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In this paper, we develop statistical inference techniques for the unknown coefficient functions and single-
index parameters in single-index varying-coefficient models. We first estimate the nonparametric compo-
nent via the local linear fitting, then construct an estimated empirical likelihood ratio function and hence
obtain a maximum empirical likelihood estimator for the parametric component. Our estimator for paramet-
ric component is asymptotically efficient, and the estimator of nonparametric component has an optimal
convergence rate. Our results provide ways to construct the confidence region for the involved unknown
parameter. We also develop an adjusted empirical likelihood ratio for constructing the confidence regions
of parameters of interest. A simulation study is conducted to evaluate the finite sample behaviors of the
proposed methods.
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single-index varying-coefficient model

1. Introduction

Consider a single-index varying-coefficient model of the form

Y = gT
0 (βT

0 X)Z + ε, (1.1)

where (X,Z) ∈ Rp ×Rq is a vector of covariates, Y is the response variable, β0 is an p×1 vector
of unknown parameters, g0(·) is an q × 1 vector of unknown functions and ε is a random error
with mean 0 and finite variance σ 2. Assume that ε and (X,Z) are independent. For the sake of
identifiability, it is often assumed that ‖β0‖ = 1, and the first non-zero element is positive, where
‖ · ‖ denotes the Euclidean metric.

Model (1.1) includes a class of important statistical models. For example, if q = 1 and Z = 1,
(1.1) reduces to the single-index model (see, e.g., Härdle, Hall and Ichimura [11], Weisberg and
Welsh [24], Zhu and Fang [33], Chiou and Müller [6], Hristache, Juditsky and Spokoiny [13],
Xue and Zhu [31]). If p = 1 and β0 = 1, (1.1) is the varying-coefficient model (see, e.g., Chen
and Tsay [5], Hastie and Tibshirani [12], Wu, Chiang and Hoover [25], Fan and Zhang [10],
Cai, Fan and Li [2], Cai, Fan and Yao [3], Xue and Zhu [29]). If the last component of β0 to
be non-zero and Z = (1,X∗T )T where X∗ is the remaining vector of X with its pth component
deleted, (1.1) becomes the adaptive varying-coefficient linear model (see, e.g., Fan, Yao and Cai
[9], Lu, Tjøstheim and Yao [15]).
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Model (1.1) is easily interpreted in real applications because it has the features of the single-
index model and the varying-coefficient model. In addition, model (1.1) may include cross-
product terms of some components of X and Z. Hence it has considerable flexibility to cater
for complex multivariate nonlinear structure. Xia and Li [26] investigated a class of single-index
coefficient regression models, which include model (1.1) as a special example. When it is used
as a nonparametric time series model, Xia and Li [26] obtained the estimator of g(·) by kernel
smoothing and then derived the estimator of β0 by the least squares method and proved that the
corresponding estimators are consistent and asymptotically normal.

In this paper, we develop statistical inference techniques of g0(·) and β0 with independent
observations of (Y,X,Z). We can construct an empirical likelihood ratio function for β0 by as-
suming g0(·) and its derivative to be known functions. In practice, however, they are unknown,
and hence the empirical likelihood ratio function cannot be used to make inference on β . This
motivates us to estimate the unknown g0(·) and ġ0(·) via the local linear smoother, and then
obtain an estimated empirical likelihood ratio of β0. The estimated empirical log-likelihood ra-
tio is asymptotically distributed as a weighted sum of independent χ2

1 variables with unknown
weights. This result cannot be applied directly to construct confidence region for β0. To solve this
issue, two methods may be used (see Wang and Rao [22]). The first method is to estimate the un-
known weights consistently so that the distribution of the estimated weighted sum of chi-squared
variables can be estimated from the data. The second method is to adjust the estimated empirical
log-likelihood ratio so that the resulting adjusted empirical log-likelihood ratio is asymptotically
chi-squared. Also, we obtain a maximum empirical likelihood estimator of β0, by maximizing
the estimated empirical likelihood ratio function, and investigate its asymptotic property. In ad-
dition, we obtain the convergence rate of the estimator of σ 2 and define the consistent estimator
of asymptotic variance; this allows us to construct a confidence region for β0.

Comparing with the existing methods, our estimating method has the following advantage: The
asymptotic variance of our estimator for β0 is the same as those of Härdle et al. [11] and Xia and
Li [26] when the model reduces to the single-index model; this shows that our estimator for β0 is
the same efficient as than those of Härdle et al. [11] and Xia and Li [26]. The difference between
the proposed estimating approaches and the existing estimating approaches is that we use an
empirical likelihood ratio to define the estimator of β0 while the existing work uses the least
squares techniques (see, e.g., Härdle et al. [11], Xia and Li [26]). Also, we develop an empirical
likelihood inference for constructing a confidence region of β . The empirical likelihood method,
introduced by Owen [17], has many advantages for constructing confidence regions or intervals.
For example, it does not impose prior constraints on region shape, and it does not require the
construction of a pivotal quantity. The empirical likelihood has been studied by many authors.
The related works are Wang and Rao [22], Wang, Linton and Härdle [21], Xue and Zhu [29–31],
Zhu and Xue [32], Qin and Zhang [18], Stute, Xue and Zhu [20], Xue [27,28], Wang and Xue
[23], among others.

The rest of the paper is organized as follows. In Section 2, we define an estimated empirical
likelihood ratio, and then obtain a maximum empirical likelihood estimator of β0 by maximizing
the empirical likelihood ratio function; the asymptotic properties of the proposed estimators are
also investigated. In Section 3, we define an adjusted empirical log-likelihood and derive its
asymptotic distribution. Section 4 reports a simulation study. Proofs of theorems are relegated to
the Appendix. It should be pointed that some special techniques are used in the proofs.
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2. Estimated empirical likelihood

2.1. Methodology

Suppose that {(Yi,Xi,Zi);1 ≤ i ≤ n} is an independent and identically distributed (i.i.d.) sample
from (1.1), that is

Yi = gT
0 (βT

0 Xi)Zi + εi, i = 1, . . . , n,

where εis are i.i.d. random errors with mean 0 and finite variance σ 2. Assume that {εi;1 ≤ i ≤ n}
are independent of {(Xi,Zi);1 ≤ i ≤ n}.

To construct an empirical likelihood ratio function for β0, we introduce an auxiliary random
vector

ηi(β) = {Yi − gT
0 (βT Xi)Zi}ġT

0 (βT Xi)ZiXiw(βT Xi), (2.1)

where ġ0(·) stands for the derivative of the function vector g0(·), and w(·) is a bounded weight
function with a bounded support Uw , which is introduced to control the boundary effect in the
estimations of g0(·) and ġ0(·). To convenience, we take that w(·) is the indicator function of
the set Uw . Note that E{ηi(β)} = 0 if β = β0. Hence, the problem of testing whether β is the
true parameter is equivalent to testing whether E{ηi(β)} = 0 for i = 1,2, . . . , n. By Owen [17],
this can be done by using the empirical likelihood. That is, we can define the profile empirical
likelihood ratio function

Ln(β) = max

{
n∏

i=1

(npi)

∣∣∣∣pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piηi(β) = 0

}
.

It can be shown that −2 logLn(β0) is asymptotically chi-squared with p degrees of freedom.
However, Ln(β) cannot be directly used to make statistical inference on β0 because Ln(β) con-
tains the unknowns g0(·) and ġ0(·). A natural way is to replace g0(·) and ġ0(·) in Ln(β) by
their estimators and define an estimated empirical likelihood function. In this paper, we estimate
the vector functions g0(·) and ġ0(·) via the local linear regression technique (see, e.g., Fan and
Gijbels [8]). The local linear estimators for g0(u) and ġ0(u) are defined as ĝ(u;β0) = â and
ˆ̇g(u;β0) = b̂ at the fixed point β0, where â and b̂ minimize the sum of weighted squares

n∑
i=1

[Yi − {a + b(βT
0 Xi − u)}T Zi]2Kh(β

T
0 Xi − u),

where Kh(·) = h−1K(·/h), K(·) is a kernel function, and h = hn is a bandwidth sequence that
decreases to 0 as n increases to ∞. It follows from the least squares theory that

(ĝT (u;β0), h ˆ̇gT (u;β0))
T = S−1

n (u;β0)ξn(u;β0),

where

Sn(u;β0) =
(

Sn,0(u;β0) Sn,1(u;β0)

Sn,1(u;β0) Sn,2(u;β0)

)
and ξn(u;β0) =

(
ξn,0(u;β0)

ξn,1(u;β0)

)
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with

Sn,j (u;β0) = 1

n

n∑
i=1

ZiZ
T
i

(
βT

0 Xi − u

h

)j

Kh(β
T
0 Xi − u)

and

ξn,j (u;β0) = 1

n

n∑
i=1

ZiYi

(
βT

0 Xi − u

h

)j

Kh(β
T
0 Xi − u).

Since the convergence rate of the estimator of ġ′
0(u) is slower than that of the estimator of

g0(u) if the same bandwidth is used, this leads to a slower convergence rate for the estimator
β̂ of β0 than

√
n. To increase the convergence rate of the estimator of ġ′

0(u), we introduce the

another bandwidth h1 to replace h in ˆ̇g(u;β), and define as ˆ̇gh1
(u;β).

Let η̂i (β) be ηi(β), with g0(β
T Xi) and ġ0(β

T Xi) replaced by ĝ(βT Xi;β) and ˆ̇gh1
(βT Xi;β),

respectively, for i = 1, . . . , n. Then an estimated empirical likelihood ratio function is defined by

L̂(β) = max

{
n∏

i=1

(npi)

∣∣∣∣pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piη̂i(β) = 0

}
.

By the Lagrange multiplier method, log L̂(β) can be represented as

log L̂(β) = −
n∑

i=1

log
(
1 + λT η̂i(β)

)
, (2.2)

where λ is determined by

1

n

n∑
i=1

η̂i (β)

1 + λT η̂i(β)
= 0. (2.3)

Let B = {β ∈ Rp: ‖β‖ = 1, and the first non-zero element is positive. Then β0 is an inner point
of the set B. Therefore we need only search for β0 over B. A maximum empirical likelihood
estimator for β0 is given by

β̂ = arg sup
β∈B

L̂(β). (2.4)

With β̂ , we define the estimate of g(u) by ĝ(u) = ĝ(u, β̂), and the estimate of σ 2 by

σ̂ 2 = 1

n

n∑
i=1

{Yi − ĝT (β̂T Xi; β̂)Zi}2. (2.5)

It is well known that if β is known, the optimal bandwidth h for ĝ(u) is of order O(n−1/5).
However, if β is unknown, in order to ensure that the estimator β̂ is root-n consistent, the band-
width h should be smaller than O(n−1/5), if we only assume g(·) are second-order differentiable
(see Theorem 2 below). Note that once the estimator β̂ is available, an optimal bandwidth of
order O(n−1/5) can be used in the final estimator for g(·).
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2.2. Asymptotic properties

In order to obtain the asymptotic behaviors of our estimators, we first give the following condi-
tions:

(C1) The density function of βT X, f (u), is bounded away from zero for u ∈ Uw and β near
β0, and satisfies the Lipschitz condition of order 1 on Uw , where Uw is the support of
w(u).

(C2) The functions gj (u), 1 ≤ j ≤ q , have continuous second derivatives on Uw , where gj (u)

are the j th components of g0(u).
(C3) E(‖X‖6) < ∞, E(‖Z‖6) < ∞ and E(|ε|6) < ∞.
(C4) nh2/ log2 n → ∞, nh4 logn → 0; nhh3

1/ log2 n → ∞, nh5
1 = O(1).

(C5) The kernel K(·) is a symmetric probability density function with a bounded support and
satisfies the Lipschitz condition of order 1 and

∫
u2K(u)du �= 0.

(C6) The matrix D(u) = E(ZZT |βT
0 X = u) is positive definite, and each entry of D(u) and

C(u) = E(V ZT |βT
0 X = u) satisfies the Lipschitz condition of order 1 on Uw , where

V = XġT
0 (βT

0 X)Zw(βT
0 X), and Uw is defined in (C1).

(C7) The matrices B(β0) = E(V V T ) and B∗(β0) = B(β0) − E{C(βT
0 X)ġ0(β

T
0 X)E(XT |

βT
0 X)} are positive definite, where V is defined in (C6).

Remark 1. Condition (C1) is used to bound the density function of βT X away from zero. This
ensures that the denominators of ĝ(u;β) and ˆ̇g(u;β) are, in probability one, bounded away from
0 for u ∈ Uw . The second derivatives in (C2) are standard smoothness conditions. (C3)–(C5) are
necessary conditions for the asymptotic normality or the uniform consistency of the estimators.
Conditions (C6) and (C7) ensure that the asymptotic variance for the estimator of β0 exists.

Let Bn = {β ∈ B: ‖β −β0‖ ≤ c0n
−1/2} for some positive constant c0. This is motivated by the

fact that, since we anticipate that β̂ is root-n consistent, we should look for a maximum of L̂(β)

which involves β distant from β0 by order n−1/2. Similar restrictions were also made by Härdle,
Hall and Ichimura [11], Xia and Li [26] and Wang and Xue [23].

The following theorem shows that −2 log L̂(β0) is asymptotically distributed as a weighted
sum of independent χ2

1 variables.

Theorem 1. Suppose that conditions (C1)–(C7) hold. Then

−2 log L̂(β0)
D−→ w1χ

2
1,1 + · · · + wpχ2

1,p,

where
D−→ represents convergence in distribution, χ2

1,1, . . . , χ
2
1,p are independent χ2

1 variables

and the weights wj , for 1 ≤ j ≤ p, are the eigenvalues of G(β0) = B−1(β0)A(β0). Here B(β0)

is defined in condition (C7),

A(β0) = B(β0) − E{C(βT
0 X)D−1(βT

0 X)CT (βT
0 X)}, (2.6)

and C(u) and D(u) are defined in condition (C6).
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To apply Theorem 1 to construct a confidence region or interval for β0, we need to consis-
tently estimate the unknown weights wj . By the “plug-in” method, A(β0) and B(β0) can be
consistently estimated by

Â(β̂) = 1

n

n∑
i=1

{V̂i V̂
T
i − Ĉ(β̂T Xi)D̂

−1(β̂T Xi)Ĉ
T (β̂T Xi)} (2.7)

and

B̂(β̂) = 1

n

n∑
i=1

V̂i V̂
T
i , (2.8)

respectively, where β̂ is the maximum empirical likelihood estimator of β0 defined by (2.4), V̂i =
Xi

ˆ̇gT (β̂T Xi; β̂)Ziw(β̂T Xi), Ĉ(·) = ∑n
i=1 Wni(·)V̂iZ

T
i and D̂(·) = ∑n

i=1 Wni(·)ZiZ
T
i with

Wni(·) = K1

(
β̂T Xi − ·

bn

)/ n∑
k=1

K1

(
β̂T Xk − ·

bn

)
,

where K1(·) is a kernel function, and bn is a bandwidth with 0 < bn → 0.
This implies that the eigenvalues of Ĝ(β̂) = B̂−1(β̂)Â(β̂), say ŵj , consistently estimate wj

for j = 1, . . . , p. Let ĉ1−α be the 1 − α quantile of the conditional distribution of the weighted
sum ŝ = ŵ1χ

2
1,1 + · · · + ŵpχ2

1,p given the data. Then an approximate 1 − α confidence region
for β0 can be defined as

Reel(α) = {β ∈ B: −2 log L̂(β) ≤ ĉ1−α}.
In practice, the conditional distribution of the weighted sum ŝ, given the sample {(Yi,Xi,Zi),1 ≤
i ≤ n}, can be calculated using Monte Carlo simulations by repeatedly generating independent
samples χ2

1,1, . . . , χ
2
1,p from the χ2

1 distribution.

The following theorem states an interesting result about β̂ . The asymptotic variance of β̂ is
smaller than that of Härdle et al. [11] when our model reduces to a single-index model.

Theorem 2. Suppose that conditions (C1)–(C7) hold. Then

√
n(β̂ − β0)

D−→ N(0, σ 2B−1∗ (β0)A(β0)B
−1∗ (β0)),

where B∗(β0) and A(β0) are defined in condition (C7) and (2.6), respectively.

In model (1.1), if q = 1 and Z = 1, then (1.1) reduces to the single-index model. By Theo-
rem 2, we derive the following result.

Corollary 1. Suppose that the conditions of Theorem 2 hold. If q = 1 and Z = 1 in model (1.1),
then

√
n(β̂ − β0)

D−→ N(0, σ 2A−
1 (β0)),



842 L. Xue and Q. Wang

where A1(β0) = E[{X − E(X|βT
0 X)}{X − E(X|βT

0 X)}T ġ2
0(β

T
0 X)w(βT

0 X)] and A−
1 represents

a generalized inverse of the matrix A−
1 .

Corollary 1 is the same as the results of Härdle et al. [11] and Xia and Li [26] for the single-
index model.

For the estimator of the variance of error, σ̂ 2, we have the following result.

Theorem 3. Suppose that conditions (C1)–(C7) hold. Then,

σ̂ 2 − σ 2 = OP (n−1/2).

To apply Theorem 2 to construction of the confidence region of β0, we use the estimators σ̂ 2

and Â(β̂) defined in (2.5) and (2.7), and define the estimator of B∗(β0) as follows

B̂∗(β̂) = 1

n

n∑
i=1

{V̂i V̂
T
i − Ĉ(β̂T Xi) ˆ̇g(β̂T Xi; β̂)μ̂T (β̂T Xi)},

where μ̂(·) = ∑n
i=1 Wni(·)Xi is the estimator of μ(u) = E(X|βT

0 X = u). It can be shown that

Â(β̂)
P−→ A(β0) and B̂∗(β̂)

P−→ B∗(β0), where
P−→ denotes convergence in probability. By

Theorems 3 and 4, we have

{σ̂ 2B̂−1∗ (β̂)Â(β̂)B̂−1∗ (β̂)}−1/2√n(β̂ − β0)
D−→ N(0, Ip).

Using Theorem 10.2d in Arnold [1], we obtain

(β̂ − β0)
T {n−1σ̂ 2B̂−1∗ (β̂)Â(β̂)B̂−1∗ (β̂)}−(β̂ − β0)

D−→ χ2
p.

Let χ2
p(1 − α) be the 1 − α quantile of χ2

p for 0 < α < 1. Then

{β: (β̂ − β)T (n−1σ̂ 2B̂−1∗ (β̂)Â(β̂)B̂−1∗ (β̂))−(β̂ − β) ≤ χ2
p(1 − α)}

gives an approximate 1 − α confidence region for β0.

3. Adjusted empirical likelihood

In addition to the above, direct way of approximating the asymptotic distributions, we can also
consider the following alternative. The alternative is motivated by the results of Rao and Scott
[19]. By Rao and Scott [19] the distribution of ρ(β0)

∑p

i=1 wiχ
2
1,i can be approximated by χ2

p ,

where ρ(β0) = p/ tr{G(β0)}. Let ρ̂(β̂) = p/ tr{Ĝ(β̂)} with Ĝ(β̂) = Â1/2(β̂)B̂−1(β̂)Â1/2(β̂),
where Â(β̂) and B̂(β̂) are defined in (2.7) and (2.8). Invoking Theorem 1 and the consistency of
Ĝ(β̂), the asymptotic distribution of ρ̂(β̂){−2 log L̂(β)} can be approximated by χ2

p . Clearly, β̂
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in ρ̂(·) can be replaced by β . Therefore, an improved Rao–Scott adjusted empirical log-likelihood
can be defined as

l̃(β) = ρ̂(β){−2 log L̂(β)}.
However, the accuracy of this approximation still depends on the values of the wis. Now, we
propose another adjusted empirical log-likelihood, whose asymptotic distribution is chi-squared
with p degrees of freedom. The adjustment technique is developed by Wang and Rao [22] by
using an approximate result in Rao and Scott [19]. Note that ρ̂(β) can be written as

ρ̂(β) = tr{Â−(β)Â(β)}
tr{B̂−1(β)Â(β)} .

By examining the asymptotic expansion of −2 log L̂(β), which is specified in the proof of The-
orem 4 below, we define an adjustment factor

r̂(β) = tr{Â−(β)�̂(β)}
tr{B̂−1(β)�̂(β)} ,

by replacing Â(β) in ρ̂(β) by �̂(β), where �̂(β) = {∑n
i=1 η̂i (β)}{∑n

i=1 η̂i (β)}T . The adjusted
empirical log-likelihood ratio is defined by

l̂ael(β) = r̂(β){−2 log L̂(β)}, (3.1)

where log L̂(β) is defined in (2.2).

Theorem 4. Suppose that conditions (C1)–(C6) hold. Then l̂ael(β0)
D−→ χ2

p.

According to Theorem 4, l̂ael(β) can be used to construct an approximate confidence region
for β0. Let

Rael(α) = {β ∈ B: l̂ael(β) ≤ χ2
p(1 − α)}.

Then, Rael(α) gives a confidence region for β0 with asymptotically correct coverage probability
1 − α.

4. Numerical results

4.1. Bandwidth selection

Various existing bandwidth selection techniques for nonparametric regression, such as the cross-
validation and generalized cross-validation, can be adapted for the estimation ĝ(·). But we, in
our simulation, use the modified multi-fold cross-validation (MMCV) criterion proposed by Cai,
Fan and Yao [3] to select the optimal bandwidth because the algorithm is simple and quick. Let
m and Q be two given positive integers and n > mQ. The basic idea is first to use Q sub-series
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of lengths n − km (k = 1, . . . ,Q) to estimate the unknown coefficient functions and then to
compute the one-step forecasting error of the next section of the sample of lengths m based on
the estimated models. More precisely, we choose h which minimizes

AMS(h) =
Q∑

k=1

AMSk(h), (4.1)

where, for k = 1, . . . ,Q,

AMSk(h) = 1

m

n−km+m∑
i=n−km+1

{
Yi −

q∑
j=1

ĝj,k(Ui)Zij

}2

,

and {ĝj,k(·)} are computed from the sample {(Yi,Ui,Zi),1 ≤ i ≤ n− km} with bandwidth equal
h( n

n−km
)1/5. Note that for different sample size, we re-scale bandwidth according to its optimal

rate, that is, h ∝ n−1/5. Since the selected bandwidth does not depend critically on the choice of
m and Q, to computation expediency, we take m = [0.1n] and Q = 4 in our simulation.

Let hopt be the bandwidth obtained by minimizing (4.1) with respect to h > 0; that is, hopt =
infh>0 AMS(h). Then hopt is the optimal bandwidth for estimating ĝ(·). When calculating the
empirical likelihood ratios and estimator of β0, we use the approximation bandwidth

h = hoptn
−1/20(logn)−1/2, h1 = hopt,

because this insures that the required bandwidth has correct order of magnitude for the opti-
mal asymptotic performance (see, e.g., Carroll et al. [4]), and the bandwidth ĥ satisfies condi-
tion (C4).

4.2. Simulation study

We now examine the performance of the procedures described in Sections 2 and 3. Consider the
regression model

Yi = g0(β
T
0 Xi) + g1(β

T
0 Xi)Zi1 + g2(β

T
0 Xi)Zi2 + εi, (4.2)

where β0 = (1/
√

5,2/
√

5)T and the εis are independent N(0,0.82) random variables. The
sample {Xi = (Xi1,Xi2)

T ;1 ≤ i ≤ n} was generated from a bivariate uniform distribution on
[−1,1]2 with independent components, {Zi = (Zi1,Zi2)

T ;1 ≤ i ≤ n} was generated from a
bivariate normal distribution N(0,�) with var(Zi1) = var(Zi2) = 1 and the correlation coef-
ficient between Zi1 and Zi2 is ρ = 0.6. In model (4.2), the coefficient functions are g0(u) =
12 exp(−2u2), g1(u) = 10u2 and g2(u) = 16 sin(πu).

For the smoother, we used a local linear smoother with a Epanechnikov kernel K(u) =
0.75(1 − u2)+ with a MMCV bandwidth throughout all smoothing steps. We take the weight
function w(u) = I[−3/

√
5,3/

√
5](u). The sample size for the simulated data is 100, and the run is

500 times in all simulations.
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Figure 1. Averages of 95% confidence regions of (β1, β2), based on EEL (solid curve), AEL (dashed
curve), IRSAEL (doted curve) and NA (dot-dashed curves) when n = 100.

The confidence regions of β0 and their coverage probabilities, with nominal level 1−α = 0.95,
were computed from 500 runs. Four methods were used to construct the confidence regions: the
estimated empirical likelihood (EEL) with a conditional approximation, the adjusted empiri-
cal likelihood (AEL), the improved Rao–Scott adjusted empirical likelihood (IRSAEL) and the
normal approximation (NA). A comparison among three methods was made through coverage
accuracies and coverage areas of the confidence regions. The simulated results are given in Fig-
ure 1.

From Figure 1 we can see that EEL, AEL and IRSAEL give smaller confidence regions than
NA, and the region obtained by AEL is much smaller than the others. Thus, AEL is the best of
the four algorithms.

The histograms of the 500 estimators of the parameter β1 and β2 are in Figures 2(a) and (b),
respectively. The Q–Q plots of the 500 estimators of the parameter β1 and β2 are in Figures 2(c)
and (d), respectively.

Figure 2 shows empirically that these estimators are asymptotically normal. The means of the
estimates of the unknown parameters β1 and β2 are 0.44734 and 0.89502, respectively, and their
biases (standard deviations) are 0.000131 (0.00302) and 0.000596 (0.00257), respectively.

We also consider the average estimates of the coefficient functions g0(u), g1(u) and g2(u) over
the 500 replicates. The estimators ĝj (·) are assessed via the root mean squared errors (RMSE);
that is, RMSE = ∑2

j=0 RMSEj , where

RMSEj =
[
n−1

grid

ngrid∑
k=1

{ĝj (uk) − gj (uk)}2

]1/2

,
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(a) Histogram (b) Histogram

(c) Normal Q–Q Plot (d) Normal Q–Q Plot

Figure 2. (a) for β1 and (b) for β2: the histograms of the 500 estimators of every parameter, the estimated
curve of density (solid curve) and the curve of normal density (dashed curve); (c) for β1 and (d) for β2: the
Q–Q plot of the 500 estimators of every parameter.

and {uk, k = 1, . . . , ngrid} are regular grid points. The boxplot for the 500 RMSEs is given in
Figure 3.

From Figures 3(a)–(c) we see every estimated curve agrees with the true function curve very
closely. Figure 3(d) shows that all RMSEs of estimates for the unknown functions are very small.

Appendices

We divide the appendices into Appendix A and Appendix B. The proofs of Theorems 1–4 are
presented in Appendix A, and the proofs of Lemmas 2 and 3 are presented in Appendix B. We
use c to represent any positive constant which may take a different value for each appearance.

Appendix A: Proofs of theorems

The following lemma gives uniformly convergent rates of ĝ(u;β) and ˆ̇g(u;β). This lemma is a
straightforward extension of known results in nonparametric function estimation; for its proof,
the reader may refer to Theorem 2 in Wang and Xue [23], we hence omit the proof.
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(a) (b)

(c) (d)

Figure 3. The true cure (solid curve) and the estimated curve (dashed curve). (a) for g0(·), (b) for g1(·),
(c) for g2(·); (d) the boxplots of the 500 RMSE values in estimations of g0(·), g1(·), g2(·) and the sum of
the three RMSEs.

Lemma 1. Suppose that conditions (C1)–(C3), (C5) and (C6) hold. Then

sup
u∈Uw,β∈Bn

‖ĝ(u;β) − g0(u)‖ = OP

({
log(1/h)

nh

}1/2

+ h2
)

and

sup
u∈Uw,β∈Bn

‖ˆ̇g(u;β) − ġ0(u)‖ = OP

({
log(1/h)

nh3

}1/2

+ h

)
.

Denote G = {g: Uw × B → Rq}, ‖g‖G = supu∈Uw,β∈Bn
‖g(u;β)‖. From Lemma 1, we have

‖ĝ − g0‖G = oP (1) and ‖ˆ̇g − ġ0‖G = oP (1); hence we can assume that g lies in Gδ with δ =
δn → 0 and δ > 0, where

Gδ = {g ∈ G: ‖g − g0‖G ≤ δ,‖ġ − ġ0‖G ≤ δ}. (A.1)

Let g0(β
T X;β) = E{g0(β

T
0 X)|βT X} and ġ0(β

T X;β) = E{ġ0(β
T
0 X)|βT X},

Q(g, β) = E[{Y − gT (βT X;β)Z}ġT (βT X;β)ZXw(βT X)], (A.2)
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Qn(g, β) = 1

n

n∑
i=1

{Yi − gT (βT Xi;β)Zi}ġT (βT Xi;β)ZiXiw(βT Xi). (A.3)

The following two lemmas are required for obtaining the proofs of the theorems; their proofs
can be found in Appendix B.

Lemma 2. Suppose that conditions (C1)–(C6) hold. Then

sup
(g,β)∈Gδ×Bn

‖J1(g, β)‖ = oP (n−1/2), (A.4)

sup
β∈Bn

‖J2(ĝ, β)‖ = oP (n−1/2), (A.5)

sup
(g,β)∈Gδ×Bn

‖J3(g, β)‖ = o(n−1/2), (A.6)

√
nJ4(ĝ, β0)

D−→ N(0, σ 2A(β0)), (A.7)

where A(β0) is defined in (2.6),

J1(g, β) = Qn(g, β) − Q(g, β) − Qn(g0, β0),

J2(g, β) = Q(g, β) − Q(g0, β)

− (g0(β
T X;β);β){g(βT X;β) − g0(β

T X;β)},
J3(g, β) = (g0(β

T X),β){g(βT X;β) − g0(β
T X)}

− (g0(β
T
0 X;β),β0){g(βT

0 X;β0) − g0(β
T
0 X;β)}

and

J4(β0,g) = Qn(g0, β0) + (g0(β
T
0 X),β0){g(βT

0 X;β0) − g0(β
T
0 X)}.

Lemma 3. Suppose that conditions (C1)–(C6) hold. Then

sup
β∈Bn

‖Qn(ĝ, β)‖ = OP (n−1/2), (A.8)

sup
β∈Bn

‖Rn(β) − σ 2B(β0)‖ = oP (1), (A.9)

sup
β∈Bn

max
1≤i≤n

‖η̂i(β)‖ = oP (n1/2), (A.10)

sup
β∈Bn

‖λ(β)‖ = oP (n−1/2), (A.11)

where Qn(ĝ, β) is defined in (A.3), Rn(β) = n−1 ∑n
i=1 η̂i (β)η̂T

i (β), B(β0) is defined in condi-
tion (C7) and η̂i (β) is defined in (2.2).
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Proof of Theorem 1. Note that, when β = β0, Lemma 3 also holds. Applying the Taylor expan-
sion to (2.2) and invoking Lemma 3, we can obtain

−2 log L̂(β0) = −
n∑

i=1

[
λT η̂i(β0) − 1

2
{λT η̂i(β0)}2

]
+ oP (1). (A.12)

By (2.3) and Lemma 3, we have

n∑
i=1

{λT η̂i(β0)}2 =
n∑

i=1

λT η̂i(β0) + oP (1)

and

λ =
{

n∑
i=1

η̂i (β0)η̂
T
i (β0)

}−1 n∑
i=1

η̂i (β0) + oP (n−1/2).

This together with (A.12) proves that

−2 log L̂(β0) = nQT
n (ĝ, β0)R

−1
n (β0)Qn(ĝ, β0) + oP (1), (A.13)

where Qn(ĝ, β0) and Rn(β0) are defined in (A.3) and (A.9), respectively. From (A.9) of Lemma 3
and (A.13), we obtain

−2 log L̂(β0) = {
(σ 2A)−1/2√nQn(ĝ, β0)

}T
G(β0)

{
(σ 2A)−1/2√nQn(ĝ, β0)

} + oP (1), (A.14)

where G(β0) = A1/2(β0)B
−1(β0)A

1/2(β0). Let G0 = diag(w1, . . . ,wp), where wi , 1 ≤ i ≤ p,
are the eigenvalues of G(β0). Then there exists an orthogonal matrix H such that HT G0H =
G(β0). Using the notations of Lemma 2, we have

Qn(ĝ, β) = J1(ĝ, β) + J2(ĝ, β) + J3(ĝ, β) + J4(ĝ, β0) + Q(g0, β). (A.15)

Noting that Q(g0, β0) = 0, from the above equation and Lemma 2, we have

Qn(ĝ, β0) = J4(ĝ, β0) + oP (n−1/2).

Hence, by (A.7) of Lemma 2, we have

H {σ−2A−(β0)}1/2√nQn(ĝ, β0)
D−→ N(0, Ip),

where Ip is the p × p identity matrix. This together with (A.14) proves Theorem 1. �

Proof of Theorem 2. Under the conditions of Theorem 2, we can follow similar arguments to
those used by Wang and Xue [23] and show that β̂ is a root-n consistent estimator of β0. Because
the proof is straightforward, we do not present it here. We next demonstrate the asymptotic
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normality of β̂ . By Lemma 3 and, similarly to the proof of (A.13), we can obtain

log L̂(β) = −n

2
QT

n (ĝ, β){σ 2B(β)}−1Qn(ĝ, β) + oP (1), (A.16)

uniformly for β ∈ Bn, where oP (1) tends to 0 in probability uniformly for β ∈ Bn. Since the
estimator β̂ is a maximum of log L̂(β), and B(β0) is a positive definite matrix, the resulting
estimator β̂ is equivalent to solving the estimation equation Qn(ĝ, β) = 0; that is, Qn(ĝ, β̂) = 0.
Note that Q(g0, β0) = 0, and we then have, by Taylor’s expansion, that

Q(g0, β) = −B∗(β0)(β − β0) + o(n−1/2), (A.17)

uniformly for β ∈ Bn, where B∗(β0) is the same as that in (A.9). By (A.15), (A.17) and (A.4)–
(A.6) of Lemma 2, we have

Qn(ĝ, β̂) = J4(ĝ, β0) − B∗(β0)(β̂ − β0) + oP (n−1/2).

Noting that Qn(ĝ, β̂) = 0, we get

√
n(β̂ − β0) = √

nB−1∗ (β0)J4(ĝ, β0) + oP (1).

This together with (A.7) of Lemma 2 proves Theorem 2. �

Proof of Theorem 3. Decomposing σ̂ 2 into several parts, we get

σ̂ 2 = 1

n

n∑
i=1

ε2
i + 1

n

n∑
i=1

[g0(X
T
i β0) − ĝ(XT

i β̂; β̂)}T Zi]2

+ 2

n

n∑
i=1

εi{g0(X
T
i β0) − ĝ(XT

i β̂; β̂)}T Zi

≡ I1 + I2 + I3.

Using the central limit theorem, we have

√
n(I1 − σ 2) = 1√

n

n∑
i=1

(ε2
i − σ 2)

D−→ N(0,var(ε2)).

By Lemma 1, we can obtain

|I2| ≤ 1

n

n∑
i=1

‖Zi‖2
{

sup
(u,β)∈(Uw,Bn)

‖ĝ(u;β) − g0(u)‖
}2 = oP (n−1/2).
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For I3, we have

I3 = 2

n

n∑
i=1

εi{g0(X
T
i β0) − ĝ(XT

i β0;β0)}T Zi

+ 2

n

n∑
i=1

εi{ĝ(XT
i β0;β0) − ĝ(XT

i β̂; β̂)}T Zi

≡ I31 + I32.

It is not hard to show that I31 = OP (n−1/2). By Theorems 1 and 3, we obtain

|I32| ≤ 2

n

n∑
i=1

(‖Zi‖|εi |‖Xi − E(Xi |βT
0 Xi)‖

)‖β̂ − β0‖OP (1) = OP (n−1/2).

This together with above results proves Theorem 3. �

Proof of Theorem 4. Note that Â(β0)
P−→ A(β0) and B̂(β0)

P−→ B(β0). By the expansion of
l̂ael(β0), defined in (3.1) and (A.16), we get

l̂ael(β0) = nQT
n (ĝ, β0){σ−2A−(β0)}Qn(ĝ, β0) + oP (1). (A.18)

This together with (A.15) and (A.18) proves Theorem 4. �

Appendix B: Proofs of lemmas

Proof of Lemma 2. We first prove (A.4). Denote rn(g, β) = √
n{Qn(g, β) − Q(g, β)}. Noting

that Q(g0, β0) = 0, we clearly have

J1(g, β) = n−1/2{rn(g, β) − rn(g0, β0)}. (B.1)

It can be shown that the empirical process {rn(g, β): g ∈ G1, β ∈ B1} has the stochastic equicon-
tinuity, where B1 = {β ∈ B: ‖β − β0‖ ≤ 1} and G1 are defined in (A.1) with δ = 1, which are
subsets of B and G , respectively. The equicontinuity is sufficient for proof of (A.4) since δ < 1 for
large enough n. This stochastic equicontinuity follows by checking the conditions of Theorem 1
in Doukhan, Massart and Rio [7]. Therefore, we have rn(g, β) − rn(g0, β0) = oP (1), uniformly
for β ∈ B1 and g ∈ G1. This together with (B.1) proves (A.4).

We now prove (A.5). Define the functional derivative (g0(·;β),β) of Q(g, β) with respect
to g(·;β) at g0(·;β) at the direction g(·;β) − g0(·;β) by

(g0(·;β),β){g(·;β) − g0(·;β)}
= lim

τ→0

[
Q

(
g0(·;β) + τ

(
g(·;β) − g0(·;β)

)
, β

) − Q(g0(·;β),β)
] · 1

τ
,
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where Q(g, β) is defined in (A.2). We have

(g0(β
T X;β),β){g(βT X;β) − g0(β

T X;β)}
(B.2)

= −E[{g(βT X;β) − g0(β
T X;β)}T ZġT

0 (βT X;β)ZXw(βT X)].
It follows from (B.2) that

J2(g, β) = −E[{g(βT X;β) − g0(β
T
0 X)}T ZXZT

× {ġ(βT X;β) − ġ0(β
T X;β)}w(βT X)],

and hence we have

ωT J2(ĝ, β) = −
∫

{ĝ(u;β) − g0(u)}T μω(u)

(B.3)
× {ˆ̇g(u;β) − ġ0(u)}w(u)f (u)du + oP (n−1/2)

for any p-dimension vector ω, where μω(u) = E{ZωT XZT |βT X = u}, and f (u) is the proba-
bility density of βT X. Using the standard argument of nonparametric estimation, we can prove

ĝ(u;β) − g0(u) = D−1(u){f (u)}−1ξn(u;β) + OP (cn), (B.4)

uniformly for u ∈ Uw and β ∈ Bn, where cn = n−1/2 +h2 and D(u) is defined in condition (C6).

ξn(u;β) = 1

n

n∑
i=1

Zi{Yi − gT
0 (βT Xi)Zi}Kh(β

T Xi − u).

This together with (B.3) derives that

ωT J2(ĝ, β) = −
∫

{D−1(u)ξn(u;β)}T μω(u){ ˆ̇g(u;β) − ġ0(u)}du + OP (cn)

= −n−1/2{γn( ˆ̇g, β) − γn(ġ0, β)} + OP (cn),

where γn(ġ, β) = n−1/2 ∑n
i=1 εiw(βT Xi)Z

T
i D−1(βT Xi)μω(βT Xi)ġ(βT Xi;β). Using the em-

pirical process techniques, and similarly to the proof of (A.4), we can show that the stochastic
equicontinuity of γn(ġ, β), and hence ‖γn( ˆ̇g, β)−γn(ġ0, β)‖ = oP (1). Also, nh4 = O(1) implies
h2 = O(n−1/2), and hence cn = O(n−1/2). Thus, the proof of (A.5) is complete.

We now prove (A.6). Denote ψ(ġ0, β) = ġT
0 (βT X;β)ZXw(βT X) and ϕ(g, β) = {g(βT X;

β) − g0(β
T X;β)}T Z. It follows from (B.2) that

J3(g, β) = −E{ϕ(g, β)ψ(ġ0, β)} + E{ϕ(g, β0)ψ(ġ0, β0)}
= −E[{ϕ(g, β) − ϕ(g, β0)}ψ(ġ0, β)]

− E[ϕ(g, β0){ψ(ġ0, β) − ψ(ġ0, β0)}]
≡ J31(g, β) + J32(g, β).



Single-index varying-coefficient models 853

By condition (C2), we get

‖ϕ(g, β) − ϕ(g, β0)‖
= ‖[{g(βT X;β) − g(βT

0 X;β0)} − {g0(β
T X;β) − g0(β

T
0 X)}]T Z‖

= ‖[{ġ(βT
1 X;β1) − ġ0(β

T
2 X)}(β − β0)

T {X − E(X|βT
0 X)}]T Z‖

≤ c‖ġ − ġ0‖G ‖β − β0‖(‖X − E(X|βT
0 X)‖)(‖Z‖),

where β1 and β2 are between β and β0, and ‖ψ(ġ0, β)‖ ≤ c(‖Z‖)(‖X‖). Therefore, we have
‖J31(g, β)‖ = o(n−1/2), uniformly for g ∈ Gδ and β ∈ Bn. Similarly, we can prove ‖J32(g, β)‖ =
o(n−1/2), uniformly for g ∈ Gδ and β ∈ Bn, and hence (A.6) follows.

Finally, we prove (A.7). Let f0(u) denote the density function of βT
0 X. By (B.2) and (B.4),

and using the dominated convergence theorem (Loève [14]), we can obtain

(g0(β
T
0 X),β0){ĝ(βT

0 X;β0) − g0(β
T
0 X)}

= −
∫

C(u){ĝ(u;β0) − g0(u)}f0(u)du

= −1

n

n∑
i=1

εiC(βT
0 Xi)D

−1(βT
0 Xi)Zi + oP (cn).

This together with (A.3) proves that

J4(ĝ, β0) = 1

n

n∑
i=1

εiζi + oP (cn),

where ζi = Vi − C(βT
0 Xi)D

−1(βT
0 Xi)Zi and Vi = Xi ġT

0 (βT
0 Xi)Ziw(βT

0 Xi). Therefore, by the
central limit theorem and Slutsky’s theorem, we get

√
nJ4(ĝ, β0) = 1√

n

n∑
i=1

εiζi + oP (1)
D−→ N(0, σ 2A(β0)).

This proves (A.7). The proof of Lemma 2 is complete. �

Proof of Lemma 3. By (A.15), (A.17) and Lemma 2, we can prove (A.8). We now prove (A.9).
Let

Rni(β) = εi ġ
T
0 (βT

0 Xi)ZiXi{w(βT Xi) − w(βT
0 Xi)}

+ εi{ ˆ̇g(βT Xi;β) − ġ0(β
T
0 Xi)}T ZiXiw(βT Xi)

+ {g0(β
T
0 Xi) − ĝ(βT Xi;β)}T ZiZ

T
i ġ0(β

T
0 Xi)Xiw(βT Xi)

+ {g0(β
T
0 Xi) − ĝ(βT Xi;β)}T ZiZ

T
i

× {ˆ̇g(βT Xi;β) − ġT
0 (βT

0 Xi)}Xiw(βT Xi).
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Then we have η̂i (β) = ηi(β0) + Rni(β), where ηi(·) is defined in (2.1), and hence

Rn(β) = 1

n

n∑
i=1

ηi(β0)η
T
i (β0) + 1

n

n∑
i=1

Rni(β)RT
ni(β)

+ 1

n

n∑
i=1

ηi(β0)R
T
ni(β) + 1

n

n∑
i=1

Rni(β)ηT
i (β0) (B.5)

≡ M1(β0) + M2(β) + M3(β) + M4(β).

By the law of large numbers, we have M1(β0)
P−→ σ 2B(β0). Therefore, to prove (A.9), we only

need to show that Mk(β)
P−→ 0 uniformly for β , k = 2,3,4.

Let M2,st (β) denote the (s, t) element of M2(β), and Rni,s(β) denote the sth component of
Rni(β). Then by the Cauchy–Schwarz inequality, we have

|M2,st (β)| ≤
(

1

n

n∑
i=1

R2
ni,s(β)

)1/2(
1

n

n∑
i=1

R2
ni,t (β)

)1/2

. (B.6)

It can be shown by a direct calculation that

1

n

n∑
i=1

R2
ni,s(β)

P−→ 0,

uniformly for β ∈ Bn. This together with (B.6) proves that M2(β)
P−→ 0, uniformly for β ∈ Bn.

Similarly, it can be shown that M3(β)
P−→ 0 and M4(β)

P−→ 0, uniformly for β ∈ Bn. This
together with (B.5) proves (A.9).

Similarly to above proof, we can derive (A.10). (A.11) can be shown by using (A.8)–(A.10),
and employing the same arguments used in the proof of (2.14) in Owen [16]. �
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