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We consider the problem of parameter estimation for a system of ordinary differential equations from noisy
observations on a solution of the system. In case the system is nonlinear, as it typically is in practical
applications, an analytic solution to it usually does not exist. Consequently, straightforward estimation
methods like the ordinary least squares method depend on repetitive use of numerical integration in order to
determine the solution of the system for each of the parameter values considered, and to find subsequently
the parameter estimate that minimises the objective function. This induces a huge computational load to
such estimation methods. We study the consistency of an alternative estimator that is defined as a minimiser
of an appropriate distance between a nonparametrically estimated derivative of the solution and the right-
hand side of the system applied to a nonparametrically estimated solution. This smooth and match estimator
(SME) bypasses numerical integration altogether and reduces the amount of computational time drastically
compared to ordinary least squares. Moreover, we show that under suitable regularity conditions this smooth
and match estimation procedure leads to a

√
n-consistent estimator of the parameter of interest.
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1. Brief introduction

Many dynamical systems in science and applications are modeled by a d-dimensional system of
ordinary differential equations, denoted as{

x′(t) = F(x(t), θ), t ∈ [0,1],
x(0) = ξ,

(1.1)

where θ is the unknown parameter of interest and ξ is the initial condition. With xθ (t) the solution
vector corresponding to the parameter value θ, we observe

Yij = xθj (ti) + εij , i = 1, . . . , n, j = 1, . . . , d,
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where the observation times 0 ≤ t1 < · · · < tn ≤ 1 are known and the random variables εij have
mean 0 and model measurement errors combined with latent random deviations from the ide-
alised model (1.1). Under regularity conditions, the ordinary least squares estimator

θ̃n = arg min
η

n∑
i=1

d∑
j=1

(
Yij − xηj (ti)

)2 (1.2)

of θ is
√

n-consistent, at least theoretically. For systems (1.1) that do not have explicit solutions,
one typically uses iterative procedures to approximate this ordinary least squares estimator. How-
ever, since every iteration in such a procedure involves numerical integration of the system (1.1)
and since the number of iterations is typically very large, in practice it is often extremely difficult
if not impossible to compute (1.2), cf. page 172 in [49]. Here, we present a feasible and compu-
tationally much faster method to estimate the parameter θ . To define the estimator of θ , we first
construct kernel estimators

x̂j (t) =
n∑

i=1

(ti − ti−1)
1

b
K

(
t − ti

b

)
Yij

of xθj with K a kernel function and b = bn a bandwidth. Now, the estimator θ̂n of θ is defined as

θ̂n = arg min
η

∫ 1

0
‖x̂′(t) − F(x̂(t), η)‖2w(t)dt, (1.3)

where ‖ · ‖ denotes the usual Euclidean norm and w(·) is a weight function. Related approaches
have been suggested in computational biology and numerical analysis literature, see, for example,
[2,51] and [48].

The main result of this paper is that this smooth and match estimator θ̂n is
√

n-consistent under
mild regularity conditions. So, asymptotically the SME θ̂n is comparable to the ordinary least
squares estimator in statistical performance, but it avoids the computationally costly repeated
use of numerical integration of (1.1).

2. Introduction

Let us introduce the contents of this paper in more detail. Systems of ordinary differential equa-
tions play a fundamental role in many branches of natural sciences, for example, mathematical
biology, see [9], biochemistry, see [49], or the theory of chemical reaction networks in general,
see, for instance, [12] and [38]. Such systems usually depend on parameters, which in practice
are often only approximately known, or are plainly unknown. Knowledge of these parameters is
critical for the study of the dynamical system or process that the system of ordinary differential
equations describes. Since these parameters usually cannot be measured directly, they have to be
inferred from, as a rule, noisy measurements of various quantities associated with the process
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under study. More formally, in this paper we consider the following setting: let, as in (1.1),{
x′(t) = F(x(t), θ), t ∈ [0,1],
x(0) = ξ,

(2.1)

be a system of autonomous differential equations depending on a vector of real-valued pa-
rameters. Here x(t) = (x1(t), . . . , xd(t))T is a d-dimensional state variable, θ = (θ1, . . . , θp)T

denotes a p-dimensional parameter, while the column d-vector x(0) = ξ defines the initial
condition. Whether the latter is known or unknown, is not relevant in the present context,
as long as it stays fixed. Denote a solution to (2.1) corresponding to parameter value θ by
xθ (t) = (xθ1(t), . . . , xθd(t))T. Suppose that at known time instances 0 ≤ t1 < · · · < tn ≤ 1 noisy
observations

Yij = xθj (ti) + εij , i = 1, . . . , n, j = 1, . . . , d, (2.2)

on the solution xθ are available. The random variables εij model measurement errors, but they
might also contain latent random deviations from the idealized model (1.1). Such random devi-
ations are often seen in real-world applications. Based on these observations, the goal is to infer
the value of θ, the parameter of interest.

The standard approach to estimation of θ is based on the least squares method (the least squares
method is credited to Gauß and Legendre, see [39]), see, for example, [20] and [40]. The least
squares estimator is defined as a minimiser of the sum of squares, that is,

θ̃n = arg min
η

Rn(η) = arg min
η

n∑
i=1

d∑
j=1

(
Yij − xηj (ti)

)2
.

If the measurement errors are Gaussian, then θ̃n coincides with the maximum likelihood estima-
tor and is asymptotically efficient. Since the differential equations setting is covered by the gen-
eral theory of nonlinear least squares, theoretical results available for the latter apply also in the
differential equations setting and we refer for example, to [25] and [57], or more generally to [43,
44], and [33] for a thorough treatment of the asymptotics of the nonlinear least squares estimator.
The paper that explicitly deals with the ordinary differential equations setting is [58]. Despite its
appealing theoretical properties, in practice the performance of the least squares method can dra-
matically degrade if (2.1) is a nonlinear high-dimensional system and if θ is high-dimensional.
In such a case, we have to face a nonlinear optimisation problem (quite often with many local
minima) and search for a global minimum of the least squares criterion function Rn in a high-
dimensional parameter space. The search process is most often done via gradient-based methods,
for example, the Levenberg–Marquardt method, see [30], or via random search algorithms, see
Section 4.5.2 in [49] for a literature overview. Since nonlinear systems in general do not have
solutions in closed form, use of numerical integration within a gradient-based search method and
serious computational time associated with it seem to be inevitable. For instance, in a relatively
simple example of a four-dimensional system considered in Appendix 1 of [50], repetitive nu-
merical integration of the system takes up to 95% of the total computational time required to
compute the least squares estimator via a gradient based optimisation method. Likewise, ran-
dom search algorithms are also very costly computationally and in general, computational time
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will typically be a problem for any optimisation algorithm that relies on numerical integration of
any relatively realistic nonlinear system of ordinary differential equations, cf. page 172 in [49].
One example is furnished by [27], where a system that consists of five differential equations and
contains sixty parameters and that describes a simple gene regulatory network from [21] is con-
sidered. The optimisation algorithm (a genetic algorithm) was run for seven loops each lasting for
about ten hours on the AIST CBRC Magi Cluster with 1040 CPUs (Pentium III 933 MHz).1 This
amounted to a total of ca. 70 000 CPU hours. The authors also remarked that the gradient-based
search algorithm would not be feasible in their setting at all. The problems become aggravated
for systems of ordinary differential equations that exhibit stiff behaviour, that is, systems that
contain both ‘slow’ and ‘fast’ variables and that are difficult to integrate via explicit numerical
integration schemes, see, for example, [18] for a comprehensive treatment of methods of solving
numerically stiff systems. Even if a system is not stiff for the true parameter value θ, during the
numerical optimisation procedure one might pass the vicinity of parameters for which the system
is stiff, which will necessarily slow down the optimisation process.

The Bayesian approach to estimation of θ, see, for example, [15] and [16], encounters similar
huge computational problems. In the Bayesian approach, one puts a prior on the parameter θ

and then obtains the posterior via Bayes’ formula. The posterior contains all the information
required in the Bayesian paradigm and can be used to compute for example, point estimates
of θ or Bayesian credible intervals. If θ is high-dimensional, the posterior will typically not
be manageable by numerical integration and one will have to resort to Markov Chain Monte
Carlo (MCMC) methods. However, sampling from the posterior distribution for θ via MCMC
necessitates at each step numerical integration of the system (2.1), in case the latter does not
have a closed form solution. Computational time might thus become a problem in this case as
well. Also, since in general the likelihood surface will have a complex shape with many local
optima, ripples, and ridges, see, for example, [16] for an example, serious convergence problems
might arise for MCMC samplers.

Yet another point is that in practice both the least squares method and the Bayesian approach
require good initial guesses of the parameter values. If these are not available, then both ap-
proaches might have problems with convergence to the true parameter value within a reasonable
amount of time.

Over the years a number of improvements upon the classical methods to compute the least
squares estimator have been proposed in the literature. In particular, the multiple shooting method
of [6] and the interior-point or barrier method for large-scale nonlinear programming as in [52]
have proved to be quite successful. These two approaches tend to be much more stable than
classical gradient-based methods, have a better chance to converge even from poor initial guesses
of parameters, and in general require a far less number of iterations until convergence is achieved.
However, they still require a nontrivial amount of computational power.

A general overview of the typical difficulties in parameter estimation for systems of ordinary
differential equations is given in [36], to which we refer for more details. For a recent overview
of typical approaches to parameter estimation for systems of ordinary differential equations in
biochemistry and associated challenges see, for example, [8].

1See http://www.cbrc.jp/magi for the cluster specifications.

http://www.cbrc.jp/magi
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To evade difficulties associated with the least squares method, or more precisely with numeri-
cal integration that it usually requires, a two-step method was proposed in [2] and [48]. In the first
step, the solution xθ of (2.1) is estimated by considering estimation of the individual components
xθ1, . . . , xθd as nonparametric regression problems and by using the regression spline method
for estimation of these components. The derivatives of xθ1, . . . , xθd are also estimated from the
data by differentiating the estimators of xθ1, . . . , xθd with respect to time t. Thus, no numerical
integration of the system (2.1) is needed. In the second step, the obtained estimate of xθ and its
derivative x′

θ are plugged into (2.1) and an estimator of θ is defined as a minimiser in θ of an
appropriate distance between the estimated left- and right-hand sides of (2.1) as for example, in
(1.3). Since this estimator of θ results from a minimisation procedure, it is an M-estimator, see,
for example, the classical monograph [24], or Chapter 7 of [4], Chapter 5 of [45], and Chapter 3.2
of [46] for a more modern exposition of the theory of M-estimators. For an approach to estima-
tion of θ related to [2] and [48] see also [51], as well as [50], where a practical implementation
based on neural networks is studied. The intuitive idea behind the use of this two-step estimator
is clear: among all functions defined on [0,1], any reasonably defined distance between the left-
and right-hand side of (2.1) is minimal (namely, it is zero) for the solution xθ of (2.1) and the
true parameter value θ. For estimates close enough in an appropriate sense to the solution xθ ,

the minimisation procedure will produce a minimiser close to the true parameter value, provided
certain identifiability and continuity conditions hold. This intuitive idea was exploited in [7],
where a more general setting than the one in [2] and [48] was considered. Another paper in the
same spirit as [2] and [48] is [28].

This two-step approach will typically lead to considerable savings in computational time, as
unlike the straightforward least squares estimator, in its first step it just requires finding non-
parametric estimates of xθ and x′

θ , for which fast and numerically reliable recipes are available,
whereas the gradient-based least squares method will still rely on successive numerical integra-
tions of (2.1) for different parameter values θ in order to find a global minimiser minimising the
least squares criterion function. We refer to [50] for a particular example demonstrating gains in
the computational time achieved by the two-step estimator in comparison to the ordinary least
squares estimator. When the right-hand side F of (2.1) is linear in θ1, . . . , θp and d = 1, further
simplifications will occur in the second step of the two-step estimation procedure, as one will
essentially only have to face a weighted linear regression problem then. This is unlike the least
squares approach, which cannot exploit linearity of F in θ1, . . . , θp. However, we would also
like to stress the fact that the two-step estimator does not necessarily have to be considered a
competitor of either the least squares or the Bayesian approach. Indeed, since in practice both of
these approaches require good initial guesses for parameter values, these can be supplied by the
two-step estimator. In this sense, the proposed two-step estimation approach can be thought of
as complementing both the least squares and the Bayesian approaches. Moreover, an additional
modified Newton–Raphson step suffices to arrive at an estimator that is asymptotically equivalent
to the exact ordinary least squares estimator, as will be shown elsewhere.

A certain limitation of the two-step approach is that it requires that measurements on all state
variables xθj , j = 1, . . . , d , are available. The latter is not always the case in practical applica-
tions. In some cases, the unobserved variables can be eliminated by transforming the first order
system into a higher order one and next applying a generalisation of the smooth and match
method to this higher order system. Under appropriate conditions, this approach should yield
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a consistent estimator. Although one can always formally perform the least squares procedure,
without further assumptions on the system it is far from clear that it leads to a consistent estimator
of the parameter of interest.

Our goal in the present work is to undertake a rigorous study of the asymptotics of a two-step
estimator of θ. Our exposition is similar to that in [7] to some degree, but one of the differences
is that instead of regression spline estimators we use kernel-type estimators for estimation of xθ

and x′
θ .

2 The conditions are also different. We hope that our contribution will motivate further
research into the interesting topic of parameter estimation for systems of ordinary differential
equations.

There exists an alternative approach to the ones described here, which also employs nonpara-
metric smoothing, see [36]. For information on its asymptotic properties, we refer to [35]. For
nonlinear systems, this approach will typically reduce to one of the realisations of the ordinary
least squares method, for example, Newton–Raphson algorithm, where however numerical in-
tegration of (2.1) will be replaced by approximation of the solution of the system (2.1) by an
appropriately chosen element of some finite-dimensional function space. This seems to reduce
considerably the computational load in comparison to the gradient-based optimisation methods
which employ numerical integration of (2.1). However, it still appears to be computationally
more intense than the two-step approach advocated in the present work.

We conclude the discussion in this section by noting that when modeling various processes,
some authors prefer not to specify the right-hand side of (2.1) explicitly (the latter amounts to
explicit specification of the F(·, ·) in (2.1)), but simply assume that the right-hand side of (2.1)
is some unknown function of x, that is, is given by F(x(t)) with F unknown, and proceed
to its estimation via nonparametric methods, see, for example, [10]. This has an advantage of
safeguarding against possible model misspecification. However, the question whether one has or
has not to specify F explicitly appears to us to be more of a philosophical nature and boils down
to a discussion on the use of parametric or nonparametric models, that is, whether one has strong
enough reasons to believe that the process under study can be described by a model as in (2.1)
with F known or not. We do not address this question here, because an answer to it obviously
depends on the process under study and varies from case to case. For a related discussion, see
[23].

The rest of the paper is organised as follows: in the next section, we will detail the approach
that we use and present its theoretical properties. In particular, we will show that under appropri-
ate conditions our two-step approach leads to a consistent estimator with a

√
n convergence rate,

which is the best possible rate in regular parametric models.3 Section 4 contains a discussion
on the obtained results together with simulation examples. The proofs of the main results are
relegated to Section 5, while Appendix 5 contains some auxiliary statements.

2The proofs of the main results in [7] are incomplete and the main theorems require further conditions in order to hold.
3It is claimed in [28] that the two-step estimation procedure suggested there leads to a faster rate than

√
n, which is

impossible. Indeed, Theorem 2 of [28] and its proof are incorrect.
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3. Results

First of all, we point out that in the present study we will be concerned with the asymptotic
behaviour of an appropriate two-step estimator of θ under a suitable sampling scheme. We will
primarily be interested in intuitively understanding the behaviour of a relatively simple estimator
of θ, as well as in a clear presentation of the obtained results and the proofs. Consequently, the
stated conditions will not always be minimal and can typically be relaxed at appropriate places.

We first define the sampling scheme.

Condition 3.1. The observation times 0 ≤ t1 < · · · < tn ≤ 1 are deterministic and known and
there exists a constant c0 ≥ 1, such that for all n

max
2≤i≤n

|ti − ti−1| ≤ c0

n

holds. Furthermore, there exists a constant c1 ≥ 1, such that for any interval A ⊆ [0,1] of length
|A| and all n ≥ 1 the inequality

1

n

n∑
i=1

1[ti∈A] ≤ c1 max

(
|A|, 1

n

)
holds.

Hence, we observe the solution of the system (2.1) on the interval [0,1]. Instead of [0,1]
we could have taken any other bounded interval. Conditions on t1, . . . , tn as in Condition 3.1 are
typical in nonparametric regression, see, for example, [13] and Section 1.7 in [42], and they imply
that t1, . . . , tn are distributed over [0,1] in a sufficiently uniform manner. The most important
example in which Condition 3.1 is satisfied, is when the observations are spaced equidistantly
over [0,1], that is, when tj = j/n for j = 1, . . . , d. In this case, one may take c0 = c1 = 2.

Notice that we do not necessarily assume that the initial condition x(0) = ξ is measured or is
known. If it is, then it is incorporated into the observations and is used in the first step of the
two-step estimation procedure.

Condition 3.2. The random variables εij , i = 1, . . . , n, j = 1, . . . , d, from (2.2) are independent
and are normally distributed with mean zero and finite variance σ 2

j .

This assumption of Gaussianity of the εij ’s may be dropped in various ways, as we will see
below; see the note after Proposition 3.1 and Appendix A.2.

We next state a condition on the parameter set.

Condition 3.3. The parameter set � is a compact subset of R
p.

Compactness of � allows one to put relatively weak conditions on the structure of the system
(2.1), that is, the function F.
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Just as the least squares method, see, for example, [25], our smooth and match approach also
requires some regularity of the solutions of (2.1). In what follows, a derivative of any function f

with respect to the variable y will be denoted by f ′
y. For the second derivative of f with respect

to y, we will use the notation f ′′
yy with a similar convention for mixed derivatives. An integral of

a vector- or matrix-valued function will be understood componentwise.

Condition 3.4. The following conditions hold:

(i) the mapping F : Rd ×� → R
d from (2.1) is such that its second derivatives F ′′

θθ ,F
′′
θx,F

′′
xx

are continuous;
(ii) for all parameter values θ ∈ �, the solution xθ of (2.1) is defined on the interval [0,1];

(iii) for all parameter values θ ∈ �, the solution xθ of (2.1) is unique on [0,1];
(iv) for all parameter values θ ∈ �, the solution xθ of (2.1) is a Cα function of t on the

interval [0,1] for some positive integer α.

Observe that Condition 3.4(i) implies existence and uniqueness of the solution of (2.1) in
some neighbourhood of 0. However, we want the existence and uniqueness to hold on the whole
interval [0,1] and therefore a priori require (ii) and (iii). Furthermore, α ≥ 2 in (iv) is required
when establishing appropriate asymptotic properties of nonparametric estimators of the solution
xθ and its derivative, while α ≥ 3 is needed in Propositions 3.3 and 3.4, and α ≥ 4 in Theorem 3.1,
respectively. Notice that for every θ the solution xθ is of class Cα in t in a neighbourhood
of 0, provided for a given θ the function F is of class Cα in its first argument. However, we
want this to hold on the whole interval [0,1] and therefore require (iv). Since in the theory of
chemical reaction networks, see, for instance, [38], the components of F are usually polynomial
or rational functions of x1, . . . , xd and θ1, . . . , θp, the solution of (2.1) will be smooth enough
in many examples and α ≥ 4 is satisfied in a large number of practical examples. For the above-
mentioned facts from the theory of ordinary differential equations, see, for example, Chapter 2
in [1]. Also notice that the condition on F in [28], see Assumption C on page 1573, puts severe
restrictions on F and excludes for example, quadratic nonlinearities of F in x1, . . . , xd . This, of
course, has to be avoided.

Recall that our observations are Yij = xθj (ti) + εij for i = 1, . . . , n, j = 1, . . . , d. We propose
the following nonparametric estimator for xθj ,

x̂j (t) =
n∑

i=1

(ti − ti−1)
1

b
K

(
t − ti

b

)
Yij , (3.1)

where K is a kernel function, while the number b = bn > 0 denotes a bandwidth that we take to
depend on the sample size n in such a way that bn → 0 as n → ∞. In line with a traditional con-
vention in kernel estimation theory, we will suppress the dependence of bn on n in our notation,
since no confusion will arise. When the ti ’s are equispaced, the estimator (3.1) can in essence
be obtained by modifying the Nadaraya–Watson regression estimator, cf. page 34 in [42]. It is
usually called the Priestley–Chao estimator after the authors who first proposed it in [34]. As far
as an estimator of x′

θj (t) is concerned, we define it as the derivative of x̂j (t) with respect to t,

choosing K as a differentiable function. Notice that the bandwidth b plays a role of regularisa-
tion parameter: too small a bandwidth results in an estimator with small bias, but large variance,
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while too large a bandwidth results in an estimator with small variance, but large bias, see, for
example, pages 7–8 and 32 in [42] for a relevant discussion. In principle one could use different
bandwidth sequences for estimation of xj for different j ’s, but as can be seen from the proofs in
Section 5, asymptotically this will not make a difference for an estimator of θ . A similar remark
applies to the use of different bandwidths for estimation of xθj and its derivative x′

θj . Arguably,
the estimator (3.1) is simple and there exist other estimators that may outperform it in certain
respects in practice. However, as we will show later on, even such a simple estimator leads to a√

n-consistent estimator of θ.

Theoretical properties of the Priestley–Chao estimator were studied in [3,34,37]. However, the
first two papers do not cover its convergence in the L∞ (supremum) norm, while the third one
does not do it in the form required in the present work. Since this is needed in the sequel, we will
supply the required statement, see Proposition 3.1 below.

To put things in a somewhat more general context than the one in our differential equations
setting, consider the following regression model:

Yi = μ(ti) + εi, i = 1, . . . , n,

t1, . . . , tn satisfy Condition 3.1, (3.2)

ε1, . . . , εn are i.i.d. Gaussian with E[εi] = 0 and Var[εi] = σ 2 > 0.

Our goal is to estimate the regression function μ and its derivative μ′. The estimator of μ will
be given by an expression similar to (3.1), namely

μ̂n(t) =
n∑

i=1

(ti − ti−1)
1

b
K

(
t − ti

b

)
Yi, (3.3)

while an estimator of μ′ will be given by μ̂′
n. We postulate the following condition on the kernel

K for some strictly positive integer α.

Condition 3.5. The kernel K is symmetric and twice continuously differentiable, it has
support within [−1,1], and it satisfies the integrability conditions:

∫ 1
−1 K(u)du = 1 and∫ 1

−1 u	K(u)du = 0 for 	 = 1, . . . , α − 1. If α = 1, only the first of the two integrability con-
ditions is required.

The following proposition holds.

Proposition 3.1. Suppose the regression model (3.2) is given and Condition 3.5 holds. Fix a
number δ, such that 0 < δ < 1/2.

(i) If μ is α ≥ 1 times continuously differentiable and b → 0 as n → ∞, then

sup
t∈[δ,1−δ]

|μ̂n(t) − μ(t)| = OP

(
bα + 1

nb2
+

√
logn

nb

)
. (3.4)
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(ii) If μ is α ≥ 2 times continuously differentiable and b → 0 as n → ∞, then

sup
t∈[δ,1−δ]

|μ̂′
n(t) − μ′(t)| = OP

(
bα−1 + 1

nb3
+

√
logn

nb3

)
(3.5)

is valid. In particular, μ̂n and μ̂′
n are consistent on [δ,1 − δ], if nb3/ logn → ∞ holds addition-

ally.

Gaussianity of the εi ’s allows one to prove (3.4) and (3.5) by relatively elementary means. This
assumption can be modified in various ways, for instance by assuming that the εi ’s are bounded,
and we state and prove the corresponding modification of Proposition 3.1 in Appendix A.2, see
Proposition A.1. In general, normality of the measurement errors is a standard assumption in
parameter estimation for systems of ordinary differential equations, see, for example, [16,20],
and [36].

The following corollary is immediate from Proposition 3.1.

Corollary 3.1. Let α be the same as in Condition 3.4. Under Conditions 3.1–3.5, we have for
the estimator x̂j

sup
t∈[δ,1−δ]

|x̂j (t) − xθj (t)| = OP

(
bα + 1

nb2
+

√
logn

nb

)
(3.6)

and

sup
t∈[δ,1−δ]

|x̂′
j (t) − x′

θj (t)| = OP

(
bα−1 + 1

nb3
+

√
logn

nb3

)
, (3.7)

provided α ≥ 2 and b → 0 as n → ∞. In particular, x̂j and x̂′
j are consistent, if nb3/ logn → ∞

holds additionally.

In the proof of Proposition 3.2, we will apply the continuous mapping theorem in order to
prove convergence in probability of certain integrals of F and its derivatives with x̂j ’s plugged
in. This is where Corollary 3.1 is used.

Now that we have consistent (in an appropriate sense) estimators of xθj and x′
θj , from the

smoothing step we can move to the matching step in the construction of our smooth and match
estimator of θ. In particular, we define the estimator θ̂n of θ as

θ̂n = arg min
η∈�

∫ 1

0
‖x̂′(t) − F(x̂(t), η)‖2w(t)dt

(3.8)
= arg min

η∈�

Mn,w(η),

where ‖·‖ denotes the usual Euclidean norm and w is a weight function. We will refer to Mn,w(η)

as a (random) criterion function. Since � is compact and Mn,w under our conditions is continu-
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ous in η, the minimiser θ̂n always exists. The fact that θ̂n is a measurable function of the obser-
vations Yij follows from Lemma 2 of [25]. Notice that in [28] and [48] the criterion function is
given by

n∑
i=1

‖x̃′(ti) − F (̃x(ti), η)‖2,

where x̃ and x̃′ are appropriate estimators of xθ and x′
θ . However, in order to obtain a

√
n-

consistent estimator of θ, it is important to use an integral type criterion: the nonparametric
estimators of xθ and x′

θ have a slower convergence rate than
√

n and this is counterbalanced
by the integral criterion from (3.8). Indeed, stationarity at θ̂n leads to (5.13). The first factor at
the left-hand side of this equality converges to a constant nondegenerate matrix and the right-
hand side behaves like a linear combination of the observations with coefficients of order 1/n

thanks to the integration; cf. Proposition 3.4 and its proof. In light of this the choice of the weight
function w also appears to be important. Furthermore, the observations Yij from (2.2) indirectly
carry information on the entire curves xθj (t), t ∈ [0,1], and not only on the points xθj (ti). An
integral type criterion allows one to exploit this fact in the second step of this smooth and match
procedure.

Introduce the asymptotic criterion

Mw(η) =
∫ 1

0
‖F(xθ (t), θ) − F(xθ (t), η)‖2w(t)dt

corresponding to Mn,w. Observe that by Condition 3.4 it is bounded. Using Corollary 3.1 as
a building block, one can show that the SME θ̂n is consistent. To this end, we will need the
following condition on the weight function w.

Condition 3.6. The weight function w is a nonnegative function that is continuously differen-
tiable, is supported on the interval (δ,1 − δ) for some fixed number δ, such that 0 < δ < 1/2,

and is such that the Lebesgue measure of the set {t : w(t) > 0} is positive.

The fact that w vanishes at the endpoints of the interval [δ,1 − δ] and beyond, is needed to
obtain a

√
n-consistent estimator of θ. In particular, together with differentiability of w it is used

in order to establish (5.16). The condition that w is supported on (δ,1 − δ) takes care of the
boundary bias effects characteristic of the conventional kernel-type estimators, see, for example,
[13] for more information on this. Boundary effects in kernel estimation are usually remedied
by using special boundary kernels, see, for example, [14,32,47]. Using such a kernel, it can be
expected that in our case as well the boundary effects will be eliminated and one may relax the
requirement 0 < δ < 1/2 from Condition 3.6 to δ = 0, that is, to allowing w to be supported
on (0,1). The condition that the weight function w is positive on a set with positive Lebesgue
measure, is important for (3.9) to hold and in fact w(t) = 0 a.e. would be a strange choice.

The following proposition is valid.
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Proposition 3.2. Suppose b → 0 and nb3/ logn → ∞. Under Conditions 3.1–3.6 and the addi-
tional identifiability condition

∀ε > 0 inf‖η−θ‖≥ε
Mw(η) > Mw(θ), (3.9)

we have θ̂n
P→ θ.

The proposition is proved via a reasoning standard in the theory of M-estimation: we show that
Mn,w converges to Mw and that the convergence is strong enough to imply the convergence of a
minimiser θ̂n of Mn,w to a minimiser θ of Mw, cf. Section 5.2 of [45]. A necessary condition for
(3.9) to hold is that xθ (·) �= xθ ′(·) for θ �= θ ′. The latter is a minimal assumption for the statistical
identifiability of the parameter θ. The identifiability condition (3.9) is common in the theory of
M-estimation, see Theorem 5.7 of [45]. It means that θ is a point of minimum of Mw(η) and that
it is a well-separated point of minimum. The most trivial example with this condition satisfied is
when d = p = 1 and x′(t) = θx(t) hold with initial condition x(0) = ξ, where ξ �= 0. In fact, in
this case

Mw(η) = (θ − η)2ξ2
∫ 1−δ

δ

e2θtw(t)dt,

and this is zero for η = θ and is strictly positive for η �= θ, whence (3.9) follows. More generally,
since � is compact and Mw is continuous, uniqueness of a minimiser of Mw will imply (3.9), cf.
Exercise 27 on page 84 of [45].

In practice, (3.9) might be difficult to check globally and one might prefer to concentrate
on a simpler local condition: if the first order condition [dMw(η)/dη]η=θ = 0 holds and if the
Hessian matrix H(η) = (∂2Mw(η)/∂ηi ∂ηj )i,j of Mw is strictly positive definite at θ, then (3.9)
will be satisfied for η ∈ � restricted to some neighbourhood of θ, because Mw will have a local
minimum at such θ and a neighbourhood around it can be taken to be compact with small enough
diameter, so that (3.9) holds for η restricted to this neighbourhood. The conclusion of the theorem
will then hold for the parameter set restricted to this neighbourhood of θ.

In a statement analogous to Proposition 3.2, [7] requires that the solutions of (2.1) belong to
a compact set K for all θ and t and that F from (1.1) is Lipschitz in its first argument x for
x restricted to this compact K uniformly in θ ∈ �. It is also assumed that the nonparametric
estimators x̂n(t) belong a.s. to K for all n and t. However, the latter typically will not hold
for linear smoothers, see Definition 1.7 in [42], which constitute the most popular choice of
nonparametric regression estimators in practice. For instance, local polynomial estimators, see
Section 1.6 in [42], projection estimators, see Section 1.7 in [42], or the Gasser–Müller estimator,
see [13], are all examples of linear smoothers. Hence, we prefer to avoid this condition altogether,
although this somewhat complicates the proof.

Under the conditions in this section, it turns out that the estimator θ̂n is not merely a consistent
estimator, but a

√
n-consistent estimator of θ, in the sense of (3.13) below. This result follows

in essence from the fact that up to a higher order term the difference θ̂n − θ can be represented
as the difference of the images of x̂ and xθ under a certain linear mapping, cf. Proposition 3.3. It
is known that even though nonparametric curve estimators cannot usually attain the

√
n conver-

gence rate, see, for example, Chapters 1 and 2 of [42], extra smoothness often coming from the
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structure of linear functionals allows one to construct in many cases
√

n-consistent estimators
of these functionals via plugging in nonparametric estimators, see, for example, [5] and [17] for
more information. The variance of such plug-in estimators can often be proven to be of order
n−1, while the squared bias can be made of order n−1 by undersmoothing, that is, selecting the
smoothing parameter smaller than what is an optimal choice in nonparametric curve estimation
when the object of interest is a curve itself, cf. [17]. Precisely, this happens in our case as well: if
the mean integrated squared error is used as a performance criterion of a nonparametric estima-
tor, then under our conditions the optimal bandwidth for estimation of xθ is of order n−1/(2α+1),

whereas the optimal bandwidth for estimation of θ is in fact smaller, see Theorem 3.1 below.
Note that undersmoothing is a different approach than the one in [5], where it is assumed that
nonparametric estimators attain the minimax rate of convergence and the

√
n-rate for estimation

of a functional in concrete examples, if possible, is achieved by different means exploiting extra
smoothness coming from the structure of a functional, see, for example, the first example in Sec-
tion 2 there. In many cases, it can be proved that such plug-in type estimators are efficient, see
[5]. Notice, however, that in our case this will not imply that θ̂n is efficient.

First, we will provide an asymptotic representation for the difference θ̂n − θ.

Proposition 3.3. Let θ be an interior point of �. Suppose that the conditions of Proposition 3.2
hold and let the matrix Jθ defined by

Jθ =
∫ 1−δ

δ

(F ′
θ (xθ (t), θ))TF ′

θ (xθ (t), θ)w(t)dt (3.10)

be nonsingular. Fix α ≥ 3. If b  n−γ holds for 1/(4α − 4) < γ < 1/6, then

θ̂n − θ = OP

(
J−1

θ

(
�(x̂) − �(xθ )

)) + oP (n−1/2) (3.11)

is valid with the mapping � given by

�(z) =
∫ 1−δ

δ

{
−(F ′

θ (xθ (t), θ))TF ′
x(xθ (t), θ)w(t) − d

dt
[(F ′

θ (xθ (t), θ))Tw(t)]
}
z(t)dt. (3.12)

With the above result in mind, in order to complete the study of the asymptotics of θ̂n, it
remains to study the mapping �. Clearly, it suffices to study the asymptotic behaviour of

�(μ̂n) − �(μ) =
∫

R

v(t)k(t)μ̂n(t)dt −
∫

R

v(t)k(t)μ(t)dt,

where v is a known function that satisfies appropriate assumptions, while k stands either for w

or its derivative w′. The next proposition deals with the asymptotics of �(μ̂n) − �(μ).

Proposition 3.4. Under Conditions 3.5 and 3.6 and for any continuous function v, it holds in
the regression model (3.2) that

�(μ̂n) − �(μ) = OP (n−1/2),
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provided μ is α ≥ 3 times differentiable and the bandwidth b is chosen such that b  n−γ holds
for 1/(2α) ≤ γ ≤ 1/4.

Our main result is a simple consequence of Propositions 3.3 and 3.4.

Theorem 3.1. Let θ be an interior point of �. Assume that Conditions 3.1–3.6 together with
(3.9) hold and that (3.10) is nonsingular. Fix α ≥ 4. If the bandwidth b is such that b  n−γ

holds for 1/(2α) < γ < 1/6, then

√
n(θ̂n − θ) = OP (1) (3.13)

is valid.

Thus any bandwidth sequences satisfying the conditions in Theorem 3.1 are optimal, in the
sense that they lead to estimators of θ with similar asymptotic behaviour. In particular, each of
such bandwidth sequences ensures a

√
n convergence rate of θ̂n. Consequently, dependence of

the asymptotic properties of the estimator θ̂n on the bandwidth is less critical than it typically is
in nonparametric curve estimation. Notice that the condition α ≥ 4 in Theorem 3.1 is needed in
order to make the conditions in Propositions 3.3 and 3.4 compatible.

4. Discussion

The main result of the paper, Theorem 3.1, is that under certain conditions for systems of or-
dinary differential equations parameter estimation at the

√
n rate is possible without employing

numerical integration. Although we have shown this in the case when in the first step of the two-
step procedure a particular kernel-type estimator is used, it may be expected that a similar result
holds for other nonparametric estimators. For instance, the arguments for the Nadaraya–Watson
estimator seem to be similar, with extra technicalities arising for example, from the fact that it
is a ratio of two functions. Furthermore, from formula (5.16) it can be seen that the proof of
Proposition 3.3 requires that the derivative of an estimator of xθ be used as an estimator of x′

θ .

Not all popular nonparametric estimators of the derivatives of a regression function are of this
type. In practice for small or moderate sample sizes it might be advantageous to use more so-
phisticated nonparametric estimators than the Priestley–Chao estimator, but asymptotically this
does not make a difference.

Once a
√

n-consistent estimator θ̂n of θ is available, one might ask for more, namely if one
can construct an estimator that is asymptotically equivalent to the ordinary least squares estima-
tor (1.2) or that is semiparametrically efficient. It is expected that this can be achieved without
repeated numerical integration of (1.1) by using θ̂n as a starting point and performing a one-step
Newton–Raphson type procedure; see, for example, Section 7.8 of [4] or Chapter 25 of [45].
We intend to address this issue of efficient and ordinary least squares estimation in a separate
publication.

Doubtless, the main challenge in implementing the smooth and match estimation procedure
lies in selecting the smoothing parameter b. This is true for any two-step parameter estimation



Parameter estimation for ODEs 1075

procedure for ordinary differential equations, for example, the one based on the regression splines
as in [7] or the local polynomial estimator as in [28], and not only for our specific estimator.
Observations that we supply below apply in principle to any two-step estimator and not only to
the specific kernel-type one considered in the present work. Hence, they are of general interest.

Some attention has been paid in the literature to the selection of the smoothing parameter
in the context of parameter estimation for ordinary differential equations. The considered op-
tions range from subjective choices and smoothing by hand to more advanced possibilities. Per-
haps the simplest solution would be to assume that the targets of the estimation procedure are
xθj , j = 1, . . . , d, and to select b (a different one for every component xθj ) via a cross-validation
procedure, see, for example, Section 5.3 in [55] for a description of cross-validation techniques
in the context of nonparametric regression. This should produce reasonable results, at least for
relatively large sample sizes, cf. simulation examples considered in [7]. However, it is clear from
Theorem 3.1 and its proof that despite its simplicity, such a choice of b will be suboptimal.
Another practical approach to bandwidth selection is computation of θ̂n = θ̂n(b) for a range of
values of the bandwidth b on some discrete grid B and then choosing

b̂ = arg min
b∈B

n∑
i=1

d∑
j=1

(
Yij − x

θ̂n(b)j
(ti)

)2
.

This seems a reasonable choice, although the asymptotics of θ̂n(b̂) are unclear. One other possi-
bility for practical bandwidth selection is nothing else but a variation on the plug-in bandwidth
selection method as described for example, in [26]: one can see from the proof in Section 5 that
the terms that depend on the bandwidth b are lower order terms in the expansion of θ̂n − θ. One
can then minimise with respect to b a bound on these lower order terms. A minimiser, say b∗, will
depend on the unknown true parameter θ, also via xθ and x′

θ , as well as on the error variances
σ 2

1 , . . . , σ 2
d . However, θ, xθ , and x′

θ can be reestimated via θ̂n, x̂, and x̂ ′ using a different, pilot
bandwidth b̃. Of course, instead of x̂ and x̂ ′ the use of any other nonparametric estimators of a
regression function and its derivative, for example, local polynomial estimators, see Section 1.6
of [42], or the Gasser–Müller estimator, see [13], is also a valid option. Error term variances can
be estimated via one of the methods described in [19] or Section 5.6 of [55]. Once the pilot esti-
mators of θ, xθ , and x′

θ together with estimators of σ 2
1 , . . . , σ 2

d are available, these can be plugged

back into b∗ and in this way one obtains a bandwidth b̂ that estimates the optimal bandwidth b∗.
The final step would be computation of θ̂n with a new bandwidth b̂. Unfortunately, this method
leads to extremely cumbersome expressions and furthermore, since we are minimising an up-
per bound on numerous remainder terms, it will probably tend to oversmooth, that is, produce a
bandwidth b larger than required. Moreover, the plug-in approach in general is subject to some
controversy having both supporters and critics, see, for example, [29] and references therein. An
alternative to the plug-in approach might be an approach based on one of the resampling meth-
ods: cross-validation, jackknife, or bootstrap. Computationally these resampling methods will
be quite intensive. Theoretical analysis of the properties of such bandwidth selectors is a rather
nontrivial task. Also a thorough simulation study is needed before the practical value of different
bandwidth selection methods can be assessed. We do not address these issues here.
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The next observation of this section concerns numerical computation of our SME. The kernel-
type nonparametric regression estimates of xθj , j = 1, . . . , d, can be quickly evaluated on any
regular grid of points 0 ≤ s1 ≤ · · · ≤ sm, for example, via techniques using the Fast Fourier
Transform (FFT) similar to those described in Appendix D of [53]. See also [11]. Furthermore,
in the match step of the two-step estimation procedure the criterion function Mn,w can be ap-
proximated by a finite sum by discretising the integral in its definition. If F is linear in θ1, . . . , θp

and is univariate, then as already observed in [48], see pages 29 and 31, cf. page 1262 in [7]
and page 1573 in [28], this will lead to a weighted linear least squares problem, which can be
solved in a routine fashion without using for example, random search methods. This is a great
simplification in comparison to the ordinary least squares estimator, which moreover will still
tend to get trapped in local minima of the least squares criterion function despite the fact that F

is linear in its parameters.
We conclude this section with two simple problems illustrating parameter estimation for sys-

tems of ordinary differential equations via the smooth and match method studied in the present
paper. Our first example deals with the Lotka–Volterra system that is a basic model in population
dynamics. It describes evolution over time of the populations of two species, predators and their
preys. In mathematical terms, the Lotka–Volterra model is described by a system consisting of
two ordinary differential equations and depending on the parameter θ = (θ1, θ2, θ3, θ4)

T,{
x′

1(t) = θ1x1(t) − θ2x1(t)x2(t),

x′
2(t) = −θ3x2(t) + θ4x1(t)x2(t).

(4.1)

Here, x1 represents the prey population and x2 the predator population. For additional informa-
tion on the Lotka–Volterra system see, for example, Section 6.2 in [9]. We took θk = 0.5, k =
1, . . . ,4, and the initial condition (x1(0), x2(0)) = (1,0.5). The solution to (4.1) corresponding
to these parameter values is plotted in Figure 1 with a thin line. The left panel represents xθ1,

the right panel xθ2. The solution components xθ1 and xθ2 are of oscillatory nature and are out
of phase of each other. Next, we simulated a small data set of size n = 50 of observations on

Figure 1. Solution of the Lotka–Volterra system (4.1) (thin line) with parameter values
θk = 0.5, k = 1, . . . ,4, and initial condition (x1(0), x2(0)) = (1,0.5), observations Yij given by
(4.2) with εij ∼ N(0,0.01) (crosses) and the estimates x̂j computed with kernel (4.3), weight function
(4.4) and bandwidth b = 1.2 (solid line). The left panel corresponds to xθ1, the right to xθ2.



Parameter estimation for ODEs 1077

the solution xθ of (4.1) over the time interval [0,25] by taking an equidistant grid of time points
ti = 0.5i for i = 1, . . . ,50 and setting

Yij = xθj (ti) + εij , i = 1, . . . ,50, j = 1,2, (4.2)

where the i.i.d. measurement errors εij were generated from the normal distribution N(0, σ 2)

with mean zero and variance σ 2 = 0.01. These observations Yij are represented by crosses in
Figure 1.

The three required ingredients for the construction of an estimator θ̂n are the kernel K, the
weight function w, and the bandwidth b. A general recipe for construction of kernels of an
arbitrary order α is given in Section 1.2.2 of [42] and is based on the use of polynomials that are
orthonormal in L2(−1,1) with weights. In particular, we used the ultraspherical or Gegenbauer
polynomials with weight function v(t) = (1− t2)21[|t |≤1] and constructed the fourth order kernel
with them. Notice that our definition of the kernel of order α in Condition 3.5 is slightly different
from the one in Definition 1.3 of [42], cf. also the remark on page 6 there. For ultraspherical
polynomials, see Section 4.7 in [41]. Our fourth order kernel took the form

K(t) =
(

105

64
− 315

64
t2

)
(1 − t2)21[|t |≤1]. (4.3)

Notice that K is a symmetric function. The kernel K is plotted in Figure 2 in the left panel.
An alternative here is to use the Gaussian-based kernels as in [54], although they do not have a
compact support. As far as the weight function w is concerned, any nonnegative function that is
equal to zero close to the end points of the interval [0,25], is equal to one on the greater part of
the interval [0,25] and is smooth, could have been used. We opted to simply rescale and shift the
function

λc,β(t) =
{1, if |t | ≤ c,

exp[−β exp[−β/(|t | − c)2]/(|t | − 1)2], if c < |t | < 1,

0, if |t | ≥ 1,

Figure 2. Kernel K from (4.3) (left panel) and weight function w from (4.4) (right panel).
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Figure 3. Derivatives of the solution components xθj of the Lotka–Volterra system (4.1) (thin line) with pa-
rameter values θk = 0.5, k = 1, . . . ,4, and initial condition (x1(0), x2(0)) = (1,0.5), together with deriva-
tive estimates x̂′

j
(solid line) computed with kernel (4.3), weight function (4.4), and bandwidth b = 1.2

using observations Yij from (4.2). The left panel corresponds to x̂′
1, the right panel to x̂′

2.

that arose in a different context in [31], see formula (3) on page 552 there, so that it could have
the required properties in our context. We took the constants c and β to be equal to 0.7 and 0.5,

respectively, and then set

w(t) = λc,β

(
1.05

(t − 12.5)

12.5

)
. (4.4)

The function w is plotted in the right panel of Figure 2. Finally, since in the present work con-
struction of the bandwidth selector is not our primary goal, we simply selected b by hand and set
it to 1.2.

The smooth and match estimation procedure was implemented in Mathematica 6.0, see [56].
We first evaluated the kernel estimates of the regression functions xθ1 and xθ2 at the equidistant
grid of points sk = 0.1k with k = 0, . . . ,249. With this number of grid points and the sample size
n = 50 there was no need to use binning to compute the estimates and moreover, binning would
have probably resulted in a slower procedure, cf. Figure 3(b) in [11]; so we did not employ it.
However, the fact that many of the kernel evaluations K((sk − ti )/b) are actually the same, cf.
[11], was taken into account and led to savings in computation time above the naive implemen-
tation of the Priestley–Chao estimator that would directly compute K((t − ti )/b). The estimates
x̂1 and x̂2 are plotted in Figure 1 with a solid line, while the estimates x̂′

1 and x̂′
2 are plotted in

Figure 3. Notice that the estimates x̂′
1 and x̂′

2 are severely undersmoothed. We next approximated
the criterion function Mn,w by a Riemann sum

249∑
k=0

(
x̂′

1(0.1k) − η1x̂1(0.1k) + η2x̂1(0.1k)x̂2(0.1k)
)2

w(0.1k)0.1

+
249∑
k=0

(
x̂′

2(0.1k) + η3x̂2(0.1k) − η4x̂1(0.1k)x̂2(0.1k)
)2

w(0.1k)0.1.
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Note that when performing minimisation, the factor 0.1 can be omitted from both terms in the
above display. The minimisation procedure resulted in the estimate

θ̂n = (0.52,0.50,0.50,0.51)T.

With our implementation, the total time needed for computation of the estimate of θ (including
time needed for kernel and weight function evaluations, but excluding time needed for loading
observations) was about 0.5 seconds on a notebook with Intel(R) Pentium(R) Dual CPU T3200
@ 2.00 GHz processor and 4.00 GB RAM. The parameter estimates appear to be sufficiently
accurate in this particular case.

Our second example deals with the Van der Pol oscillator that describes an electric circuit
containing a nonlinear element, see page 333, Problem 12 on page 365, and the references on
page 373 in [9]. The corresponding system of ordinary differential equations takes the form{

x′
1(t) = θ−1

(
x1(t) − 1

3 (x1(t))
3 + x2(t)

)
,

x′
2(t) = −θx1(t).

(4.5)

We took θ = 0.8 and the initial condition (x1(0), x2(0)) = (1,1). The solution to (4.5) is of
oscillatory nature and the components xθ1 and xθ2 are out of phase of each other. The solution is
plotted in Figure 4 with a thin line. We then simulated a data set of size n = 50 of observations
on the solution xθ of (4.5) over the time interval [0,25] at an equidistant grid of time points
ti = 0.5i, i = 1, . . . ,50, by setting

Yij = xθj (ti) + εij , i = 1, . . . ,50, j = 1,2, (4.6)

where the i.i.d. measurement errors εij were generated from the normal distribution N(0, σ 2)

with mean zero and variance σ 2 = 0.01. These observations Yij are plotted with crosses in Fig-

Figure 4. Solution of the Van der Pol system (4.5) (thin line) with parameter value θ = 0.8 and initial
condition (x1(0), x2(0)) = (1,1), observations Yij given by (4.6) with εij ∼ N(0,0.01) (crosses) and the
estimates x̂j computed with kernel (4.3), weight function (4.4), and bandwidth b = 1 (solid line). The left
panel corresponds to xθ1 and the right to xθ2.
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Figure 5. Derivatives of the solution components xθj of the Van der Pol system (4.5) (thin line) with
parameter value θ = 0.8 and initial condition (x1(0), x2(0)) = (1,1), together with derivative estimates x̂′

j

(solid line) computed with kernel (4.3), weight function (4.4), and bandwidth b = 1 using observations Yij

from (4.6). The left panel corresponds to x̂′
1 and the right panel to x̂′

2.

ure 4. When computing the estimate θ̂n, we used the same kernel and the same weight function
as in the previous example, while the bandwidth was set to b = 1. The estimates of the solution
components xθ1 and xθ2 are depicted by a solid line in Figure 4, while the derivatives x′

θ1 and
x′
θ2 together with their estimates are given in Figure 5. The estimation procedure resulted in an

estimate θ̂n = 0.83 and the computation time was about 0.4 seconds.
We intend to perform a more practically oriented study exploring some of the ideas mentioned

in this section in a separate publication.

5. Proofs

When comparing two sequences αn and βn of real numbers, we will use the symbol �, meaning
αn is less or equal than βn up to a universal multiplicative constant that is independent of index
n. The symbol  will denote the fact that two sequences of real numbers are asymptotically of
the same order.

Proof of Proposition 3.1. We first prove (3.4). For any positive ε by Chebyshev’s inequality we
have

P
(

sup
t∈[δ,1−δ]

|μ̂n(t) − μ(t)| > ε
)

≤ 2

ε2

{
sup

t∈[δ,1−δ]
|E[μ̂n(t)] − μ(t)|2

+ E

[
sup

t∈[δ,1−δ]
|μ̂n(t) − E[μ̂n(t)]|2

]}
(5.1)

= 2

ε2
(T1 + T2).
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By formula (A.1) from Appendix A.1, we can write

E[μ̂n(t)] − μ(t) =
∫ 1

0
μ(s)

1

b
K

(
t − s

b

)
ds − μ(t) + O

(
1

nb2

)
.

For all n large enough, we have b ≤ δ, because b → 0. Then for all such n, if t ∈ [δ,1 − δ], a
standard argument (cf. page 6 in [42]), namely Taylor’s formula up to order α applied to μ and
the moment conditions on the kernel K formulated in Condition 3.5, yields

sup
t∈[δ,1−δ]

|E[μ̂n(t)] − μ(t)| ≤ bα ‖μ(α)‖∞
α!

∫ 1

−1
|uαK(u)|du + O

(
1

nb2

)
. (5.2)

Next we turn to T2. With argumentation similar to that in the proof of Theorem 1.8 of [42] and
setting

Si(t) = ti − ti−1

b
K

(
t − ti

b

)
, N = n2, sj = j

N
,

for j = 1, . . . ,N, we have

A = sup
t∈[δ,1−δ]

|μ̂n(t) − E[μ̂n(t)]|

= sup
t∈[δ,1−δ]

∣∣∣∣∣
n∑

i=1

Si(t)εi

∣∣∣∣∣
≤ max

1≤j≤N

∣∣∣∣∣
n∑

i=1

Si(sj )εi

∣∣∣∣∣ + sup
t,t ′:|t−t ′|≤N−1

∣∣∣∣∣
n∑

i=1

(
Si(t) − Si(t

′)
)
εi

∣∣∣∣∣.
By the mean value theorem and Condition 3.1, the inequality

|Si(t) − Si(t
′)| � ‖K ′‖∞

1

nb2
|t − t ′|

holds for any t, t ′ ∈ R, where ‖K ′‖∞ is finite. Hence, by the c2-inequality

A2 ≤
(

max
1≤j≤N

∣∣∣∣∣
n∑

i=1

εiSi(sj )

∣∣∣∣∣ + sup
t,t ′:|t−t ′|≤N−1

∣∣∣∣∣
n∑

i=1

(
Si(t) − Si(t

′)
)
εi

∣∣∣∣∣
)2

(5.3)

� max
1≤j≤N

|Zj |2 + ‖K ′‖2∞
n2b4N2

( n∑
i=1

|εi |
)2

,

where Zj = ∑n
i=1 Si(sj )εi . Notice that

1

n2b4N2
E

[(
n∑

i=1

|εi |
)2]

≤ E[ε2
1 ]

N2b4
= σ 2

n4b4
= o

(
1

nb

)
. (5.4)
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Moreover, we have

E[Z2
j ] =

n∑
i=1

σ 2(ti − ti−1)
2
(

1

b
K

(
ti − sj

b

))2

� σ 2‖K‖2∞
n2b2

n∑
i=1

1[|ti−sj |≤b]

≤ 1

nb
c1σ

2‖K‖2∞ max

(
2,

1

nb

)
,

where the last inequality follows from Condition 3.1. Since the Zj ’s, being a linear combination
of independent Gaussian random variables, are themselves Gaussian, Corollary 1.3 of [42] and
the fact that N = n2 then entail

E

[
max

1≤j≤N
|Zj |2

]
= O

(
logN

nb

)
= O

(
logn

nb

)
. (5.5)

Combining (5.3), (5.4) and (5.5), we obtain

E[A2] = O

(
logn

nb

)
. (5.6)

Taking

ε = M

(
bα + 1

nb2
+

√
logn

nb

)
with an appropriate constant M yields (3.4) by (5.1), (5.2), and (5.6).

As far as the proof of (3.5) is concerned, it is very much similar to the proof of (3.4) and is
therefore omitted. This completes the proof of the proposition. �

Proof of Proposition 3.2. From the definition of Mn,w(η) and Mw(η), the elementary inequality∣∣‖a1‖2 − ‖a2‖2
∣∣ ≤ ‖a1 − a2‖(‖a1‖ + ‖a2‖)

and the Cauchy–Schwarz inequality we have

|Mn,w(η) − Mw(η)|

≤
{∫ 1

0
‖x̂′(t) − F(xθ (t), θ) + F(xθ (t), η) − F(x̂(t), η)‖2w(t)dt

}1/2

(5.7)

×
{√∫ 1

0
‖x̂′(t) − F(x̂(t), η)‖2w(t)dt +

√∫ 1

0
‖F(xθ (t), θ) − F(xθ (t), η)‖2w(t)dt

}

= √
T1

(√
T2 + √

T 3
)
.
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For T1 we have that

T1 ≤ 2
∫ 1−δ

δ

‖x̂′(t) − F(xθ (t), θ)‖2w(t)dt

(5.8)

+ 2
∫ 1−δ

δ

‖F(xθ (t), η) − F(x̂(t), η)‖2w(t)dt.

By (3.7) it holds that

sup
η∈�

∫ 1−δ

δ

‖x̂′(t) − F(xθ (t), θ)‖2w(t)dt

=
∫ 1−δ

δ

‖x̂′(t) − x′
θ (t)‖2w(t)dt

(5.9)

≤
d∑

i=1

sup
t∈[δ,1−δ]

|x̂′
i (t) − x′

i,θ (t)|2
∫ 1−δ

δ

w(t)dt

P→ 0.

Moreover, by Lemma A.3 from Appendix A.1 we obtain that

sup
η∈�

∫ 1−δ

δ

‖F(x̂(t), η) − F(xθ (t), η)‖2w(t)dt
P→ 0. (5.10)

Furthermore, T3 = OP (1) as n → ∞, because

sup
η∈�

∫ 1−δ

δ

‖F(xθ (t), θ) − F(xθ (t), η)‖2w(t)dt < ∞ (5.11)

by compactness of � and Condition 3.4, and T2 = OP (1), because

sup
η∈�

∫ 1−δ

δ

‖x̂′(t) − F(x̂(t), η)‖2w(t)dt = OP (1) (5.12)

holds by the inequality∫ 1−δ

δ

‖x̂′(t) − F(x̂(t), η)‖2w(t)dt

�
∫ 1−δ

δ

‖x̂′(t) − x′
θ (t)‖2w(t)dt +

∫ 1−δ

δ

‖x′
θ (t) − F(xθ (t), η)‖2w(t)dt

+
∫ 1−δ

δ

‖F(xθ (t), η) − F(x̂(t), η)‖2w(t)dt,
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Corollary 3.1, compactness of �, Condition 3.4, and Lemma A.3 from Appendix A.1. Combi-
nation of (5.7)–(5.12) implies that

sup
η∈�

|Mn,w(η) − Mw(η)| P→ 0.

The statement of the proposition then follows from this fact, the identifiability condition (3.9),
and Theorem 5.7 of [45] or more generally Corollary 3.2.3 in [46]. �

Proof of Proposition 3.3. We interpret the derivative of a one-dimensional function of θ as
a row p-vector of partial derivatives and we denote the d × p-matrix of partial derivatives
∂Fi(x, θ)/∂θj , i = 1, . . . , d, j = 1, . . . , p, by F ′

θ (x, θ).

We have

d

dθ
‖x̂′(t) − F(x̂(t), θ)‖2 = −2

(
x̂′(t) − F(x̂(t), θ)

)T
F ′

θ (x̂(t), θ).

With this in mind and interchanging the order of integration and differentiation, we find that the
derivative of Mn,w from (3.8) with respect to θ is given by

−2
∫ 1−δ

δ

(
x̂′(t) − F(x̂(t), θ)

)T
F ′

θ (x̂(t), θ)w(t)dt.

Since θ is an interior point of �, there exists an ε > 0, such that the open ball of radius ε around
θ is contained in �. Take

Gn = {|θ̂n − θ | < ε/2}
and notice that by consistency of θ̂n we have P(Gn) → 1 as n → ∞. If θ̂n is a point of minimum
of Mn,w, then necessarily

1Gn

∫ 1−δ

δ

(
x̂′(t) − F(x̂(t), θ̂n)

)T
F ′

θ (x̂(t), θ̂n)w(t)dt = 0,

where 0 at the right-hand side denotes now a row p-vector with all its entries equal to zero. The
latter display can be rearranged as

1Gn

∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T × {(
x̂′(t) − x′

θ (t)
) + (

F(xθ (t), θ) − F(x̂(t), θ)
)

+ (
F(x̂(t), θ) − F(x̂(t), θ̂n)

)}
w(t)dt = 0,

where now 0 on the right-hand side denotes a column p-vector with its entries equal to zero.
Note that we have

F(x̂(t), θ) − F(x̂(t), θ̂n) =
∫ 1

0
F ′

θ

(
x̂(t), θ̂n + λ(θ − θ̂n)

)
dλ(θ − θ̂n).
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Hence,

1Gn

∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T
∫ 1

0
F ′

θ

(
x̂(t), θ̂n + λ(θ − θ̂n)

)
dλw(t)dt (θ̂n − θ)

= 1Gn

∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(x̂′(t) − x′
θ (t)

)
w(t)dt (5.13)

+ 1Gn

∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(F(xθ (t), θ) − F(x̂(t), θ)
)
w(t)dt

holds. By the fact that x̂ converges in probability as a random element on [δ,1 − δ] to xθ , see
(3.6), consistency of θ̂n, continuity of F ′

θ , continuity of integration and the continuous mapping
theorem, see Theorem 18.11 in [45], we have∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T
∫ 1

0
F ′

θ

(
x̂(t), θ̂n + λ(θ − θ̂n)

)
dλw(t)dt

(5.14)
P→

∫ 1−δ

δ

(F ′
θ (xθ (t), θ))TF ′

θ (xθ (t), θ)w(t)dt = Jθ ,

where Jθ is nonsingular by assumption (3.10). Therefore, (5.13) shows that the asymptotic be-
haviour of θ̂n − θ is given by

J−1
θ

(∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(x̂′(t) − x′
θ (t)

)
w(t)dt

(5.15)

+
∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(F(xθ (t), θ) − F(x̂(t), θ)
)
w(t)dt

)
.

It thus remains to be shown that this expression in fact reduces to the right-hand side of (3.11).
First of all, notice that∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(x̂′(t) − x′
θ (t)

)
w(t)dt

=
∫ 1−δ

δ

(F ′
θ (xθ (t), θ))T(x̂′(t) − x′

θ (t)
)
w(t)dt

+
∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n) − F ′
θ (xθ (t), θ)

)T(
x̂′(t) − x′

θ (t)
)
w(t)dt (5.16)

= −
∫ 1−δ

δ

(
d

dt
[F ′

θ (xθ (t), θ)w(t)]
)T(

x̂(t) − xθ (t)
)

dt

+
∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n) − F ′
θ (xθ (t), θ)

)T(
x̂′(t) − x′

θ (t)
)
w(t)dt,
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where the last equality follows by integration by parts and the fact that w(δ) = w(1 − δ) = 0.

The first term at the right-hand side of (5.16) appears also in the leading term �(x̂) − �(xθ ) of
(3.11). We will now show that the other term at the right-hand side of (5.16) is negligible, that is,∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n) − F ′
θ (xθ (t), θ)

)T(
x̂′(t) − x′

θ (t)
)
w(t)dt = oP (n−1/2).

By the Cauchy–Schwarz inequality,∥∥∥∥∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n) − F ′
θ (xθ (t), θ)

)T(
x̂′(t) − x′

θ (t)
)
w(t)dt

∥∥∥∥
≤

{∫ 1−δ

δ

‖F ′
θ (x̂(t), θ̂n) − F ′

θ (xθ (t), θ)‖2w(t)dt

}1/2{∫ 1−δ

δ

‖x̂′(t) − x′
θ (t)‖2w(t)dt

}1/2

,

where ‖ · ‖ denotes the Frobenius or the Hilbert–Schmidt norm of a matrix (recall that it is
submultiplicative). By (3.7), we have{∫ 1−δ

δ

‖x̂′(t) − x′
θ (t)‖2w(t)dt

}1/2

= OP (1)

(
bα−1 + 1

nb3
+

√
logn

nb3

)
.

Furthermore, ∫ 1−δ

δ

‖F ′
θ (x̂(t), θ̂n) − F ′

θ (xθ (t), θ)‖2w(t)dt

≤ 2
∫ 1−δ

δ

‖F ′
θ (x̂(t), θ̂n) − F ′

θ (xθ (t), θ̂n)‖2w(t)dt

(5.17)

+ 2
∫ 1−δ

δ

‖F ′
θ (xθ (t), θ̂n) − F ′

θ (xθ (t), θ)‖2w(t)dt

= 2T1 + 2T2.

Denote F ′
θ (x, θ) = A(x, θ) = (ai,j (x, θ))i,j . For T1, we have

T1 =
∑
i,j

∫ 1−δ

δ

(
ai,j (x̂(t), θ̂n) − ai,j (xθ (t), θ̂n)

)2
w(t)dt

=
∑
i,j

∫ 1−δ

δ

(∫ 1

0

∂

∂x
ai,j

(
xθ (t) + λ

(
x̂(t) − xθ (t)

)
, θ̂n

)
dλ

(
x̂(t) − xθ (t)

))2

w(t)dt

≤
(

sup
t∈[δ,1−δ]

‖x̂(t) − xθ (t)‖2
)

×
∑
i,j

∫ 1−δ

δ

∫ 1

0

∥∥∥∥ ∂

∂x
ai,j

(
xθ (t) + λ

(
x̂(t) − xθ (t)

)
, θ̂n

)∥∥∥∥2

dλw(t)dt.
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By (3.6), as well as consistency of θ̂n, Condition 3.4 and the continuous mapping theorem, the
right-hand side in the last inequality is of order

OP (1)

{(
bα + 1

nb2

)2

+ logn

nb

}
.

By a similar argument, the inequality

T2 =
∫ 1−δ

δ

‖F ′
θ (xθ (t), θ̂n) − F ′

θ (xθ (t), θ)‖2w(t)dt

≤ ‖θ̂n − θ‖2
∑
i,j

∫ 1−δ

δ

∫ 1

0

∥∥∥∥ ∂

∂θ
ai,j

(
xθ (t), θ + λ(θ̂n − θ)

)∥∥∥∥2

dλw(t)dt

holds. Here with some natural abuse of notation we first differentiate ai,j with respect to its
second argument θ and only afterwards evaluate the obtained derivative at xθ (t) and θ + λ(θ̂n −
θ). Since the integrals at the right-hand side of the above display are bounded in probability, we
then get {∫ 1−δ

δ

‖F ′
θ (xθ (t), θ̂n) − F ′

θ (xθ (t), θ)‖2w(t)dt

}1/2

= OP (‖θ̂n − θ‖). (5.18)

Now notice that (5.15) yields

‖θ̂n − θ‖ ≤ OP (1)

(∥∥∥∥∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(x̂′(t) − x′
θ (t)

)
w(t)dt

∥∥∥∥
+

∥∥∥∥∫ 1−δ

δ

(F ′
θ (x̂(t), θ̂n))

T(F(xθ (t), θ) − F(x̂(t), θ)
)
w(t)dt

∥∥∥∥).

The Cauchy–Schwarz inequality then gives

‖θ̂n − θ‖ ≤ OP (1)

{∫ 1−δ

δ

‖F ′
θ (x̂(t), θ̂n)‖2w(t)dt

}1/2

×
{∫ 1−δ

δ

‖x̂′(t) − x′
θ (t)‖2w(t)dt

}1/2

+ OP (1)

{∫ 1−δ

δ

‖F ′
θ (x̂(t), θ̂n)‖2w(t)dt

}1/2

×
{∫ 1−δ

δ

‖F(xθ (t), θ) − F(x̂(t), θ)‖2w(t)dt

}1/2

.
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By a by now standard argument, that is, (3.6), (3.7), and the continuous mapping theorem, the
right-hand side can be further bounded to obtain

‖θ̂n − θ‖ ≤ OP (1)

(
bα−1 + 1

nb3
+

√
logn

nb3
+ bα + 1

nb2
+

√
logn

nb

)
. (5.19)

Summarising the above results, we finally get that the second term at the right-hand side of (5.16)
satisfies ∥∥∥∥∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n) − F ′
θ (xθ (t), θ)

)T(
x̂′(t) − x′

θ (t)
)
w(t)dt

∥∥∥∥
≤ OP (1)

(
bα−1 + 1

nb3
+

√
logn

nb3

)2

= oP (n−1/2),

where the last equality follows from our conditions on b. Here we also see that the condition
α ≥ 3 is needed for the conclusion to hold.

To conclude the proof, it remains to consider the second term within brackets in (5.15). We
have ∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n)
)T(

F(xθ (t), θ) − F(x̂(t), θ)
)
w(t)dt

=
∫ 1−δ

δ

(F ′
θ (xθ (t), θ))T(F(xθ (t), θ) − F(x̂(t), θ)

)
w(t)dt (5.20)

+
∫ 1−δ

δ

(
F ′

θ (x̂(t), θ̂n) − F ′
θ (xθ (t), θ)

)T(
F(xθ (t), θ) − F(x̂(t), θ)

)
w(t)dt.

This can be analysed in a by now routine fashion, but we provide proofs. We first study the first
term at the right-hand side. By a standard argument, we have∫ 1−δ

δ

(F ′
θ (xθ (t), θ))T(F(xθ (t), θ) − F(x̂(t), θ)

)
w(t)dt

= −
∫ 1−δ

δ

(F ′
θ (xθ (t), θ))T

∫ 1

0
F ′

x

(
xθ (t) + λ

(
x̂(t) − xθ (t)

)
, θ

)
dλ

(
x̂(t) − xθ (t)

)
w(t)dt

= −
∫ 1−δ

δ

(F ′
θ (xθ (t), θ))TF ′

x(xθ (t), θ)
(
x̂(t) − xθ (t)

)
w(t)dt

−
∫ 1−δ

δ

(F ′
θ (xθ (t), θ))T

∫ 1

0

[
F ′

x

(
xθ (t) + λ

(
x̂(t) − xθ (t)

)
, θ

)
− F ′

x(xθ (t), θ)
]

dλ
(
x̂(t) − xθ (t)

)
w(t)dt

= T3 + T4.
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Recalling (3.12), we see that T3 appears in the leading term �(x̂)−�(xθ ) in (3.11) and completes
it together with the first term at the right-hand side of (5.16). Next, we consider T4. Introduce the
notation F ′

x(x, θ) = B(x, θ) = (bi,j (x, θ))i,j . We have∥∥∥∥∫ 1

0

[
F ′

x

(
xθ (t) + λ(x̂(t) − xθ (t)), θ

) − F ′
x(xθ (t), θ)

]
dλ

(
x̂(t) − xθ (t)

)∥∥∥∥
≤

(
sup

t∈[δ,1−δ]
‖x̂(t) − xθ (t)‖

)
×

∫ 1

0

∥∥F ′
x

(
xθ (t) + λ

(
x̂(t) − xθ (t)

)
, θ

) − F ′
x(xθ (t), θ)

∥∥dλ

≤
(

sup
t∈[δ,1−δ]

‖x̂(t) − xθ (t)‖
)

×
∫ 1

0

∑
i,j

∣∣bi,j

(
xθ (t) + λ

(
x̂(t) − xθ (t)

)
, θ

) − bij (xθ (t), θ)
∣∣dλ

≤
(

sup
t∈[δ,1−δ]

‖x̂(t) − xθ (t)‖
)

×
∑
i,j

∫ 1

0

∥∥∥∥∫ 1

0

∂

∂x
bij

(
xθ (t) + κλ

(
x̂(t) − xθ (t)

)
, θ

)
dκλ

(
x̂(t) − xθ (t)

)∥∥∥∥dλ

≤
(

sup
t∈[δ,1−δ]

‖x̂(t) − xθ (t)‖2
)

×
∑
i,j

∫ 1

0

∫ 1

0

∥∥∥∥ ∂

∂x
bij

(
xθ (t) + κλ

(
x̂(t) − xθ (t)

)
, θ

)∥∥∥∥dκ dλ,

where in the last inequality we used the fact that 0 ≤ λ ≤ 1. Since by convergence in probability
of x̂ to xθ , Condition 3.4 and the continuous mapping theorem the integrals on the right-hand
side of the above display are bounded in probability, it follows from (3.6) that ‖T4‖ is

OP (1)

{(
bα + 1

nb2

)2

+ logn

nb
+

(
bα + 1

nb3

)√
logn

nb

}
.

This in turn is oP (n−1/2) because of the conditions on b. Finally, we treat the second term at the
right-hand side of (5.20). By the Cauchy–Schwarz inequality, its norm can be bounded by{∫ 1−δ

δ

‖F ′
θ (x̂(t), θ̂n) − F ′

θ (xθ (t), θ)‖2w(t)dt

}1/2

×
{∫ 1−δ

δ

‖F(xθ (t), θ) − F(x̂(t), θ)‖2w(t)dt

}1/2

.
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Each of the terms at the right-hand side have already been treated above, see (5.17) and (5.19),
and it follows that the expression in the last display is oP (n−1/2). This concludes the proof of
Proposition 3.3. �

Proof of Proposition 3.4. By a standard decomposition, we have

E
[(

�(μ̂n) − �(μ)
)2] = (

E[�(μ̂n)] − �(μ)
)2 + Var[�(μ̂n)]

= T 2
1 + T2.

The statement of the theorem will follow from Chebyshev’s inequality, provided we show that
the right-hand side of the above display is O(n−1). For T1, we have

|T1| =
∣∣∣∣∫

R

v(t)k(t)
(
E[μ̂n(t)] − μ(t)

)
dt

∣∣∣∣
≤ sup

t∈[δ,1−δ]
|E[μ̂n(t)] − μ(t)|

∫
R

|v(t)k(t)|dt

= O

(
bα + 1

nb2

)
,

where the last equality follows from (5.2). Taking 1/(2α) ≤ γ ≤ 1/4 gives that T1 is O(n−1/2).

We next consider T2. By independence of the εi ’s, the fact that maxi |ti − ti−1| � n−1, bounded-
ness of v and k, and integrability of K, we have

T2 = Var

[
n∑

i=1

(ti − ti−1)Yi

∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t − ti

b

)
dt

]

� σ 2
n∑

i=1

(ti − ti−1)
2
(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t − ti

b

)
dt

)2

= O

(
1

n

)
.

This completes the proof of Proposition 3.4. �

Proof of Theorem 3.1. The result is an easy consequence of Propositions 3.3 and 3.4. �

Appendix: Auxiliary results

A.1. Technical lemmas

The proof of Proposition 3.1 is based on the following two lemmas, which provide integral
approximations to the bias and variance of the estimator μ̂n and its derivative μ̂′

n at a point t.
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Lemma A.1. Let μ and K be continuously differentiable and let K be supported on the interval
[−1,1]. For any t ∈ [0,1]

E[μ̂n(t)] =
∫ 1

0
μ(s)

1

b
K

(
t − s

b

)
ds + O

(
1

nb2

)
(A.1)

holds in the regression model (3.2). The order bound on the remainder term in (A.1) is uniform
in t ∈ [0,1].

Proof. The proof is based on the Riemann sum approximation of the integral. Since E[εi] = 0,

we have

E[μ̂n(t)] =
∫ 1

0
μ(s)

1

b
K

(
t − s

b

)
ds

−
∫ 1

0
μ(s)

1

b
K

(
t − s

b

)
ds +

n∑
i=1

(ti − ti−1)μ(ti)
1

b
K

(
t − ti

b

)
.

The first term at the right-hand side of this expression is the first term of (A.1). We will now
establish an upper bound on the difference of the other two terms. Using continuous differentia-
bility of μ and K and the fact that maxi |ti − ti−1| = O(n−1), we have

∣∣∣∣∫ 1

0
μ(s)

1

b
K

(
t − s

b

)
ds −

n∑
i=1

(ti − ti−1)μ(ti)
1

b
K

(
t − ti

b

)∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

{
μ(s)

1

b
K

(
t − s

b

)
− μ(ti)

1

b
K

(
t − ti

b

)}
ds

∣∣∣∣∣
≤

n∑
i=1

∫ ti

ti−1

∣∣∣∣μ(s)
1

b
K

(
t − s

b

)
− μ(s)

1

b
K

(
t − ti

b

)∣∣∣∣ds

+
n∑

i=1

∫ ti

ti−1

∣∣∣∣μ(s)
1

b
K

(
t − ti

b

)
− μ(ti)

1

b
K

(
t − ti

b

)∣∣∣∣ds

� 1

nb2
‖μ‖∞‖K ′‖∞ + 1

nb
‖μ′‖∞‖K‖∞,

which is of order n−1b−2. This establishes (A.1). �

The second lemma can be proved along the same lines as the previous one and therefore we
omit its proof. The existence of the second derivative of K is needed in the proof of this lemma.
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Lemma A.2. Let μ be continuously differentiable and let K be twice continuously differentiable
and be supported on the interval [−1,1]. For all t ∈ [0,1]

E[μ̂′
n(t)] =

∫ 1

0
μ(s)

1

b2
K ′

(
t − s

b

)
ds + O

(
1

nb3

)
(A.2)

holds in the regression model (3.2). Furthermore, if b ≤ δ and t ∈ [δ,1 − δ], then integration by
parts yields

E[μ̂′
n(t)] =

∫ 1

−1
μ′(t − bu)K(u)du + O

(
1

nb3

)
. (A.3)

The order bounds on the remainder terms in (A.2) and (A.3) are uniform in t.

The following lemma is used in the proof of Proposition 3.2.

Lemma A.3. Let the stochastic process Xn = (Xn,η)η∈� be defined as

Xn = (Xn,η)η∈� =
(∫ 1−δ

δ

‖F(x̂(t), η) − F(xθ (t), η)‖2w(t)dt

)
η∈�

.

Then under the conditions of Proposition 3.2 we have Xn
P→ 0, where 0 at the right-hand side

denotes the zero process on � and convergence is understood as convergence for random ele-
ments with values in the space C(�) of continuous functions on �, which is equipped with the
supremum norm.

Proof. To prove the lemma, we will verify the conditions of Theorem 18.14 of [45]. By (3.6)
and the continuous mapping theorem, see Theorem 18.11 in [45], for every fixed η it holds that∫ 1−δ

δ

‖F(x̂(t), η) − F(xθ (t), η)‖2w(t)dt
P→ 0. (A.4)

Consequently, for any positive integer k and any η1, . . . , ηk ∈ � we have

(Xn,η1 , . . . ,Xn,ηk
) � (0, . . . ,0︸ ︷︷ ︸

k

)

and hence condition (i) of Theorem 18.14 in [45] is satisfied. Introduce

G =
d⋂

j=1

{
sup

t∈[δ,1−δ]
|x̂j (t) − xθj (t)| ≤ β

}
and notice

Gc =
d⋃

j=1

{
sup

t∈[δ,1−δ]
|x̂j (t) − xθj (t)| > β

}
.
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For any positive ε and β and any partition �1, . . . ,�m of �, we have

P
(

sup
	

sup
η,ζ∈�	

|Xn,η − Xn,ζ | ≥ ε
)

(A.5)
≤ P

(
sup

	

sup
η,ζ∈�	

|Xn,η − Xn,ζ | ≥ ε;G
)

+ P(Gc).

By (3.6), we know that

lim
n→∞P(Gc) ≤ lim

n→∞

d∑
j=1

P
(

sup
t∈[δ,1−δ]

|x̂j (t) − xθj (t)| > β
)

= 0. (A.6)

We will now show that for arbitrarily small positive ρ and ε there exists a partition �1, . . . ,�m

of �, such that

lim sup
n→∞

P
(

sup
	

sup
η,ζ∈�	

|Xn,η − Xn,ζ | ≥ ε;G
)

≤ ρ.

Together with (A.5) and (A.6) this will imply condition (ii) of Theorem 18.14 in [45] and hence
also the fact that Xn converges weakly to zero. The statement of the lemma will then be a simple
consequence of the fact that convergence to a constant in distribution and in probability are
equivalent, see Theorem 18.10 of [45].

Notice that

|Xn,η − Xn,ζ |

≤
∫ 1−δ

δ

‖F(x̂(t), η) − F(xθ (t), η) − F(x̂(t), ζ ) + F(xθ (t), ζ )‖

× (‖F(x̂(t), η) − F(xθ (t), η)‖ + ‖F(x̂(t), ζ ) − F(xθ (t), ζ )‖)w(t)dt

≤
{∫ 1−δ

δ

‖F(x̂(t), η) − F(xθ (t), η) − F(x̂(t), ζ ) + F(xθ (t), ζ )‖2w(t)dt

}1/2

×
{∫ 1−δ

δ

(‖F(x̂(t), η) − F(xθ (t), η)‖ + ‖F(x̂(t), ζ ) − F(xθ (t), ζ )‖)2
w(t)dt

}1/2

= √
T3

√
T4.

For T3, we have

T3 ≤ 2
∫ 1−δ

δ

‖F(x̂(t), η) − F(x̂(t), ζ )‖2w(t)dt

+ 2
∫ 1−δ

δ

‖F(xθ (t), η) − F(xθ (t), ζ )‖2w(t)dt.
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Restricting ω’s from the sample space � to the set G, we get

T3 ≤ 2
∫ 1−δ

δ

∫ 1

0

∥∥F ′
θ

(
x̂(t), ζ + λ(η − ζ )

)∥∥2 dλ‖η − ζ‖2w(t)dt

+ 2
∫ 1−δ

δ

∫ 1

0

∥∥F ′
θ

(
xθ (t), ζ + λ(η − ζ )

)∥∥2 dλ‖η − ζ‖2w(t)dt

≤ 4‖η − ζ‖2
∫ 1−δ

δ

w(t)dt sup
‖xj ‖≤‖xθj ‖∞+β,j=1,...,d

ν∈�

‖F ′
θ (x, ν)‖ = C(β,w, θ,�)‖η − ζ‖2

on the set G. Notice that C(β,w, θ,�) is a finite constant, because ‖F ′
θ (x, ν)‖ is continuous and

its supremum is taken over a compact set. By similar techniques, one can show that on the set G

one has T4 ≤ C′(β,w, θ,�) for some constant C′(β,w, θ,�), which depends only on β,w, θ,

and �. Consequently,

P
(

sup
	

sup
η,ζ∈�	

|Xn,η − Xn,ζ | ≥ ε;G
)

(A.7)
≤ P

(
sup

	

sup
η,ζ∈�	

√
C(β,w, θ,�)C′(β,w, θ,�)‖η − ζ‖ ≥ ε

)
.

Now take a partition �1, . . . ,�m of �, such that for all 	 = 1, . . . ,m

0 < diam�	 <
ε√

C(β,w, θ,�)C′(β,w, θ,�)

holds, where diam�	 denotes the diameter of the set �	. Observe that since � ⊂ R
p is compact,

there indeed exists a finite m for which this is satisfied. The right-hand side of (A.7) for such a
partition is zero and consequently the conditions (i) and (ii) of Theorem 18.14 of [45] hold. This
completes the proof of the lemma. �

A.2. Bounded measurement errors

Here we state and prove a modification of Proposition 3.1 for the case when the εi ’s are bounded.

Proposition A.1. In the regression model (3.2), replace the assumption of Gaussianity of the
εi ’s by |εi | ≤ C for some constant C > 0 and suppose Condition 3.5 holds.

(i) If μ is α ≥ 1 times continuously differentiable and b → 0 as n → ∞, then

sup
t∈[δ,1−δ]

|μ̂n(t) − μ(t)| = OP

(
bα + 1

nb2
+

√
logn

nb

)
. (A.8)
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(ii) If μ is α ≥ 2 times continuously differentiable and b → 0 as n → ∞, then

sup
t∈[δ,1−δ]

|μ̂′
n(t) − μ′(t)| = OP

(
bα−1 + 1

nb3
+

√
logn

nb3

)
(A.9)

is valid. Moreover, μ̂n and μ̂′
n are consistent on [δ,1 − δ], if nb3/ logn → ∞ holds additionally.

Proof. The proof of (A.8) follows the same steps as the proof of (3.4). The only difference is
that we need to show that

E

[
max

1≤j≤N
|Zj |2

]
= O

(
logn

nb

)
(A.10)

holds also for bounded εi ’s and not only for the Gaussian εi ’s. To this end, we will use some
results from Chapter 2.2 of [46]. Let η be a nondecreasing and convex function on [0,∞), such
that η(0) = 0. The Orlicz norm ‖X‖η of a random variable X is defined as

‖X‖η = inf

{
C > 0 : E

[
η

( |X|
C

)]
≤ 1

}
.

A particular η that we will use is η(x) = exp(x2) − 1. Since the εi ’s have mean zero and are
bounded, for any x > 0 Hoeffding’s inequality, see Theorem 2 in [22], implies

P(|Zj | > x) ≤ 2 exp

(
−2x2

/(
n∑

i=1

C2(Si(sj ))
2

))
.

By Condition 3.1

C2
n∑

i=1

(Si(sj ))
2 � C2‖K‖2∞

1

n2b2

n∑
i=1

1[|sj −ti |≤b]

≤ 1

nb
C2‖K‖2∞c1 max

(
2,max

n

1

nb

)
= 1

C0nb

holds. Thus, the inequality

P(|Zj | > x) ≤ 2 exp(−2C0nbx2)

is valid. By Lemma 2.2.1 of [46], it then follows that

max
j

‖Zj‖η ≤ C1√
nb

, (A.11)

where C1 depends on C0 only. Let ‖X‖2 denote the L2 norm of a random variable X, that is,
‖X‖2 =

√
E[X2]. Notice that the inequality

‖X‖2 ≤ ‖X‖η, (A.12)
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holds, because of η(x) ≥ x2. The inequalities (A.11) and (A.12) combined with Lemma 2.2.2 of
[46] yield that √

E

[
max

1≤j≤N
|Zj |2

]
≤ C3√

nb
η−1(N),

where the constant C3 is independent of N. Now notice that for N ≥ 4

η−1(N) = √
log(N + 1) ≤

√
log(N2) = 2

√
logn.

Hence, (A.10) holds and this completes the proof of (A.8). Formula (A.9) can be proved in a
similar fashion. �

Acknowledgements

The research reported here was started when the first author was a Postdoc at EURANDOM,
Eindhoven, and the second one was a Senior Fellow there. The authors would like to thank the
referees and the Associate Editor for their suggestions and comments on an earlier draft of the
paper.

References

[1] Arnol’d, V.I. (1973). Ordinary Differential Equations. Cambridge, MA: MIT Press. MR0361233
[2] Bellman, R. and Roth, R.S. (1971). The use of splines with unknown end points in the identification

of systems. J. Math. Anal. Appl. 34 26–33. MR0277269
[3] Benedetti, J.K. (1977). On the nonparametric estimation of regression functions. J. Roy. Statist. Soc.

Ser. B 39 248–253. MR0494656
[4] Bickel, P.J., Klaassen, C.A.J., Ritov, Y. and Wellner, J.A. (1998). Efficient and Adaptive Estimation

for Semiparametric Models. New York: Springer. MR1623559
[5] Bickel, P.J. and Ritov, Y. (2003). Nonparametric estimators which can be “plugged-in”. Ann. Statist.

31 1033–1053. MR2001641
[6] Bock, H.G. (1983). Recent advances in parameter identification techniques for ODE. In Numerical

Treatment of Inverse Problems in Differential and Integral Equations (Heidelberg, 1982). Progr. Sci.
Comput. 2 95–121. Boston, MA: Birkhäuser. MR0714563

[7] Brunel, N.J.B. (2008). Parameter estimation of ODE’s via nonparametric estimators. Electron. J. Stat.
2 1242–1267. MR2471285

[8] Chou, I.C. and Voit, E.O. (2009). Recent developments in parameter estimation and structure identifi-
cation of biochemical and genomic systems. Math. Biosci. 219 57–83. MR2537454

[9] Edelstein-Keshet, L. (2005). Mathematical Models in Biology. Classics in Applied Mathematics 46.
Philadelphia, PA: SIAM. MR2131632

[10] Ellner, S.P., Seifu, Y. and Smith, R.H. (2002). Fitting population dynamic models to time-series data
by gradient matching. Ecology 83 2256–2270.

[11] Fan, J. and Marron, J.S. (1994). Fast implementations of nonparametric curve estimators. J. Comput.
Graph. Stat. 3 35–56.

[12] Feinberg, M. (1979). Lectures on chemical reaction networks. Lectures delivered at the Mathe-
matics Research Center. Univ. Wisconsin-Madison. Available at http://www.che.eng.ohio-state.edu/
~feinberg/LecturesOnReactionNetworks.

http://www.ams.org/mathscinet-getitem?mr=0361233
http://www.ams.org/mathscinet-getitem?mr=0277269
http://www.ams.org/mathscinet-getitem?mr=0494656
http://www.ams.org/mathscinet-getitem?mr=1623559
http://www.ams.org/mathscinet-getitem?mr=2001641
http://www.ams.org/mathscinet-getitem?mr=0714563
http://www.ams.org/mathscinet-getitem?mr=2471285
http://www.ams.org/mathscinet-getitem?mr=2537454
http://www.ams.org/mathscinet-getitem?mr=2131632
http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks
http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks


Parameter estimation for ODEs 1097

[13] Gasser, T. and Müller, H.G. (1984). Estimating regression functions and their derivatives by the kernel
method. Scand. J. Statist. 11 171–185. MR0767241

[14] Gasser, T., Müller, H.G. and Mammitzsch, V. (1985). Kernels for nonparametric curve estimation.
J. Roy. Statist. Soc. Ser. B 47 238–252. MR0816088

[15] Gelman, A., Bois, F.Y. and Jiang, J. (1996). Physiological pharmacokinetic analysis using population
modeling and informative prior distributions. J. Amer. Statist. Assoc. 91 1400–1412.

[16] Girolami, M. (2008). Bayesian inference for differential equations. Theoret. Comput. Sci. 408 4–16.
MR2460604

[17] Goldstein, L. and Messer, K. (1992). Optimal plug-in estimators for nonparametric functional estima-
tion. Ann. Statist. 20 1306–1328. MR1186251

[18] Hairer, E. and Wanner, G. (1996). Solving Ordinary Differential Equations. II. Stiff and Differential-
Algebraic Problems, 2nd ed. Springer Series in Computational Mathematics 14. Berlin: Springer.
MR1439506

[19] Hall, P. and Marron, J.S. (1990). On variance estimation in nonparametric regression. Biometrika 77
415–419. MR1064818

[20] Hemker, P.W. (1972). Numerical methods for differential equations in system simulation and in pa-
rameter estimation. In Analysis and Simulation of Biochemical Systems (H.C. Hemker and B. Hess,
eds.) 59–80. Amsterdam: North Holland.

[21] Hlavacek, W.S. and Savageau, M.A. (1996). Rules for coupled expression of regulator and effector
genes in inducible circuits. J. Mol. Biol. 255 121–139.

[22] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc. 58 13–30. MR0144363

[23] Hooker, G. (2009). Forcing function diagnostics for nonlinear dynamics. Biometrics 65 928–936.
MR2649866

[24] Huber, P.J. (1981). Robust Statistics. New York: Wiley. MR0606374
[25] Jennrich, R.I. (1969). Asymptotic properties of non-linear least squares estimators. Ann. Math. Statist.

40 633–643. MR0238419
[26] Jones, M.C., Marron, J.S. and Sheather, S.J. (1996). A brief survey of bandwidth selection for density

estimation. J. Amer. Statist. Assoc. 91 401–407. MR1394097
[27] Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K. and Tomita, M. (2003). Dynamic modeling of

genetic networks using genetic algorithm and S-system. Bioinformatics 19 643–650.
[28] Liang, H. and Wu, H. (2008). Parameter estimation for differential equation models using a framework

of measurement error in regression models. J. Amer. Statist. Assoc. 103 1570–1583. MR2504205
[29] Loader, C.R. (1999). Bandwidth selection: Classical or plug-in? Ann. Statist. 27 415–438.

MR1714723
[30] Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc.

Indust. Appl. Math. 11 431–441. MR0153071
[31] McMurry, T.L. and Politis, D.N. (2004). Nonparametric regression with infinite order flat-top kernels.

J. Nonparametr. Stat. 16 549–562. MR2073041
[32] Messer, K. and Goldstein, L. (1993). A new class of kernels for nonparametric curve estimation. Ann.

Statist. 21 179–195. MR1212172
[33] Pollard, D. and Radchenko, P. (2006). Nonlinear least-squares estimation. J. Multivariate Anal. 97

548–562. MR2234037
[34] Priestley, M.B. and Chao, M.T. (1972). Non-parametric function fitting. J. Roy. Statist. Soc. Ser. B 34

385–392. MR0331616
[35] Qi, X. and Zhao, H. (2010). Asymptotic efficiency and finite-sample properties of the general-

ized profiling estimation of parameters in ordinary differential equations. Ann. Statist. 38 435–481.
MR2589327

http://www.ams.org/mathscinet-getitem?mr=0767241
http://www.ams.org/mathscinet-getitem?mr=0816088
http://www.ams.org/mathscinet-getitem?mr=2460604
http://www.ams.org/mathscinet-getitem?mr=1186251
http://www.ams.org/mathscinet-getitem?mr=1439506
http://www.ams.org/mathscinet-getitem?mr=1064818
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=2649866
http://www.ams.org/mathscinet-getitem?mr=0606374
http://www.ams.org/mathscinet-getitem?mr=0238419
http://www.ams.org/mathscinet-getitem?mr=1394097
http://www.ams.org/mathscinet-getitem?mr=2504205
http://www.ams.org/mathscinet-getitem?mr=1714723
http://www.ams.org/mathscinet-getitem?mr=0153071
http://www.ams.org/mathscinet-getitem?mr=2073041
http://www.ams.org/mathscinet-getitem?mr=1212172
http://www.ams.org/mathscinet-getitem?mr=2234037
http://www.ams.org/mathscinet-getitem?mr=0331616
http://www.ams.org/mathscinet-getitem?mr=2589327


1098 S. Gugushvili and C.A.J. Klaassen

[36] Ramsay, J.O., Hooker, G., Campbell, D. and Cao, J. (2007). Parameter estimation for differential
equations: A generalized smoothing approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 741–796.
With discussions and a reply by the authors. MR2368570

[37] Schuster, E. and Yakowitz, S. (1979). Contributions to the theory of nonparametric regression, with
application to system identification. Ann. Statist. 7 139–149. MR0515689

[38] Sontag, E.D. (2001). Structure and stability of certain chemical networks and applications to the ki-
netic proofreading model of T-cell receptor signal transduction. IEEE Trans. Automat. Control 46
1028–1047. MR1842137

[39] Stigler, S.M. (1981). Gauss and the invention of least squares. Ann. Statist. 9 465–474. MR0615423
[40] Stortelder, W.J.H. (1996). Parameter estimation in dynamic systems. Math. Comput. Simulat. 42 135–

142.
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