m —1),
0<t<qgand 0<¢ <q, the set Hom L (I, g) is G-invariant where G acts
on Hom;(l,g) as in (I11) and then the set Homﬁﬂ (I,g) is also G-invariant.

O
Let now
MPT(1L8) = {py € M1 g) | Tk(fy) =1}
= {9 € Homj 4(I,9) | Ny, € Vp; tk(fy,) = 1'}
= {p, € Hom{ (1, g) | N,,, € V}. (16)

and
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A1) = {pr € A (1,) | det(P) (€l), . Pl (€l ) #0)
= {9 e Hom(L.g) | Ny, € V.
det(P,, (elfl,), Py (e,{;“i’,)) #0} (by 16)
*{gﬂleHomlﬁﬁ(I C!)‘ EV/)'}
—Homlﬂﬂ(l ) N1, g). (17)

We show next the following lemmas:

Lemma 10.  Each G-orbit in Homﬂ/; (I, g) intersects % s (I g) x Vy at
exactly one element in Hom,;"t (I,g), if we take an element gy € G such that
go*(m € My, g), then the element in the intersection of (G- (¢, C)) and
,/% (I g) X Vg can be written as

(n5(G * 9y), (Pw,\Vﬁ,)il(C(QO) +1Im f,))

where

1
52112(1\/0).22_’3(X0)F¢1 .

C(g0) = C+ 212(X0)Ey, + 21,3(X0)Fy, +
Here X1 5, 213 and X3 are as in formula (9) in Section 3.2.

Proor. From Lemma 5, the intersection of the G-orbit G ¢, and
A (1, g) in Homy 4(1,g) is the singleton {¢, + P, ‘Vﬁ(N(,,l +Im(/,,))}, then there
exists go = exp(Xp) € G such that
9o * 91 = 9y + Py, (Ny, +1m(ly,)) = (G * 9y).
Now go - (91, C) = (go * 91, C(go)) and
Gyoep, - (90 * 91, C(g0)) = (9o * @1, Clgo) + Im fp)).
Thus

(G- (p1, O) N (M, (18) % V) = (G gy 0. (1, 0), (Cgo) + Im f,) N V)
= (go * ¢17P(;T|11//,,(C(90) +1Im £, )).

Let (¢;,4), (¢;,A") be in the intersection. Then from Lemma 5, we have
¢ =¢;. Let now g=-exp(X) and ¢’ =exp(X’) in G such that g=*¢ =
g %9 =ny(G*gp). Then gx¢, =g *¢ is equivalent to ¢~'g'€ G, and
there exists g; = exp(X1) € G,, such that g’ = gg;. Let g» = exp(X>) = gg19~",

then ¢, € Gy, and
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g (91:C) = gg1 - (91,C) = 919”'9 - (91, C)
=929 (91, C) = 92(9 * 91, C(9))
= (9% ¢1,C(9) + 15, (X2)).
Thus C(g') — C(9) = fp,(X2) € Im f, which is equivalent to
Clg) +1Im f,, = Cg") + Im f,
which means that 4 = A4’. O

LemMmA 11. The map
tt Yk t
h': Homy . (1,9) — A . (1,8) X Vi

(91, C) = (m3(G = 9y), Py ip (Clgo) + Im f,))

is continuous.
Proor. To show this lemma we prove the following facts

Fact 3.5. Let (p1,), be a sequence of Homj 4(1,8) which converges to
01, ng(Gxoy,) =y, and ng(G+g,) =y,. Then there exists a convergent

sequence (X,), in g which converges to some element X such that

lrbl,n = exp(Xy) * P1,n and Yy = exp(X) * 9.

Proor. Let {X),...,X;} be a basis of g and « = (i1,...,i) € I(g,t) such
that Im/, =/, (U,) where U, = R-span{l, (X;),...,l, (X;)}. As Gx¢ =
g1 +1Im/, and 7g(G*¢)) € Gxp), there exists X € U, such that ¢y = ¢, +
l,,(X). By Fact 2.2 there exists N >0 such that for all n >N, Im/[, =
ly, ,(Uy). Thus there exists (X;), in U, such that Y, , = ¢, , +1,  (X,) for all
n>N. Now from the continuity of the map ¢, r—>7z/§(G>kg01) and by the
convergence of (¢, ,), to ¢;, we deduce that (¢, , +1, (X)), converges to
{py + 1, (X)} and then ([,  (X,)), converges to [, (X) (because (¢, ,), con-
verges to ¢;). Let /, ~be the restriction of /, to U, and [, the restriction of
ly,, to U,. Then all the maps l’ , hn> N are 1nJect1ve and l / is also injective.
The sequence (/, (X)) converges to /, (X) and obv1ously (l’ b, )u converges

to [, . Using Fact 2.7 we conclude that (Xu), converges to X. O

n n

Fact 3.6. Let (¢,,), be a sequence in Homl /f/f (1,8) which converges
to ¢, € Homl /;/;/(I g). Then the following facts hold:
(1) There exists y = (ji,...,j;) € 1(q,1) such that

Im ll//l = R_Span{ll//l (X_/l)? ot ZW] (A//l)}? l//l = n[tf(G * (pl)
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and

Im Zwl,n = R-Span{lwl7,,(‘xl_/'l)7 try ll/’m;()(jt)}’ l//l,n = nft)’(G * wl,n)‘

(2) The sequence (I, ), converges to Iy, .

PROOF. As the quotient map ¢, — G ¢, and 7y are continuous, the
sequence {y; ,} converges to ;. Then (/ ), converges to l,. Let y=
(ji,---,ji)€1(g,1) be such that Im/y, = R-span{ly, (X;),...,l,(X;)}. By
Fact 2.2, we can assume that

Im fy, , = R-span{ly, , (X5), .., by ,(X;)}-

To prove the second result, let y = (ji,...,J;) € I(q,t) satisfying (1) and
for {Sla oo ,Sq,t} = {17 s vq}\{jlv s vjt}> l, 1, ,,(X,) = Z: 1 a;"z,x,-ll/ll_”()(jr) and
Zl//l (X\z) = sz:l o{"»fill/fl (X}z) Let Un,s; = Xér Zr 1% r s and Us; = XS:‘ -
Zle o, X;. Then by Fact 2.5, (v,,), converges to Us,-~ This shows that
(Zy, ,.7), converges to [, ,. Now, for all 1 <i<qg—t we have

lwln}( ) ZlZlen y( ))Et/fl +213(1¢| (i))E//l.n'

As the matrix multiplication is continuous and the maps ¢, — E,; and
¢, — Fy, are continuous, we deduce that (/,  ,(u;)), converges to [, ,(u;).

Thus ([, ), converges to I, ,. O

Let g,, , be the projection of #(I,g,) on V4 parallel to Im(/,, ,). Then
Fact 3.7. We have:
W (g1, C) = (m5(G * 91), 4y,.,(C(90))),
where C(go) is given in Lemma 10.
Proor. By Fact 3.4 (2), we have Im(/, ,) =Im(f, ). Then
P;T\lvﬁ,(c(go) +1Im £, ) = (C(go) + Im(f,,)) N Vy
= (C(go) +Im(l,, ;) NV
= qy,,7(C(g0)) by Fact 2.1. O

We now prove the lemma. Let (¢ ,, C,), be a sequence in Homﬂ /},(I q)
which converges to an element ((,ol,C)eHomﬁ’ B /(l,g). To see that i’ is
continuous, we have to show that (4'(¢; ,, Cy)), converges to h'(p;,C). As
(¢, ,), converges to ¢;, by Fact 3.6 there exists y€I(q,t) such that the se-
quence (1, , ), converges to I, ,. As Z(,g,) =Im(l, ) ® Vi, (L, gp) =
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Im(l(ﬂl»'/) @ V[i">
Im(ly, ;) = R-span{ly, ;(X;,), .., Iy, ;(Xi)}
and
Im(l—w,ﬁ) = R'Span{iwl,my(/\/il)v s l_wl_,,,y(Xiz)}a

where y = (if,...,i), then by Fact 2.3 the sequence (g, ,,), converges to
dy,,»- Now (C,), converges to C and by Fact 3.5 there exists a sequence (X))
in g such that (exp(X,)), converges to exp(X). Now by Fact 3.7,

h' (10> Co) = (1(G * 914): 4y .0 (Cu(exp(Xn)))

and it is clear that (C,(exp(X,))), converges to C(exp(X)). Then
(h,((pl an))n converges to h/((/’17C)~ O

n

By Lemma 10 above, for each G-orbit ¢ in Homﬁ 3,(1 g), there uniquely
exists an element A in O N (#}%(1,g) x V). We define the map

BB
/), Hom (I g)/G— /fﬁ(I q) x Vg
O Agp.
Then ,/% (I g) X is a fundamental domain of the G-action on
Homﬁ /;'(I g) in the sense below:
LemMmA 12. The map s/?tﬁ Hom” (1,9)/G — M /,(I,g)x Vy  defined

above is a homeomorphism.

Proor. Let (¢;,C) # (p;,C’) € Hom (I g) such that G-(¢,C) =
G- (p{,C’). Then there exist gy and g} 1n G such that

£5(G - (91, ©)) = (90 * 91, Py iy, (Clgo) + Im(f,,))
and

sg%’,(G. (01, C") = (gh o1, Pl \V,(C/(gé) +Im(fy)))-

Since G - (¢, C) = G - (pf, C'), there exists g € G such that (p;,C) =g - (¢],C")
= (g*¢1,C'(g)). We get thus the following:

Gxp=Gx(gx9)) = Gy & ny(G* ) =n5(G * py)
S go* ;= gy * @)

This means in particular that f, = f,,. Besides, there exists g; = exp(X{) e
Gyixp; such that gigg - (¢, C’) = go- (¢, C). This entails that

(90 * @1, C(g0)) = (g0 * 91, C'(gg) + ZI,Z(Xl)Eg’w’ + 27, S(Xl)Fg’w’)
0 1



Some Problems of deformations 219

which is equivalent to

C(go) + Im f(ﬂ1 = Cl(g(l)) —i—f%f (Xl/) + Im f(ﬂ1 = C/(gé) + Im f%/

Thus eé’ﬁtﬂ,(G- (p,0)) = ,B/J (G- (pf,C")) and gpp

now prove that the map &%’ is a homeomorphism. In fact we first show that
e, is a bijection. Let (gpl,C) and (¢{,C’) be in Hom (I g) such that

B.B
£0(G- (91, ©)) = £2.(G - (9}, C")).
Then there exist go,g; € G such that
(g0 % 01, Py (Clao) +1m ) = (g % 0, PLgl (C'(g) +Im fyp)).

This implies that go * ¢; = gg * ¢f, which means that f, = f,, and P, = P;,.
1
Then from the equality

P,y (Clgo) +1m fy,) = Py (C'(g6) +1m fyy),
we get C(go) +1Im f,, = C'(g¢) +Im f,;. Then G*g¢; = G+ ¢f and
Gyorp, (g0 * @1, C(g0)) = GJ’WI (g(/) * (Piv C/(g/))7

which is equivalent to G- (¢;,C) = G- (9], C’) and the map ¢, /;, is injective.
Let now (y;,C)) € /%"’ (I,g) x Vp. Since the map m is a homeomorphlsm

is a well defined map. We

there exist ¢, € Hom1 ﬂﬁ (l,g) and ¢’ € G such that
(G o) Ny (Lg) =y =g %0y,
Hence, there exists C e % (la,q,), such that g'- (p;,C) = (¢’ * ¢, C(g")),
¢ = l/,l\Vﬁ,(C(g/) +1Im fy,)

and 8/?;;,(G~ (91, C)) = (¥, C1) and then the map &y ﬂ/, is surjective. Now the
diagram below commutes

Hom (I q)
”'J s
Hom (I 9)/G ——— %” (Lg) x Vg

where 1'((¢,,C)) = (nﬂ(G* ?,), (MVI(C(go) + Im(fq,l)) Since by Lemma 11,

h' is continuous and since z’ is open then &', is continuous. Now the

ﬁ ﬁ
quotient canonical map
1t 1
(ﬁﬂ) \/ﬂﬁ,lq)xVﬁ/
is continuous and then the map &', is a homeomorphism. O

/fﬁ
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As an immediate consequence, we get:

PrOPOSITION 5. We have the following:

Hom(l,9)/G= ) | Homj,(19)/G
0<t<q pel(mm—i)
Ostlﬁq//i’el(m’,m’—l/)

where for all te{O cqt, Y ed{0,....q'}, pel(imm—1) andﬁel(
m' —t), Hom (I g) is deﬁned as in formula (15) and the set Homﬁﬂ (1 g)/
is homeomorphzc to (I g) x V.

Let now
Hom"" (1, g) = J Hom{! /3 #(L9). (18)
pel(m,m—t)
B el(m' ,m'—t")
and
Hom"" (I, g) = Hom!" (I,g) x #(l, ). (19)
We then show the following:
LEMMA 13.  Retain definitions (18) and (19). Then the collection

St = (eg, Hom ' (1,0)/G) permm—y — (1=0,...,q and ' =0,....q")

& B el(m' ,m'—t")
constitutes a family of local sections of the canonical surjection
51 Hom"' (1,g) — Homt”/(l, g)/G.

!
Proor. We have to show that n” osﬂ ﬁ IdHom/;,;;l (La)/G for all ¢, ¢/,

B, B'. Let 9= (p;,C,) e Hom(l,g) be such that the orbit G- (p,C,) €
Hom;;,(l,g)/G. Then

70 50 (G (91, Cp)) = 7 (90 % 91, Py, (Colgo) +Tm(fp,))).
There exists g; € Gy, such that

g190 - (o1, C(p) = (9o * 91, (C¢(go) +Im fw]) N Vp/)-
Thus

7 (g0 % 91, P, (Colgo) +1m(fp ) = 2 (9190 - (91, Cy)

=G-(g190 - (91,Cp))
=G- ((”17 C(ﬂ)
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In particular,

N 1 0, € %[,I//(L g)
e}’t;/(Hom&tﬁ,(I, 9)/G) = {go € Hom(l, g) C}q, _ Vg;ﬂ ) O
Write
HOml,t’(I, g) = U Hom[tg"r[;/(lv g)
pel(mm—i) ’

B el(m’ ,m'—t")

Then from Proposition 4, the set Hom"" (I, g) is a G-invariant subset. More
precisely all the subsets of the union are G-invariant and open in Homt”/(l, g).
Our main result is the following:

THEOREM 2. The writing

Hom(1,9)/G=|J Hom""(.,)/G
0<t<gq
0<t'<q’
is a decomposition of Hom(l,g)/G as a union of Hausdorff subspaces. The sets
Hom""(1,9)/G may fail to be open in Hom(l,g)/G.

To prove this result, we need the following Lemma:

Lemma 14. Let ¢9=(p,,C) and &= (&,C") be two elements in
Hom""(L,g). If [p,] and [&\] are separated in Hom!'(1,8)/G then so are
o] and [c] in

Hom"" (1,4)/G.

Proor. We consider the following diagram

Hom"" (1, g) _h Homf”/(l,g)

Hom"' (1,4)/G — Hom'"(1,9)/G.
1

where 7, 7, are the quotient maps, Pi(p;,C)= ¢, and E(G-((ol,C)) =
G* ;. Then obviously this diagram commutes and the maps P; and Py
are continuous. Assume that [Pi(p)] and [P;(¢)] are separated, then there
exist neighborhoods U; of 7, o Pi(p) and U, of mp o P1(&) such that U; N U,
= @ Now (%) OPl(g/)) = 131 Oﬂl((ﬂ) e U and %) Opl(é) = Pl Oﬂl(f) e U,.
Thus 7(p) € PY(UY), 71(&) € PyY(Us) and we have P7H(U) NPT (UL) = &,

O
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PrOOF OF THEOREM 2. Let ¢ = (¢, C) and & = (&1, C') be two elements in
Hom"’ (1, g) and assume that [p] and [¢] are not separated. From Lemma 14,
[p;] and [£] are not separated in Homf’t,(l, g9)/G, then there exist (¢, ,), C
Homj(I,g) and g, = exp(X,) € G such that ¢, , converges to ¢, and g, * ¢, ,
converges to ¢, in Hom{(l,g). This means A, = Ae, D, =D and
F, = Fe. In particular [, =/; and P, = P:. Thus [p;] and [£] belong
to the open set Homfi’[;(l, g)/G for some f € I(m,m —t). Now, Homfi;;(l, 9)/G
is a Hausdorff space as it is included in Hom; 4(I,g)/G, which is a Hausdorff
space as being homeomorphic to ,/%ﬂ’(l, g) by Lemma 7. Then [p;] = [£] and
this implies that fwl = f;, and P, = P.. Finally [p] and [¢] belong to the
open set Homé‘_tﬁ,(l,g)/G for some fe I(mm—1) and B elI(m',m' —1).
Now from Proposition 5, Hom/’),"’ﬁ,(l, g)/G is homeomorphic to the Hausdorff
space %g:;,(l, g) x Vj, then Homﬁ’?’_’;,(l, g)/G is a Hausdorff space and [p] = [¢].

O

4. Description of the parameter and the deformation spaces

We use the same setting and notation in Section 3. Let us take a sub-
algebra b of g and consider the decompositions

g=(gNh@g,®h DV d@WwW and [=[DL DD,

where g}, )’ and b” designate some subspaces of g such that g, = (g, N h) @ g/,
[g,6]Nh=(g,ND) DY, h=1[g,a]Nh@DDH", V is a linear subspace supplemen-
tary to (g, Nbh) @ gy @Y in [g,g] and W a linear supplementary subspace to
(gpNh) g, ®H @V @D ing. Then with respect to these decompositions,
the adjoint representation Ad,, g = exp(X) € G can once again be written down
as

L 0 o13(X) 014(X) 75(X) w16(X)
0 L 023(X) 024(X) 725(X) 26(X)
0 0 L 0 73,5(X)  @36(X)
Ad, =
0 0 0 Iy 7a.5(X)  46(X)
0 0 0 0 Is 0
0 0 0 0 0 I
where
o1,3(X) 51.4(X)>
212(X) = ' ,
1.2(X) (02 3(X) d2,4(X)
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and

Zr3(X) = (V3.5(X) w3’§(X)>

Va,5(X)  @4.6(X)

with: a1 3(X) e Z(b',goND), 51.4(X) e L(V,g,Nh), 023(X)e LW, q)),
52.4(X) € Z(V,a), 1.5(X) € 2(y",00 1), w1.6(X) € L(W,a9Nb), 75(X) €
2(,90), ono(X) e LV,ah), 735(X) € LU"Y),  wse(X) e L(W,b),
Ya5(X) e 20", V) and w46(X)e L(W,V). Here I, L, L1, L1, Is and Is
designate the identity maps of g,Nb, gj, b’, ¥V, " and W respectively. This
leads to the fact that any element of Hom(l, g) can be written accordingly, as a
matrix

A1 B
A B G
0 By GCs
=0(4,B,C) =
9:=¢(4,B,C) 0 B G|
0 0 Cs
0 0 GCs
where
C
B G
A1 Bz C3
A= B = d C=
(A2>’ B an C
B4 CS
Cs

Here 4y € Z(ly,gyNY), 42€ Z(lo,8), Bie L(li,g90ND), Bre L(l1,9), Bs e
g(llabl)a B4 € g(llv V)a Cl € g(bago N b)a CZ € 3(1279(/)): C3 € 3(1275/)7 C4 €
L1, V), Cse Z(1h,h") and Cs e L(lh, W). We can now state our first result.

THEOREM 3. Let G be a 3-step nilpotent Lie group, H a connected
subgroup of G and I’ a discontinuous group for G/H. The syndetic hull of
I in G and its Lie algebra are denoted by L and | respectively. Then the
parameter space A(1,a,b) writes as a disjoint union %, U R,, where R is the
open set defined by

rk(Cg) = dim(L,)
,%1 = {¢(A7By C) € Hom(I, g) Vk(B4) = dlm(ll) }7
and rk(A4;) = dim(lp)

Ry = {(p(A,B, C) € Hom(l, g)

rk(B4) + rk(C6) < dlm(h &) [2) and
rk(M, x) = dim(l) for all X eg
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which may fail to be open. Here,

Ay By +023(X)B3 +024(X)Bys Cy+023(X)C5 +02,4(X)Cy

+ 72,5(X) Cs + @2,6(X) Ce
0 By C4+)/4’5(X)C5+604_’6(X)C6
0 0 Cs

M, x =

PrOOF. As the pair (G,H) has the Lipsman property ([1] and [16]),
Theorem 1 enables us to state that

dim ¢(1) = dim(1)
#(,9,) = {(/) € Hom(l, o) ‘ Adyop(I)Nh = {0} for all g =exp(X)e G }

Now,

A1 B —|—0'173(X)B3 —|—51.4(X)B4 C +O’1,3(X)C3 —|—5174(X)C4
+V1,5(X)C5 +CU1,6(X)C6

A, By + 0'273(X)B3 —|—(52v4(X)B4 G+ 0'2?3(X)C3 —|—52v4(X)C4

Ady o g = +72,5(X)Cs + w2,6(X) Co

‘ 0 B; Cs 473 5(X)Cs + w36(X)Cs |

0 By C4+V475(X)C5+w476(X)C(,
0 0 Cs
0 0 Cs

which means that the condition Ad, o ¢(I) N = {0} is equivalent to the fact
that rk(M,, x) = dim(l), which is in turn equivalent to

rk(Cs) = dim(1»), rk(Bs) = dim(l;) and rk(A4;) = dim(lp),
or

1k(Cs) < dim(ly), rk(B4) = dim(l;) and rk(M,, x) = dim(I) or
rk(By) < dim(ly), rk(Cs) = dim(lx) and rk(M,, x) = dim(I) or
1k(Cs) < dim(ly), rk(B4) < dim(l;) and rk(M,, x) = dim(l).

The latter three cases are equivalent to say that
rk(Bs) + 1k(Cs) < dim(l; @ ). O
We are now ready to present our main result in this section.
THEOREM 4. Let g, ) and 1| be as before. The deformation space reads

2
‘0/—(17&17[)) = U U U Z,r’,ﬂ,ﬂ',i(laga b)7

i=1 0<t<q fel(mm—t)
0<t'<q' B’ el(m',m'—t")
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where for = (i1,... im—) and ' = (if,...,i}._,), the set T, , 5 4 | is homeo-
morphic to the semi-algebraic subset in Z(1,g)
My (1),
C
<C1 > € Vy and
T e ~L o(A,B,C)e Hom(l, 2
nt',p,p 1 (”( ) ( g) A2 0 0
rk| 0 By 0 | =dim()
0 0 G

and 7, ;1 g g 5 Is homeomorphic to
g1 €.y, (1 g),

C
9:.,1"/}’,/3',2 = gD(A,B, C) EHom(LQ) (Cz) © Vﬂ’)
rk(Bs) + rk(Cs) < dim(l; ® 1)
and rk(M, x) = dim(l) for all X €g

Proor. Recall first that

#(1,9,5) = J U U Hompi(La)n
i pel(m,m—r)
"Bel(m',m'—1")

On the other hand, Hom/i,'}; (I,g) N#; is a G-invariant set as in formula (5).
Hence,

7(1,0,h) = U U U  (Homg%(l,a)n#)/G,

i=1 0<t Sq pel(mm—t)
0<t'<q' g’ el(m’',m'—t')

and the result follows from Theorem 3. Now to see the semi-algebraicness
of J,pp.1, we state first the following claim which explains the semi-
algebraicness of Hom(l,g) in Z(1,g).

CrLamm 4.1.  The set Hom(l,q) is algebraic in £(1,g).

Proor. Let {Y},..., Y} be a basis of [ and {Xl,...,X} a basis of g.

Assume that the Lie brackets of [ are given by [¥;, ¥;] = S5 c, /Yy for all

1 <i,j <k and the Lie brackets of g are given by [X|, Xy] = dl ., X, for

Llss’

all 1 <s,5' <gq. Let now g e #(I,g) and assume that ¢(Y;) = > "7 a, X, for
all 1 <i<k. Now
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Hom(l,g) = {p e Z(L,9) |p([Y,T]) = [p(Y),p(T)], VY, T € 1}
={pe 2 g)|o([Y;, Y}]) = [p(Yi),p(Y))], V1 < i, j < k}.

As
k q q
ZCI]¢ lelczu]a'/ uXo = 2(2 Cl %, ”)
and
q q q
[(ﬂ( Yl)a§0( Yj)] = [Z ax,invzax’,ij"| = Z as,ia‘Y',_/‘[Xva’]
s=1 s'=1 s,8'=1
q q
= Z Zas iy, a’y o Xo = Z(Z a.YA,ia‘Y’,jd:S/)X

s5,8'=1 v= =1 \s,s'=1

we get

q
[¢( le)a (ﬂ( Yj)] 17 j A ch ]al u— Z aSv"af'sJ-dsIﬁx’

s,8'=1

for any v=1,...,9. Hence, if we identify £ (I,g) to M, (R) via the map
9= M, = (p(Y1)|...lp(Yk)), then

k q
Zc Ay y = Z a,iay jdg o, 1 < i,jSk}

s,8'=1

HOl’Il(I,g)_{ axz 1<s<gq
1<i<k

which is an algebraic set. O]
c A 0 0
Now we see that the conditions (Cl ) eVp and tk| 0 By 0 |=
2
0 0 Cs

dim(l) are semi-algebraic conditions and as Hom1 ﬁ P (1, g) is semi-algebraic and
the condition N, € V is an algebraic condition, then by (17) we conclude that

Ay Lo (I g) is semi-algebraic. O

5. Hausdorfness of the deformation space

This section aims to study the Hausdorfness of the deformation space
7 (I,g,h) in the setting where g is 3-step nilpotent. Let
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p: #(1,a,h) — Hom (1, g)
(91, C) = o
where Hom; (I, g) is as in (10) in Section 3.2, ¢, is as in (5) in Section 3.1 and
(p1, C) e 2(1,9,h) C Hom (I, g) x L(la, ).
Then p is a G-equivariant map and we can state that:

THEOREM 5. Let G =exp g be a 3-step nilpotent Lie group, H =expl) a
closed connected subgroup of G, I' a discontinuous group for the homogeneous
space G/H and L =expl its syndetic hull. If the dimensions of G-orbits in
R(1,9,b) and those in p(R(l,q,b)) are constant respectively, then 7 (1,g,1) is a
Hausdorff space.

Proor. In such a situation, there is 1€ {0,...,¢} and ' € {0,..., ¢’} such
that #(1,g,h) € Hom""(I,g). Indeed, let ¢ = (p;, C,) € %(1,g,h) and assume
that rk /[, = and tk f, =¢. As Gx*¢; = ¢y +Im(/, ) we have dim G * ¢; =
¢t and

dim G-¢ =dim G- (¢, C,)
=dim G * ¢, 4 dim(74(G * ¢,), C, + Im f,,)
=dim(py + (N, +1Im1,)) + 1k f,
=tk I, +r1k f, =t +1.

Since the dimensions of G-orbits of %(l,g,)) and of p(Z%(l,g,))) are con-
stant, then so are ¢ and #. The deformation space is therefore contained in
Hom""(I,g)/G, which is a Hausdorff space by Theorem 2. O

6. Illustrating examples

For the convenience of the readers, we close the paper by giving the
following series of examples for which the hypotheses of Theorem 5 are met
and then the corresponding deformation space turns out to be a Hausdorff
space. Let g = R-span{ Xy, X1, X2, X3} be the (3-step nilpotent) threadlike Lie
algebra, whose pairwise brackets equal zero, except the followings:

[XOaA/i]:)(iJrh 1:172

The center of g is the space IR-span{X3}, g, = R-span{X>}, g, =
R-span{ Xy, X1} and for

X =x0Xo + x1X1 + X2 + x3X3 € g,
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we have
ad)((Xo) = —X1X2 — )(72)(37 adx(X]) = X()X2 and adx(Xz) = X()X3.

On the other hand, through the basis 4 = {X3, X2, X1, X0}, the matrices of the

endomorphisms ady and ad? are written as:

0 xp0 0 —x» 0 0 x2 —xoxi
_ 0 0 xo —x 2 0 0 O 0
W=t o0 0 ol M=o 0 0 o
0o 0 O 0 0 0 O 0

Hence, the matrix of the adjoint representation Adepx) can be expressed
as:

1 xo $x3 —x2—1xox
T
0 0 O 1
and finally
a a—&-bxo—i—%xgc—d(xz—l—%xoxl)
Adegir © ICJ _ b+ cxz — dx; , (20)
d d

where the vector “(a b ¢ d) represents a vector of g through the basis 4.

ExampLE 1. Let h = R-span{X}, X», X3} and [ = R-span{Xy}. Then if
G, H designate the Lie groups associated to g and [ respectively and I =
exp(ZXy), then obviously the resulting Clifford-Klein form I'\G/H turns
out to be compact. Clearly I'~Z, G/H ~R and I'\G/H ~ S'. As such,
it is straightforward that through the basis %, any ¢ € Hom(l,g) is given
by

p:l—g; AXo — AdXy + cXi + bXs + aX3)

and

e A(l,g,h) = d+#0. (21)

_U o
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Indeed, from Theorem 3,

a
b
%(Iv g7b> =40 = c € Homaa 9) Adexp(X) © ¢(I) @b=g

d

a

b

= € Hom(l,g) |d #0
c
d

On the other hand and according to our construction, for ¢ as in equation
(21),

) =

QU o O

By equation (20), we get

bxo +1xtc — d(x + L xox1)

Adexpxyop— o9 = o 6 &1
0
and
0
Adexp(X) *P— ¢ = o 6 i )
0

which means that

G¢ = {exp(ono +x1 X1+ x2X5 + X3X3) eG

_¢ —é and
X1 —dx07x2—dx0

x—£
1—dX() .

Finally, dim G-¢p=2 and dim G*¢, =1 for any ¢ e %(1,g,h). Then by
Theorem 5, the deformation space 7 (I, g,b) is a Hausdorff space. Let us

G,, = {exp(ono +x1 X1+ 20X +x3X3) € G
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also mention that the explicit description of J (I, g,h) is given in [2] and
[6].

ExampPLE 2. Let now b =R-span{Xy} and [=R-span{X;,X>, X3}.
Then again the resulting Clifford-Klein form I'\G/H is compact. Clearly
I'~7° G/H ~R3 and I'\G/H is homeomorphic to the 3-dimensional torus.
As pe %(1,g,D) if and only if ¢(I) =1, ¢ takes the following form:

ay dy as
by by b3
¢ fry
C1 Cy C3
0O 0 O
Hence,
ai +bixo +3xier ax+boxo+ixter as+ bixo +1xGes
Ad . by + xpc1 by + xpc2 b3 + xpc3
exp(X) © ¢ = ) ¢ c3
0 0 0
by by b3 ¢ e
_ Cy €3 1 0 0 0
TNl g 0 o |T2% 0 0 o
0O 0 O 0O 0 O

and then dim G-¢ = 1. Besides,

0 0 O
by by b3
= )

c1 € (3

0 0 O
0 0 0
4 C C

Adexp(x) * @1 = @1 + X0 01 02 03 ;

0 0 0

and likewise dim G* ¢, =1 for any ¢ € #(l,g,h). Then by Theorem 5, the
deformation space is a Hausdorff space.

ExampLE 3. The following example treats a non-compact Clifford-Klein
form case. Let h=R-span{X3} and [= R-span{X;,X,}. Clearly I" ~ Z>
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and G/H ~TR>®. Therefore I'\G/H is not compact. We first prove the
following:

Cram 6.1.  For any ¢ € A(l,g,b), we have ¢(1) C R-span{Xi, X>, X3}.

Proor. If not, there exists v = Xp + u € ¢(I) for some u € R-span{ X, X3,
X3}, Since dim(ep(l)) = 2, there exists w # 0 such that w € ¢(I) N R-span{ X7,
X>,X3}. Thus R-span{[v, [v, w]], [v,w],w} N} # {0}, which leads to a contra-
diction as ¢(I) Ny = {0}. O

Now, any ¢ € %Z(1,g,) reads:

a, dp
b1 by
= 22
=1 o (22)
0 0

and we have the following:

Cram 6.2. Let pe Z(1,9,b) be as in equation (22), then (c1,cz) # (0,0).

ay ap
by b
Proor. From Claim 6.1 any ¢ € (1, g,0)) reads ¢ = PP Now
from Theorem 3, a @
0 0
pe R, g,bh) < dim D+ dim ¢(I) = 3,
by b
¢€9?(1,g,1))©det( : 2);&0. O
1

Now for p e Z(1,g,})) be as in equation (22),

by by 1 O

c 1 0 0

Adexp(X)O(o:(p+x0 01 02 +§x(% 0 0
0 O 0 0

and then dim G-¢p =1. It is also obviously the case for

0 0

by by
0=

C1 (&)

0 0
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as
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0 0
.
Adepory x o1 =1+ X0 0
0 0

Then by Theorem 5, the deformation space is a Hausdorff space.
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