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We prove a central limit theorem for a general class of adaptive Markov Chain Monte Carlo algorithms
driven by sub-geometrically ergodic Markov kernels. We discuss in detail the special case of stochastic
approximation. We use the result to analyze the asymptotic behavior of an adaptive version of the Metropolis
Adjusted Langevin algorithm with a heavy tailed target density.
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1. Introduction

This work is a sequel of Atchadé and Fort [4] and develops central limit theorems for adaptive
MCMC (AMCMC) algorithms. As a tool for quantifying the fluctuations of Monte Carlo esti-
mates, central limit theorems play an important role in the practice of Monte Carlo simulation.
Previous work on the subject include Andrieu and Moulines [1] and Saksman and Vihola [20]
where central limit theorems are obtained for certain AMCMC algorithms driven by geomet-
rically ergodic Markov kernels. There is a need to understand the sub-geometric case. Indeed,
many Markov kernels routinely used in practice are not geometrically ergodic. For example, if
the target distribution of interest has heavy tails, then the Random Walk Metropolis algorithm
(RWMA) and the Metropolis Adjusted Langevin algorithm (MALA) result in sub-geometric
Markov kernels [12].

We consider adaptive MCMC algorithms driven by Markov kernels {Pθ , θ ∈ �} such that each
kernel Pθ enjoys a polynomial rate of convergence towards π and satisfies a drift condition of
the form PθV ≤ V − cV 1−α + b for some α ∈ (0,1] (uniformly in θ over compact sets). We
obtain a central limit theorem when α < 1/2 under some additional stability conditions. This
result is very close to what is known for Markov chains under similar conditions. Indeed, Jarner
and Roberts [11] that irreducible and aperiodic Markov chains for which the drift condition
PV ≤ V − cV 1−α +b1C hold for some small set C satisfy a central limit theorem when α ≤ 1/2.
The proof of our results is based on a martingale approximation technique developed by Kipnis
and Varadhan [14] and Maxwell and Woodroofe [16] in the Markovian setting. The method is
a Poisson equation-type method but where the Poisson’s kernel is replaced by a more general
resolvent kernel. We have used a variant of the same technique in Atchadé and Fort [4] to study
the strong law of large numbers for AMCMC.
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Adaptive MCMC has been studied in a number of recent papers. Beside the above mentioned
papers, results related to the convergence of marginal distributions and the law of large numbers
can be found for example, in [8,18]. For specific examples and a review of the methodological
developments see, for example, Andrieu and Thoms [3], Atchade et al. [6].

The rest of the paper is organized as follows. The main CLT result is presented in Section 2.3.
Adaptive MCMC driven by stochastic approximation is considered in Section 2.6. To illus-
trate, we apply our theory to an adaptive version of the Metropolis adjusted Langevin algorithm
(MALA) with a heavy tailed target distribution (Section 2.7). The proofs are postponed to Sec-
tion 3. We omit some of the technical details which can be found in a longer version of the paper
[5] available from the Arxiv.

2. Statement of the results

2.1. Notations

We start with some notation that will be used through the paper. For a transition kernel P on a
measurable general state space (T, B(T)), we denote by P n, n ≥ 0, its nth iterate defined as

P 0(x,A)
def= δx(A), P n+1(x,A)

def=
∫

P(x,dy)P n(y,A), n ≥ 0,

where δx(dt) stands for the Dirac mass at {x}. P n is a transition kernel on (T, B(T)) that acts
both on bounded measurable functions f on T and on σ -finite measures μ on (T, B(T)) via

P nf (·) def= ∫
P n(·,dy)f (y) and μP n(·) def= ∫

μ(dx)P n(x, ·).
If V : T → [1,+∞) is a function, the V -norm of a function f : T → R is defined as |f |V def=

supT |f |/V . When V = 1, this is the supremum norm. The set of measurable functions f : X → R

with finite V -norm is denoted by LV .
If μ is a signed measure on (T, B(T)), the total variation norm ‖μ‖TV is defined as

‖μ‖TV
def= sup

{f,|f |1≤1}
|μ(f )| = 2 sup

A∈B(T)

|μ(A)| = sup
A∈B(T)

μ(A) − inf
A∈B(T)

μ(A);

and the V -norm, where V : T → [1,+∞) is a function, is defined as ‖μ‖V
def= sup{g,|g|V ≤1} |μ(g)|.

Observe that ‖ · ‖TV corresponds to ‖ · ‖V with V ≡ 1.

In the Euclidean space R
n, we use 〈a, b〉 to denote the inner product and |a| def= √〈a, a〉 the

Euclidean norm. We denote R the set of real numbers and N the set of nonnegative integers.

2.2. Adaptive MCMC: Definition

Let X be a general state space endowed with a countably generated σ -field X . Let � be an
open subspace of R

q the q-dimensional Euclidean space and B(�) its Borel σ -algebra. Let
{Pθ , θ ∈ �} be a family of Markov transition kernels on (X, X ) such that for any (x,A) ∈ X× X ,
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θ �→ Pθ(x,A) is measurable. We assume that for any θ ∈ �, the Markov kernel Pθ admits an
invariant distribution π . Let {Kn, n ≥ 0} be a family of nonempty compact subspaces of � such
that Kn ⊆ Kn+1. Let � : X × � → X0 × �0 be a measurable function, the so-called reprojection
function, where X0 × �0 is some measurable subset of X × �. We assume that �(x, θ) = (x, θ)

if θ ∈ �0. For an integer k ≥ 0, we define �k(x, θ) = �(x, θ) if k = 0 and �k(x, θ) = (x, θ) if
k ≥ 1. Let R̄(n; ·, ·) : (X ×�)× (X × B(�)) → [0,1] be a sequence of Markov kernels on X ×�

with the following property. For any n ≥ 0, A ∈ X , (x, θ) ∈ X × �

R̄(n; (x, θ),A × �) = Pθ(x,A). (1)

In practice, the kernel R̄(n; ·) is commonly designed using stochastic approximation. We give
detailed examples in Section 2.6. Throughout the paper and without further mention, we assume
that (1) hold. We are interested in the Markov chain {(Xn, θn, νn, ξn), n ≥ 0} define on X × � ×
N × N with transition kernel P̄ ,

P̄ ((x, θ, ν, ξ), (dx′,dθ ′,dν′,dξ ′))
def= R̄

(
ν + ξ ;�ξ(x, θ), (dx′,dθ ′)

)
(2)

× (
1{θ ′∈Kν}δν(dν′)δξ+1(dξ ′) + 1{θ ′ /∈Kν }δν+1(dν′)δ0(dξ ′)

)
.

Algorithmically, this Markov chain can be described as follows.

Algorithm 2.1. Given (Xn, θn, νn, ξn):

(a) generate (Xn+1, θn+1) ∼ R̄(νn + ξn;�ξn(Xn, θn), ·);
(b) if θn+1 ∈ Kνn then set νn+1 = νn, ξn+1 = ξn + 1,
(c) if θn+1 /∈ Kνn then set νn+1 = νn + 1 and ξn+1 = 0.

The dynamics of the algorithm is simple to describe. Assume ν0 = 0, ξ0 = 0. As long as
θk ∈ K0, (Xk, θk) is updated using R̄(k − 1; (Xk−1, θk−1), ·), k ≥ 1. If θn0 /∈ �0, we restart the
algorithm: we set K1 as the new reference compact set and as long as θk ∈ K1 (k ≥ n0 + 1),
(Xk, θk) is updated using R̄(1 + (k − n0); (Xk−1, θk−1), ·), k ≥ n0 + 1; etc. . .

We denote by P̌x,θ,ν,ξ and Ěx,θ,ν,ξ the probability and expectation operator when the initial
distribution of the Markov chain is δ(x,θ,ν,ξ). Throughout the paper, we will assume that the initial
state of the process is fixed to (x0, θ0,0,0) for some arbitrary element (x0, θ0) ∈ X0 ×�0 and we
will simply write P̌ and Ě instead of P̌x0,θ0,0,0 and Ěx0,θ0,0,0, respectively.

Remark 1. The adaptive MCMC algorithm described above is more involved than the algorithm
analyzed in Atchadé and Fort [4]. This is due to the fact that in studying the central limit theorem,
unavoidably, we need to study the limiting behavior of the adaptation parameter θn. When the
kernel R̄, is based on stochastic approximation, as in most examples, proving the convergence of
θn under simple assumptions is a rather difficult problem. At issue is the stability of the stochastic
approximation algorithm. In order to develop general and easily verifiable results, one has to
recourse, as above, to various reprojection tricks. This is a well known issue in the stochastic
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approximation literature (see, e.g., [2,15]). Algorithm 2.1 encompasses the two main reprojection
strategies used in practice to control stochastic approximation algorithms. These reprojection
tricks also serve the purpose of building algorithms that are less sensitive to the initial conditions
and step-size selected.

(1) For example, Algorithm 2.1 reduces to the framework of re-projections on randomly vary-
ing compact sets developed in [2] if we take {Kn, n ≥ 0} such that � = ⋃

n Kn, �0 ⊆ K0

and Kn ⊂ int(Kn+1), where int(A) is the interior of A.
(2) But we can also set �0 = Kk = K for all k ≥ 0 for some compact subset K of �. And we

then obtain another commonly used approach where the reprojection is done on a fixed
compact set K. See, for example, Kushner and Yin [15] and in the context of AMCMC,
see Atchade and Rosenthal [7].

Let {F̌n, n ≥ 0} denote the natural filtration of the Markov chain {(Xn, θn, νn, ξn), n ≥ 0}. It is
easy to compute using (1) that for any bounded measurable function f : X → R,

Ě(f (Xn+1)|F̌n)1{ξn>0} = Pθnf (Xn), P̌-a.s. (3)

Equation (3) together with the strong Markov property are the two main properties of the process
{(Xn, θn, νn, ξn), n ≥ 0} that will used in the sequel.

We now introduce another stochastic process closely related to the adaptive chain defined
above. For l ≥ 0 an integer, we consider the nonhomogeneous Markov chain {(X̃n, θ̃n), n ≥ 0}
with initial distribution δx,θ and sequence of transition Markov kernels

Pl(n; (x1, θ1), (dx′,dθ ′)) = R̄
(
l + n; (x1, θ1), (dx′,dθ ′)

)
.

Its distribution and expectation operator are denoted respectively by P
(l)
x,θ and E

(l)
x,θ . We will

denote {Fn, n ≥ 0} its natural filtration (for convenience in the notations, we omit its dependence
on (x, θ, l)). Again it follows from (1) that for any bounded measurable function f : X → R,

E
(l)
x,θ (f (X̃n+1)|Fn) = Pθ̃n

f (X̃n), P
(l)
x,θ -a.s. (4)

For K a compact subset of �, we define the stopping time
←
τ K (w.r.t. the nonhomogeneous

Markov chain {(X̃n, θ̃n), n ≥ 0}) as

←
τ K= inf{k ≥ 1: θ̃k /∈ K},

with the usual convention that inf∅ = ∞. Clearly, the two processes defined above are closely
related. We will refer to {(X̃n, θ̃n), n ≥ 0} as the reprojection free process. The general strategy
that we adopt to study the Markov chain {(Xn, θn, νn, ξn), n ≥ 0} (adapted from [2]) consists in
first studying the reprojection free process {(X̃n, θ̃n), n ≥ 0} and showing that the former process
inherits the limit behavior of the latter.
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2.3. General results

The main assumption of the paper is the following.

A1. There exist α ∈ (0,1], and a measurable function V : X → [1,∞), supx∈X0
V (x) < ∞

with the following properties. For any compact subset K of �, there exists b, c ∈ (0,∞)

(that depend on K) such that for any (x, θ) ∈ X × K,

PθV (x) ≤ V (x) − cV 1−α(x) + b (5)

and for any β ∈ [0,1 − α], κ ∈ [0, α−1(1 − β) − 1], there exists C = C(V,κ,β,K) such
that

(n + 1)κ‖P n
θ (x, ·) − π(·)‖V β ≤ C V β+ακ(x), n ≥ 0. (6)

Notice that (5)–(6) imply that π(V 1−α) < ∞. We will also assume that the number of repro-
jection is finite.

A2.

P̌

(
sup
n≥0

νn < ∞
)

= 1. (7)

We introduce a new pseudo-metric on �. For β ∈ [0,1], θ, θ ′ ∈ �, set

Dβ(θ, θ ′) def= sup
|f |

V β ≤1
sup
x∈X

|Pθf (x) − Pθ ′f (x)|
V β(x)

.

Under A1 and A2, a weak law of large numbers hold.

Theorem 2.1. Assume A1–A2. Let β ∈ [0,1 − α) and fθ : X → R a family of measurable func-
tions of LV β such that π(fθ ) = 0, θ → fθ (x) is measurable and supθ∈K |fθ |V β < ∞ for any
compact subset K of �. Suppose also that there exist ε > 0, κ > 0, β + ακ < 1 − α such that for
any (x, θ, l) ∈ X0 × �0 × N

E
(l)
x,θ

[∑
k≥1

k−1+ε
(
Dβ(θ̃k, θ̃k−1) + |fθ̃k

− fθ̃k−1
|V β

)
1{←

τ Kl
>k}V

β+ακ(X̃k)

]
< ∞. (8)

Then n−1 ∑n
k=1 fθk−1(Xk) converges in P̌-probability to zero.

Proof. The proof is given in Section 3.4. �

Remark 2. A strong law of large numbers also hold under similar assumptions [4], Theorem 2.3.
The main difference with Atchadé and Fort [4] is that in the result above, the function of interest
is allowed to depend on θ . The summability condition (8) seems complicated but is not hard to
check in practice. See, for example, Section 2.5.3. We also point out the fact that (8) is expressed
in terms of the non-homogeneous Markov chain {(X̃n, θ̃n), n ≥ 0} which is much easier to handle
than the actual adaptive MCMC process.
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For the central limit theorem, we introduce few additional notations. For f ∈ LV β with π(f ) =
0, and a ∈ [0,1/2] we introduce the resolvent functions

ga(x, θ) =
∑
j≥0

(1 − a)j+1P
j
θ f (x).

Whenever ga is well defined, it satisfies the approximate Poisson equation

f (x) = (1 − a)−1ga(x, θ) − Pθga(x, θ). (9)

When a = 0, we write g(x, θ) which is the usual solution to the Poisson equation f (x) =
g(x, θ) − Pθg(x, θ). Define also

Ha(x, y) = ga(y, θ) − Pθga(x, θ), (10)

where Pθga(x, θ)
def= ∫

Pθ(x,dz)ga(z, θ).
For the CLT, we need the adaptation parameter θn to converge to a limit.

A3. There exists a �-valued random variable θ� such that with P̌-probability one, {θn, n ≥ 0}
remains in a compact set and limn→∞ Dβ(θn, θ�) = 0 for any β ∈ [0,1 − α].

Notice that the compact set referred to in A3 is sample path dependent. We introduce the
nonnegative random variable

σ 2
� (f )

def=
∫

π(dx){2f (x)g(x, θ�) − f 2(x)}.

Theorem 2.2. Assume A1–A3 with α < 1/2. Let β ∈ [0, 1
2 − α) and f ∈ LV β such that

π(f ) = 0. Suppose that there exist κ > 1, ε > 0, ρ ∈ ( 1
2 , 1

2(1−ε)
), such that 2β+α(κ +ε) < 1−α,

and for any b ∈ [0,1 − α], any (x, θ, l) ∈ X0 × �0 × N

E
(l)
x,θ

[∑
k≥1

k−1/2+ρ(1−ε)Db(θ̃k, θ̃k−1)1{←
τ Kl

>k}V
2β+α(κ+ε)(X̃k)

]
< ∞. (11)

Suppose also that for a sequence an ∝ n−ρ , an ∈ (0, 1
2 ],

lim
n→∞

1

n

n∑
k=1

g2
an

(Xk, θk−1) − Pθk−1g
2
an

(Xk, θk−1) = 0, in P̌-probability. (12)

Then n−1/2 ∑n
k=1 f (Xk) converges weakly to

√
σ 2

� (f )Z where Z ∼ N (0,1) is a standard nor-
mal random variable that is independent of σ 2

� (f ).

Proof. See Section 3.5. �
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2.4. On assumption (12)

Assumption (12) is the most difficult assumption to check in Theorem 2.2. This assumption is
needed to establish the weak law of large numbers in the CLT. For stationary Markov chains
(12) automatically holds. In the general adaptive case, the simplest approach to checking (12) is
through appropriate moments condition.

Proposition 2.3. Assume A1 and A3 with α < 1/2 and let β ∈ [0, 1
2 − α). Suppose that there

exists ε > 0 such that for any (x, θ, l) ∈ X0 × �0 × N

sup
n≥1

n−1
E

(l)
x,θ

[
n∑

k=1

V 2(β+α)+ε(X̃k)

]
< ∞. (13)

Then (12) hold.

By Proposition 3.4(ii) below, one can always check (13) if α < 1/3 and β ∈ [0,1 − 3α).

Corollary 2.4. Assume A1–A3 with α < 1/3. Let β ∈ [0,1 − 3α) and f ∈ LV β . Suppose that
(11) holds. Then n−1/2 ∑n

k=1 f (Xk) converges weakly to
√

σ 2
� (f )Z where Z ∼ N (0,1) is a

standard normal random variable that is independent of σ 2
� (f ).

2.5. Some additional remarks on the assumptions

2.5.1. On Assumption A1

In many cases, A1 can be checked by establishing a drift and a minorization conditions. For
example, if uniformly over compact subsets K of �, Pθ satisfies a polynomial drift condition of
the form PθV ≤ V − cV 1−α + b1C for some small set C , α ∈ (0,1] and such that the level sets
of V are 1-small then (5) and (6) hold. This point is thoroughly discussed in Atchadé and Fort
[4] (Section 2.4 and Appendix A) and the references therein.

Assumption A1 also hold for geometrically ergodic Markov kernels and in this case we recover
the CLT of Andrieu and Moulines [1]. Indeed, suppose that uniformly over compact subsets
K of �, there exist C ∈ X , ν a probability measure on (X, X ), b, ε > 0 and λ ∈ (0,1) such
that ν(C) > 0, Pθ(x, ·) ≥ εν(·)1C (x) and PθV ≤ λV + b1C . Then for any α ∈ (0,1], PθV ≤
V − (1−λ)V 1−α +b, thus (5) hold. Moreover, by explicit convergence bounds for geometrically
ergodic Markov chains (see, e.g., [9]), for any β ∈ (0,1]

sup
θ∈K

‖P n
θ (x, ·) − π(·)‖V β ≤ Cβ(K)ρn

βV β(x).

A fortiori (6) hold. Also under the geometric drift condition, if β ∈ [0,1/2) then we can find
0 < α < 1/2 and ε > 0 such that 2(β + α) + ε < 1, and since V δ-moment of geometrically
ergodic adaptive MCMC are bounded in n for any δ ∈ [0,1), we get (13).
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2.5.2. On Assumptions A2–A3

Assumption A3 is a natural assumption to make when a CLT is sought. Whether A2 or A3 hold,
depends on the adaptation strategies. We show below how to check A3 when the adaptation is
driven by stochastic approximation.

2.5.3. On the diminishing adaptation conditions (8) and (11)

It is well known that adaptive MCMC can fail to converge when to so-called diminishing adap-
tation condition (which embodies the idea that one should adapt less and less with the iterations)
does not hold. Here, the diminishing adaptation takes the form of conditions (8) and (11). Indeed,
(8) and (11) cannot hold unless Dβ(θn, θn−1) converges to zero in some sense. These conditions
are not difficult to check. Typically Db(θk, θk−1) ≤ CγkV

η(Xk) for some positive numbers γk

and η ≥ 0. then we can check (8) or (11) using Proposition 3.5.

2.6. Checking A3 for AMCMC driven by stochastic approximation

One specific form of the kernel R̄(n; ·) used in practice can be described as follows. Let q
(1)
θ : X×

X → [0,1] and q
(2)
θ : X × X × X → [0,1] be two Markov kernels such that∫

q
(1)
θ (x,dy)q

(2)
θ ((x, y),dx′) = Pθ(x,dx′).

Let � :� × X × X → � be a measurable function. For convenience, we write �θ(x, y) instead
of �(θ, x, y). Set

R̄(n; (x, θ), (dx′,dθ ′)) =
∫

q
(1)
θ (x,dy)q

(2)
θ ((x, y),dx′)δθ+γn�θ (x,y)(dθ ′), (14)

where {γn} is a sequence of positive numbers. Thus, (1) holds. Under (14), Step (a) of Al-
gorithm 2.1 can be described as follows. Given (X̄n, θ̄n) = �ξn(Xn, θn), generate Yn+1 ∼
q

(1)

θ̄n
(X̄n, ·) and Xn+1 ∼ q

(2)

θ̄n
(X̄n, Yn+1, ·). Then set

θn+1 = θn + γνn+ξn

(
h(θn) + ε

(1)
n+1 + ε

(2)
n+1

)
,

where ε
(1)
n+1 = ϒθn(X̄n) − h(θ̄n), ε

(2)
n+1 = �θ̄n

(X̄n, Yn+1) − ϒθ̄n
(X̄n) and

ϒθ(x) =
∫

q
(1)
θ (x,dy)�θ (x, y), and h(θ) =

∫
π(dx)ϒθ (x).

Most adaptive MCMC algorithms used in practice are special cases of (14). For example, in
Metropolis–Hastings type algorithms, q

(1)
θ corresponds to the proposal kernel and q

(2)
θ corre-

sponds to the acceptance probability (see Section 2.7 for a specific example). Also, with the
choices q

(1)
θ (x,dy) = Pθ(x,dy), �θ(x, y) = �θ(y), and q

(2)
θ ((x, y),dx′) = δy(dx′), one obtains

the stochastic approximation dynamics analyzed in Andrieu and Moulines [1].
We assume the following.
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B1. (1) {Kn, n ≥ 0} is such that � = ⋃
n Kn, �0 ⊆ K0 and Kn ⊂ int(Kn+1), where int(A) is

the interior of A.
(2) The function h is a continuous function and there exists a continuously differentiable

function w :� → [0,∞) such that

(a) for any θ ∈ �, 〈∇w(θ),h(θ)〉 ≤ 0, the set L def= {θ ∈ �: 〈∇w(θ),h(θ)〉 = 0} is
nonempty and the closure of w(L) has an empty interior. In the above, ∇w denote
the gradient of w.

(b) there exists M0 > 0 such that L ∪ �0 ⊂ {θ : w(θ) < M0} and for any M ≥ M0,

WM
def= {θ : w(θ) ≤ M} is a compact set.

Assume that the function ϒ satisfies

B2. There exists η ≥ 0, 2(η + α) < 1 such that for any compact subset K of �, b ∈ [0,1 − α],
θ, θ ′ ∈ K,

sup
θ∈K

sup
x∈X

V −2η(x)

∫
q

(1)
θ (x,dy)|�θ(x, y)|2 < ∞, and

(15)
Db(θ, θ ′) + |ϒθ − ϒθ ′ |V η ≤ C|θ − θ ′|

for some finite constant C that depends possibly on K.

Proposition 2.5. Assume A1 with α < 1/2 and (14). Suppose that B1 and B2 hold. Suppose also
that limn γn = 0 and

∑
n γn = ∞ and for any p ≥ 0,

lim
n→∞(γp+n−1 − γp+n)n

1−α = 0 and
∑
n≥1

(γ 2
k kρ + γkk

−ρ + γ
1+ρ
k ) < ∞ (16)

for some ρ ∈ (0, (1 − α)(η + α)−1 − 1). Then A3 hold.

Proof. See Section 3.6. �

2.7. Example: Adaptive Langevin algorithms

We illustrate the theory above with an application to the Metropolis-adjusted Langevin algo-
rithm (MALA). In this section, X is the d-dimensional Euclidean space R

d and π is a positive
density on X with respect to the Lebesgue (denoted μLeb or dx). The MALA algorithm is an
effective Metropolis–Hastings algorithm whose proposal kernel is obtained by discretization of
the Langevin diffusion

dXt = 1
2 eθ∇ logπ(Xt )dt + eθ dBt , X0 = x,

where θ ∈ R is a scale parameter and {Bt , t ≥ 0} a d-dimensional standard Brownian motion.
Denote qθ (x, y) the density of the d-dimensional Gaussian distribution with mean bθ (x) and
covariance matrix eθ Id where

bθ (x) = x + 1
2 eθ∇ logπ(x).
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The MALA works as follows. Given Xn = x, we propose a new value Y ∼ qθ (x, ·). Then with
probability αθ (Xn,Y ), we ‘accept Y ’ and set Xn+1 = Y and with probability 1 − αθ (Xn,Y ), we
‘reject Y ’ and set Xn+1 = Xn. The acceptance probability is given by

αθ (x, y) = 1 ∧ π(y)qθ (y, x)

π(x)qθ (x, y)
.

The convergence and optimal scaling of MALA is studied in detail in Roberts and Tweedie
[19], Roberts and Rosenthal [17]. In practice, the performance of this algorithm depends on the
choice of the scale parameter θ . In high-dimensional spaces (and under some regularity condi-
tions), it is optimal to set θ = θ� such that the average acceptance probability of the algorithm in
stationarity is 0.574. In general, θ� is not available and its computation would require a tedious
fine-tuning of the sampler. Adaptive MCMC provides a straightforward approach to properly
scale the algorithm. The parameter space is � = R. For θ ∈ �, denote Pθ the transition kernel of
the MALA algorithm with proposal qθ . We also introduce the functions

Aθ(x)
def=

∫
X
αθ (x, y)qθ (x, y)μLeb(dy), a(θ)

def=
∫

X
Aθ(x)π(x)μLeb(dx).

Let {Kn, n ≥ 0} be a family of nonempty compact intervals of � such that
⋃

Kn = R, Kn ⊂
int(Kn+1). Therefore, by construction B1(1) hold. Let �0 = {θ0} and X0 = {x0} for some arbitrary
point (x0, θ0) ∈ X × K0. The reprojection function is �(x, θ) = (x0, θ0) for any (x, θ) ∈ X × �.
We also have �k(x, θ) = (x, θ) if k > 0 and �k(x, θ) = �(x, θ) if k = 0. Obviously many other
choices are possible. The adaptive MALA we consider is the following.

Algorithm 2.2. Initialization: Let ᾱ be the target acceptance probability (taken as 0.574).
Choose (X0, θ0) ∈ X0 × �0, ν0 = 0 and ξ0 = 0.

Iteration: Given (Xn, θn, νn, ξn): set (X̄, θ̄ ) = �ξn(Xn, θn).

(a) generate Yn+1 ∼ qθ̄ (X̄, ·). With probability αθ̄ (X̄, Yn+1), set Xn+1 = Yn+1 and with prob-
ability 1 − αθ̄ (X̄, Yn+1), set Xn+1 = X̄.

(b) Compute

θn+1 = θ̄ + 1

1 + νn + ξn

(
αθ̄ (X̄, Yn+1) − ᾱ

)
. (17)

(c) If θn+1 ∈ Kνn , then set νn+1 = νn and ξn+1 = ξn + 1. Otherwise if θn+1 /∈ Kνn , then set
νn+1 = νn + 1 and ξn+1 = 0.

In this algorithm, the kernel R̄(n; ·, ·) takes the form

R̄(n; (x, θ), (dx′,dθ ′)) =
∫

qθ (x,dy)(αθ (x, y)δy(dx′).

+ (
1 − αθ (x, y)

)
δx(dx′))δ�n(θ,x,y)(dθ ′),

where �n(θ, x, y) = θ + (n + 1)−1(αθ (x, y) − ᾱ). Thus, (14) hold. We make the following
assumption.
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C1. ᾱ ∈ (0,1), limθ→+∞ a(θ) < ᾱ, limθ→−∞ a(θ) > ᾱ.

Assumption C1 is slightly redundant. It is easy to check that limθ→−∞ a(θ) = 1. But the second
part of the assumption, although realistic, depends in general on ∇ logπ and ∇2 logπ .

Proposition 2.6. Under C1, the function h(θ) = a(θ) − ᾱ satisfies B1(2) with L = {θ ∈
R: a(θ) = ᾱ} and w(θ) = ∫ θ

0 cosh(u)(ᾱ − a(u))du + K for some finite constant K where
cosh(u) = (eu + e−u)/2 is the hyperbolic cosine.

Proof. See Section 3.7.1. �

We assume that the target density π is heavy tailed as in Kamatani [13].

C2. We assume that π : Rd → (0,∞) is of class C 2 and there exists η > d such that

lim sup
|x|→∞

〈x,∇ logπ(x)〉 ≤ −η, lim|x|→∞ |∇ logπ(x)| = 0,

(18)
lim|x|→∞‖∇2 logπ(x)‖ = 0,

where for a matrix A, ‖A‖ denotes its Frobenius norm.

The next proposition is a paraphrase of Theorem 5 of Kamatani [13].

Proposition 2.7. Assume C2. For s ∈ (2,2 + η − d), define Vs(x) = (1 + |x|2)s/2 and α = 2/s.
Let C be a compact subset of R

d with μLeb(C) > 0. For any compact subset K of �, there exists
ε, c, b ∈ (0,∞), such that

inf
θ∈K

Pθ(x,dy) ≥ ε

[
μLeb(dy)1C (y)

μLeb(C)

]
1C (x),

sup
θ∈K

PθVs(x) ≤ Vs(x) − cV 1−α(x) + b1C (x).

For the smoothness, we have the following proposition.

Proposition 2.8. Assume that |∇ logπ(x)| is a bounded function. Let K be a compact convex
subset of �. There exists a finite constant C(K) such that for any f ∈ L

V
β
s

, β ∈ [0,1], any

θ, θ ′ ∈ K, ∣∣∣∣
∫

αθ (x, y)qθ (x, y)f (y)dy −
∫

αθ ′(x, y)qθ ′(x, y)f (y)dy

∣∣∣∣
(19)

≤ C(K)|f |
V

β
s
|θ − θ ′|V β

s (x).

Proof. See Section 3.7.2. �

We now apply Theorem 2.2 to get a CLT for the adaptive MALA.
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Theorem 2.9. Assume C1 and C2 with η > d + 4. Let s ∈ (6,2 + η − d) and let f : X → R be
a measurable function such that π(f ) = 0 and |f (x)| ≤ C(1 + |x|2)b for some b ∈ [0, s

2 − 3)

and some finite constant C. Then there exists a nonnegative random variable σ 2
� (f ) such that

n−1/2 ∑n
k=1 f (Xk) converges weakly to a random variable

√
σ 2

� (f )Z, where Z ∼ N(0,1) is
independent of σ 2

� (f ).

Remark 3. If π is positive and of class C 2 and π(x) ≈ (1 + |x|2)−(d+ν)/2 in the tails, then C2
hold with η = ν +d and Theorem 2.9 guarantees a CLT for ν > 4. Compare with ν > 2 for Harris
recurrent Markov chains satisfying A1.

Proof of Theorem 2.9. A1 holds as a consequence of Proposition 2.7 (see, e.g., [4], Section 2.4
and Appendix A). Proposition 2.6 shows that B1(2) holds and Proposition 2.8 implies that B2
holds. Therefore, A3 holds as a consequence of Proposition 2.5. (11) is an easy consequence of
Proposition 2.8 and Proposition 3.5. We thus conclude with Corollary 2.4. �

In the above theorem, the asymptotic variance σ 2
� (f ) takes values in the set {σ 2

θ (f ), θ ∈ L},
where L = {θ ∈ R: a(θ) = ᾱ} and

σ 2
θ (f )

def=
∫

π(dx)

{
f 2(x) + 2

∑
k≥0

f (x)P k
θ f (x)

}
.

In particular, if L = {θ�} and σ 2
θ�

(f ) > 0, then n−1/2 ∑n
k=1 f (Xk) converges weakly to

N (0, σ 2
θ�

(f )).

3. Proofs

Throughout the proof, C(K) denotes a finite constant that depends on the compact set K and on
the constants in the above assumptions. But to simplify the notations, we will not keep track of
these constants so the actual value of C(K) might be different from one appearance to the next.

3.1. Resolvent kernels and approximate Poisson’s equations

In this section, K is a given compact subset of � and β ∈ [0,1 − α]. We consider a family of
functions fθ ∈ LV β , θ ∈ � such that π(fθ ) = 0. For a ∈ (0,1), we define the resolvent function
associated with fθ as

g̃a(x, θ) =
∞∑

j=0

(1 − a)j+1P
j
θ fθ (x) =

∞∑
j=0

(1 − a)j+1P̄
j
θ fθ (x),

where P̄θ = Pθ − π . Similarly, we define

g̃(x, θ) =
∞∑

j=0

P
j
θ fθ (x) =

∞∑
j=0

P̄
j
θ fθ (x).
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When fθ ≡ f does not depend on θ ∈ �, and to help keep the notation clear, we write ga(x, θ)

(resp., g(x, θ)) instead of g̃a(x, θ) (resp., g̃). It is easy to see that when g̃a is well defined, it
satisfies the following approximate Poisson equation

fθ (x) = (1 − a)−1g̃a(x, θ) − Pθ g̃a(x, θ). (20)

Similarly g̃, when well defined, satisfies the Poisson equation

fθ (x) = g̃(x, θ) − Pθ g̃(x, θ). (21)

For a > 0, we introduce the function

ζκ(a)
def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n≥1

1

nκ
, if κ > 1,

− log(2a) + 1, if κ = 1,

2−1+κ�(1 − κ)a−1+κ , if 0 ≤ κ < 1,

where �(x) := ∫ ∞
0 ux−1e−u du is the Gamma function. We will need the following technical

lemma. For lack of space, we omit the details.

Lemma 3.1. For any a ∈ (0,1/2] and κ ≥ 0,∑
j≥0

(1 − a)j+1(1 + j)−κ ≤ ζκ(a).

Proposition 3.2. Assume A1.

(i) The function g̃a is well defined and there exists a finite constant C such that for any
κ ∈ [0, α−1(1 − β) − 1], (x, θ) ∈ X × � and any a ∈ (0,1/2]

|g̃a(x, θ)| ≤ C|fθ |V β ζκ(a)V β+ακ(x). (22)

(ii) Suppose that α < 1/2. Then the function g̃(x, θ) is well-defined and there exists a finite
constant C such that for any κ ∈ (1, α−1(1 −β)− 1], (x, θ) ∈ X ×� and any a ∈ (0,1/2]

|g̃a(x, θ) − g̃(x, θ)| ≤ C|fθ |V β

(∫ a

0
ζκ−1(u)du

)
V β+ακ(x). (23)

Proof. Follows from A1 and Lemma 3.1. �

Remark 4. One can check using Lemma 3.1 that for κ > 1,
∫ a

0 ζκ−1(u)du → 0 as a → 0. Hence,
a consequence of Proposition 3.2 is that for any β ∈ [0,1 − 2α) (α < 1/2), any κ ∈ (1, α−1(1 −
β) − 1], there exists a finite constant C(K) such that for any (x, θ) ∈ X × K,

|g̃(x, θ)| ≤ C(K)|fθ |V β V β+ακ(x). (24)
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The following bounds also hold true. Again these are easy consequences of A1, Lemma 3.1
and Proposition 3.2. We omit the details.

Proposition 3.3. Assume A1.

(i) For any κ, δ ≥ 0 with κ + δ ≤ α−1(1−β)−1, there exists a finite constant C(K) such that
for any θ, θ ′ ∈ K, x ∈ X and a ∈ (0,1/2]

|g̃a(x, θ) − g̃a(x, θ ′)|
≤ C(K) sup

θ∈K
|fθ |V β ζκ(a)

(
ζδ(a)Dβ+αδ(θ, θ ′) + |fθ − fθ ′ |V β

)
V β+α(κ+δ)(x).

(ii) Assume α < 1/2. For any β ∈ [0,1 − 2α), any κ ≥ 0, δ > 1 with κ + δ ≤ α−1(1 − β) − 1.
There exist a finite constant C(K) such that for any x ∈ X, θ, θ ′ ∈ K and any a ∈ (0,1/2]

|g̃(x, θ) − g̃(x, θ ′)|

≤ C(K) sup
θ∈K

|fθ |V β

(∫ a

0
ζδ−1(u)du + ζκ(a)|fθ − fθ ′ |V β

+ ζκ(a)Dβ+αδ(θ, θ ′)
)

V β+α(κ+δ)(x).

3.2. Modulated moments and weak law of large numbers

In this section, K is an arbitrary compact subset of �, (x, θ) ∈ X × K and l ≥ 0 an integer. We
consider the nonhomogeneous Markov chain {(X̃n, θ̃n), n ≥ 0} with initial distribution δx,θ and
transition kernels Pl(n; (x1, θ1), (dx′,dθ ′)) = R̄(l+n; (x1, θ1), (dx′,dθ ′)). The key property that
we will use here is (4) which, as we have seen, is a consequence of (1). The first two propositions
below are easy modifications of similar results proved in Atchadé and Fort [4].

Proposition 3.4. Assume A1. There exists a finite constant C(K) such that for any (x, θ) ∈ X×K,
l, n ≥ 1,

(i) for any 0 ≤ β ≤ 1,

E
(l)
x,θ

[
V β(X̃n)1{←

τ K>n−1}
] ≤ C(K)nβV β(x).

(ii) For any 0 ≤ β ≤ 1 − α

E
(l)
x,θ

[
n∑

k=1

V β(X̃k)1{←
τ K>k−1}

]
≤ C(K)nV β+α(x).



Subgeometric adaptive MCMC 989

Proposition 3.5. Assume A1. Let {rn, n ≥ 0} be a non-increasing sequence of positive numbers.
For β ∈ [0,1−α], there exists a finite constant C(K) such that for any (x, θ) ∈ X×K, 1 ≤ n < N

E
(l)
x,θ

[
N−1∑
k=n

rk+1V
β(X̃k)1{←

τ K>k−1}

]
≤ C(K)

(
rnE

(l)
x,θ

(
V β+α(X̃n)1{←

τ K>n−1}
) +

N∑
k=n

rk+1

)
.

The next proposition gives a general standard bound on moments of martingales as a conse-
quence of the Burkholder’s inequality.

Proposition 3.6. Let Mn = ∑n
k=1 Dk , n ≥ 1, be a martingale such that E(|Dk|p) < ∞ for some

p > 1. Then

E[|Mn|p] ≤ Cnmax(1,p/2)−1
n∑

k=1

E(|Dk|p)

for C = (18pq1/2)p , p−1 + q−1 = 1.

The nonhomogeneous Markov chain {(X̃n, θ̃n), n ≥ 0} satisfies a weak law of large numbers.
The proof is similar to the Atchadé and Fort [4], Theorem 2.3, and we omit the details.

Proposition 3.7. Assume A1. Let β ∈ [0,1 − α) and fθ ∈ LV β a class of functions such that
θ → fθ (x) is a measurable map, π(fθ ) = 0 and supθ∈K |fθ |V β < ∞. Suppose also that there
exist ε > 0, κ > 0 such that β + ακ < 1 − α and

E
(l)
x,θ

[∑
k≥1

1{←
τ K>k}k

−1+ε
(
Dβ(θ̃k, θ̃k−1) + |fθ̃k

− fθ̃k−1
|V β

)
V β+ακ(X̃k)

]
< ∞. (25)

Then n−11{←
τ K>n}

∑n
k=1 fθ̃k−1

(X̃k) converges to zero in P
(l)
x,θ -probability.

3.3. Connection with the adaptive MCMC process

In this section, we give a number of results that connects the non-homogeneous Markov chain
{(X̃n, θ̃n), n ≥ 0} with the adaptive MCMC process {(Xn, θn, νn, ξn), n ≥ 0} defined in Sec-
tion 2.2. This will allow us to transfer the limit results established above to the adaptive chain.
We introduce the sequence of stopping times associated with the adaptive chain

T0 = 0, Tj+1
def= inf{k > Tj , ξk = 0}, k ≥ 1,

with the convention that inf∅ = ∞. Also define

ν∞
def= sup

k≥0
νk.
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Lemma 3.8. If A2 holds then P̌(Tν∞ < ∞) = 1.

The following is Lemma 4.1 of Andrieu et al. [2]. This result relates the distribution of the
nonhomogeneous Markov chain {(X̃n, θ̃n), n ≥ 0} to the distribution of the adaptive MCMC
process.

Proposition 3.9. For any n ∈ N, any n-uplet (t1, . . . , tn), any bounded measurable functions
{fk, k ≤ n} and for any (x, θ, j) ∈ X × Kj × N,

Ěx,θ,j,0

[
n∏

k=1

fk(Xtk , θtk )1{T1>tn}

]
= E

(j)
x,θ

[
n∏

k=1

fk(X̃tk , θ̃tk )1{←
τ Kj

>tn}

]
.

Proposition 3.9 has a number of interesting consequence. For example, one can easily obtain
the finiteness of moments of the adaptive chain.

Lemma 3.10. Let W̃n = W(X̃n, θ̃n, X̃n+1) be a sequence of random variables such that for all
l, k ≤ n,

c
(l)
k := sup

(x,θ)∈X0×�0

E
(l)
x,θ

[
W̃k1{←

τ Kl
>k}

]
< ∞.

Then Ě(W(Xn, θn,Xn+1)) is finite.

Another consequence of Proposition 3.9 is that many asymptotic results for the nonhomoge-
neous Markov chain {(X̃n, θ̃n), n ≥ 0} implies a similar result from the adaptive chain. The idea
of the proof is similar to Proposition 6 of Andrieu and Moulines [1] and we omit the details.

Lemma 3.11. Assume A2. Let {W̃n,k,1 ≤ k ≤ n} be a triangular array of random variables of
the form W̃n,k = Wn(θ̃k−1, X̃k−1, θ̃k, X̃k) for some measurable functions Wn :� × X × � × X →
R. Let {bn,n ≥ 1} a nonincreasing sequence of positive number with limn→∞ bn = 0. Suppose
that for any k ≥ 1, supn≥1 |Wn(θk−1,Xk−1, θk,Xk)| < ∞ P̌-a.s. and for all l ≥ 0, s ≥ 0, (x, θ) ∈
X0 × Kl and δ > 0

lim
n→∞ P

(l)
x,θ

[
bn1{←

τ Kl
>n}

∣∣∣∣∣
n∑

k=1

W̃n+s,k

∣∣∣∣∣ > δ

]
= 0,

then bn

∑n
k=1 Wn(θk−1,Xk−1, θk,Xk) converges to zero in P̌-probability as n → ∞.

3.4. Proof of Theorem 2.1

Since A1 and (8) hold, we can apply Proposition 3.7 which implies that

lim
n→∞ P

(l)
x,θ

[
n−11{←

τ Kl
>n}

∣∣∣∣∣
n∑

k=1

fθk−1(Xk)

∣∣∣∣∣ > δ

]
= 0
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for any δ > 0, l ≥ 0 and (x, θ) ∈ X × Kl . Theorem 2.1 then follows from Lemma 3.11.

3.5. Proof of Theorem 2.2

As in the statement of the theorem, let κ > 1, δ > 0, ρ ∈ ( 1
2 , 1

2(1−δ)
), be such that 2β +α(κ +δ) <

1 − α; and let an ∝ n−ρ , an ∈ (0, 1
2 ]. Denote Sn = ∑n

k=1 f (Xk). Without any loss of generality,
we will assume that |f |V β ≤ 1. We have

Sn =
n∑

k=1

Han,θk−1(Xk−1,Xk)1{ξk−1 �=0} +
n∑

k=1

Han,θk−1(Xk−1,Xk)1{ξk−1=0}

+
n∑

k=1

(
f (Xk) − Han,θk−1(Xk−1,Xk)

)
.

Note that ξk = 0 indicates a reprojection at time k. By A2, the number of reprojection is
finite almost surely (see Lemma 3.8). Thus, n−1/2 ∑n

k=1 Han,θk−1(Xk−1,Xk)1{ξk−1=0} converges

to zero P̌-a.s.
We apply Lemma 3.11 to the term n−1/2 ∑n

k=1(f (Xk) − Han,θk−1(Xk−1,Xk)). Clearly,
|f (Xk) − Han,θk−1(Xk−1,Xk)| ≤ C(Kν∞)|f |V β (V β+ακ(Xk−1) + V β+ακ(Xk−1)) which is uni-
formly bounded in n. Thus, by Lemma 3.11, it suffices to show that for any s≥ 0, n−1/21{←

τ Kl
>n}×∑n

k=1(f (X̃k) − Han+s ,θ̃k−1
(X̃k−1, X̃k)) converges to zero in P

(l)
x,θ -probability for all (x, θ) ∈

X0 × Kl , l ≥ 0. We do it as follows.
Without any loss of generality, we assume that κ also satisfies β + ακ < 1/2. For s ≥ 0 arbi-

trary, define Sn,s = ∑n
k=1 1{←

τ K>k−1}(f (X̃k) − Han+s ,θ̃k−1
(X̃k−1, X̃k)). Note that

1{←
τ K>n}n

−1/2
n∑

k=1

(
f (X̃k) − Han+s ,θ̃k−1

(X̃k−1, X̃k)
) = 1{←

τ K>n}n
−1/2Sn.

Then we use the approximate Poisson equation (20) to rewrite Sn,s as:

Sn,s = (
(1 − an+s)

−1 − 1
) n∑

k=1

1{←
τ K>k−1}gan+s (X̃k, θ̃k−1)

+ (
Pθ0gan+s (X̃0, θ0) − 1{←

τ K>n}Pθ̃n
gan+s (X̃n, θ̃n)

)

+
n∑

k=1

1{←
τ K=k}Pθ̃k−1

gan+s (X̃k, θ̃k−1)

+
n∑

k=1

1{←
τ K>k}

(
Pθ̃k

gan+s (X̃k, θ̃k) − Pθ̃k−1
gan+s (X̃k, θ̃k−1)

)
.
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Using Propositions 3.2, 3.3 and 3.4, it is easy to show that each of these terms above, multiplied
by 1{←

τ K>n}, converges in probability to zero.

Define Mn,k = ∑k
j=1 Dn,j , where Dn,j = n−1/2Han,θj−1(Xj−1,Xj )1{ξj−1 �=0}. It is straightfor-

ward to see that {(Mn,k, Fk),1 ≤ k ≤ n} is a martingale array. We will show that

{(Mn,k, F̌k),1 ≤ k ≤ n} is a square-integrable martingale array; (26)

lim
n→∞

n∑
j=1

Ě(D2
n,j |F̌j−1) = σ 2

� (f ) (in P̌-probab.), (27)

where

σ 2
� (f )

def=
∫

π(dx)
(−f 2(x) + 2f (x)g(x, θ�)

)
, (28)

is finite P̌-almost surely and that for any ε > 0,

lim
n→∞

n∑
k=1

Ě
(
D2

n,j1{|Dn,j |≥ε}|F̌j−1
) = 0 (in P̌-probab.). (29)

The theorem then follows by the central limit theorem for martingales (see, e.g., [10], Corol-
lary 3.1).

Proof of (26). By Proposition 3.2(i) (applied with both κ > 1 and δ > 0),

E
(l)
x,θ

(
H 2

an,θ̃k−1
(X̃k−1, X̃k)1{←

τ Kl
>k−1}|Fk−1

)
≤ 1{←

τ Kl
>k−1}Pθ̃k−1

g2
an

(X̃k−1, θ̃k−1)

≤ C(Kl )ζδ(an)1{←
τ Kl

>k−1}V
1−α(X̃k−1).

From Proposition 3.4(i), we thus obtain

sup
(x,θ)∈X0×Kl

E
(l)
x,θ

(
H 2

an,θ̃k−1
(X̃k−1, X̃k)1{←

τ Kl
>k−1}

) ≤ C(Kl )ζδ(an)k
1−α sup

x∈X0

V 1−α(x) < ∞.

To obtain (26), then apply Lemma 3.10. �

Proof of (27).

Ě(D2
n,j |F̌j−1) = 1{ξj−1 �=0}n−1Pθj−1H

2
an,θj−1

(Xj−1)

= n−1Pθj−1H
2
an,θj−1

(Xj−1) − 1{ξj−1=0}n−1Pθj−1H
2
an,θj−1

(Xj−1).
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The same argument as above shows that

n−1
n∑

j=1

1{ξj−1=0}Pθj−1H
2
an,θj−1

(Xj−1) ≤ n−1ζδ(an)C(Kν∞)

Tν∞∑
j=1

V 1−α(Xj−1),

which converges almost surely to zero since Tν∞ is finite P̌-almost surely, ζδ(an) = O(nρ(1−δ))

and ρ(1 − δ) < 1/2.
For the first term, we note that PθH

2
a,θ (x, θ) = Pθg

2
a(x, θ) − (Pθga(x, θ))2 = Pθg

2
a(x, θ) −

((1 − a)−1ga(x, θ) − f (x))2. We thus have the decomposition:

1

n

n∑
k=1

Pθk−1H
2
an,θk−1

(Xk−1) = 1

n

6∑
i=1

T (i)
n +

∫
π(dx)

(−f 2(x) + 2f (x)g(x, θ�)
)
,

where

T (1)
n =

n∑
k=1

Pθk−1g
2
an

(Xk−1, θk−1) − g2
an

(Xk−1, θk−1),

T (2)
n = (

1 − (1 − an)
−2) n∑

k=1

g2
an

(Xk−1, θk−1),

T (3)
n = 2

(
(1 − an)

−1 − 1
) n∑

k=1

f (Xk−1)gan(Xk−1, θk−1),

T (4)
n = 2

n∑
k=1

f (Xk−1)
(
gan(Xk−1, θk−1) − g(Xk−1, θk−1)

)
,

T (5)
n = 2

n∑
k=1

∫
π(dx)f (x)

(
g(x, θk−1) − g(x, θ�)

)
,

T (6)
n =

n∑
k=1

[
−f 2(Xk−1) + 2f (Xk−1)g(Xk−1, θk−1) −

∫
π(dx)

(−f 2(x) + 2f (x)g(x, θk−1)
)]

.

By assumption n−1T
(1)
n converges in P̌-probability to zero. We will use the same tech-

nique to study the term T
(2)
n to T

(5)
n . For example for T

(2)
n , the idea is to introduce its coun-

terpart T̃
(2)
n,s in terms of the nonhomogeneous Markov chain {(X̃n, θ̃n), n ≥ 0}, to show that

limn→∞ P
(l)
x,θ (|T̃ (2)

n,s | > δ) = 0 for any l ≥ 0, δ > 0 and any (x, θ) ∈ X0 × �l and then to argue

that limn→∞ P̌(|T (2)
n | > δ) = 0 for all δ > 0 using Lemma 3.11.

Lemma 3.12. n−1(T
(2)
n + T

(3)
n ) converges in probability to zero.
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Proof. For l, s ≥ 0, define

T̃n,s
def= (

1 − (1 − an+s)
−2)1{←

τ Kl
>n}

n∑
k=1

g2
an+s

(X̃k−1, θ̃k−1)

+ (
(1 − an+s)

−1 − 1
)
1{←

τ Kl
>n}

n∑
k=1

f (X̃k−1)gan+s (X̃k−1, θ̃k−1).

As above, for any (x, θ) ∈ X × Kl and by Proposition 3.2(i), we get

E
(l)
x,θ (|T̃n,s |)

≤ C(Kl )
(
ζδ(an+s) + 1

)
an+sE

(l)
x,θ

(
n∑

k=1

1{←
τ Kl

>k−1}V
2β+α(κ+δ)(X̃k)

)
= O(naδ

n).

Then we apply Lemma 3.11 to conclude that n−1(T
(2)
n + T

(3)
n ) converges in P̌-probability to

zero. �

Lemma 3.13. n−1T
(4)
n converges in probability to zero.

Proof. For l, s ≥ 0, define T̃
(4)
n,s

def= 1{←
τ Kl

>n}
∑n

k=1 f (X̃k−1)(gan+s (X̃k−1, θ̃k−1) − g(X̃k−1,

θ̃k−1)). Again, for any (x, θ) ∈ X × Kl and by Proposition 3.2(ii) we get

E
(l)
x,θ

(
n−1

∣∣T̃ (4)
n,s

∣∣) ≤ C(Kl )

(∫ an+s

0
ζκ−1(u)du

)
n−1

E
(l)
x,θ

(
n∑

k=1

1{←
τ Kl

>k−1}V
2β+ακ(X̃k)

)
.

The rest of the proof is similar to the above upon noticing that for κ > 1,
∫ a

0 ζκ−1(u)du → 0 as
a → 0. �

Lemma 3.14. n−1T
(5)
n converges P̌-almost surely to zero.

Proof. By Proposition 3.3(ii), there exists a finite constant C(K) such that for any θ, θ ′ ∈ K,
x ∈ X and any a ∈ (0,1/2]

|g(x, θ) − g(x, θ ′)| ≤ C(K)

(∫ a

0
ζκ−1(u)du + a−1Dβ+ακ(θ, θ ′)

)
V β+ακ(x).

Therefore,∣∣∣∣
∫

π(dx)f (x)
(
g(x, θ) − g(x, θ ′)

)∣∣∣∣ ≤ C(K)

(∫ a

0
ζκ−1(u)du + a−1Dβ+ακ(θ, θ ′)

)
π(V 2β+ακ).
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Let ε > 0. Since
∫ a

0 ζκ−1(u)du → 0 as a → 0, we can find a0 ∈ (0,1/2] such that∫ a0
0 ζκ−1(u)du < ε. Then for P̌-almost every sample path

lim
n→∞

∣∣∣∣
∫

π(dx)f (x)
(
g(x, θ̃n) − g(x, θ�)

)∣∣∣∣
≤ C(Kν∞) lim

n→∞
(
ε + a−1

0 Dβ+ακ(θ̃n, θ�)
)
π(V 2β+ακ) = εC(Kν∞)π(V 2β+ακ).

Since ε > 0 is arbitrary and π(V 2β+ακ) < ∞, we are finished. �

Lemma 3.15. n−1T
(6)
n converges in probability to zero.

Proof. We would like to apply the law of large number (Theorem 2.2) to show that n−1T
(6)
n

converges to zero. By Proposition 3.2(ii), for any compact subset K of �, supθ∈K |f 2 +
2fgθ |V 2β+ακ < ∞ and 2β + ακ < 1 − α. To check (8), it is enough to find ε > 0 such that

E
(l)
x,θ

[∑
k≥1

k−1+ε|fgθ̃k−1
− fgθ̃k

|V 2β+ακ1{←
τ Kl

>k}V
2β+α(κ+δ)(X̃k)

]
< ∞. (30)

But by Proposition 3.3(ii), there exists a finite constant C(K) such that for any θ, θ ′ ∈ K, x ∈ X and
any a ∈ (0,1/2], |f (·)g(·, θ) − f (·)g(·, θ ′)|V 2β+ακ ≤ C(K)

∫ a

0 ζκ−1(u)du + a−1Dβ+ακ(θ, θ ′).
We let a depend on k by taking a = ak , therefore

E
(l)
x,θ

[∑
k≥1

k−1+ε|fgθ̃k−1
− fgθ̃k

|V 2β+ακ1{←
τ Kl

>k}V
2β+α(κ+δ)(X̃k)

]

≤ E
(l)
x,θ

[∑
k≥1

k−1+ε

∫ ak

0
ζκ−1(u)du1{←

τ Kl
>k}V

1−α(X̃k)

]

+ E
(l)
x,θ

[∑
k≥1

k−1+εa−1
k Dβ+ακ(θ̃k−1, θ̃k)1{←

τ Kl
>k}V

2β+α(κ+δ)(X̃k)

]
.

We can then find ε > 0 such that
∫ an

0 ζκ−1(u)du = O(n−ε) and n−1+εa−1
n = O(n−1/2+ρ(1−δ)),

and (30) follows. �
�

Proof of (29). It is suffices to show that

lim
n→∞n−1

n∑
k=1

∫
Pθk−1(Xk−1,dy)H 2

an,θk−1
(Xk−1, y)1{|Han,θk−1(Xk−1,y)|≥ε

√
n} = 0,
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in P̌-probability. By Lemma 9 of Andrieu and Moulines [1]∫
Pθk−1(Xk−1,dy)H 2

an,θk−1
(Xk−1, y)1{|Han,θk−1 (Xk−1,y)|>ε

√
n} ≤ 4Wn,k,

where

Wn,k =
∫

Pθk−1(Xk−1,dy)g2
an

(y, θk−1)1{|gan (y,θk−1)|>ε
√

n/2}.

It is thus enough to show that for any s, l ≥ 0, any (x, θ) ∈ X0 × Kl ,

lim
n→∞n−1

n∑
k=1

1{←
τ Kl

>k−1}W̃n+s,k = 0 (in P
(l)
x,θ -probability).

Take p > 2 such that p(β + α/2) < 1 − α. Then

E
(l)
x,θ

(
1{←

τ Kl
>k−1}W̃n+s,k

) = E
(l)
x,θ

(
1{←

τ Kl
>k−1}|gan+s (X̃k, θ̃k−1)|21{|gan+s (X̃k,θ̃k−1)|>ε

√
n+s/2}

)
≤ (2/ε)−p(n + s)−p/2

E
(l)
x,θ

(
1{←

τ Kl
>k−1}|gan+s (X̃k, θ̃k−1)|p

)
≤ (2/ε)−pC(Kl )n

−p/2(ζ1/2(an))
p
E

(l)
x,θ

(
1{←

τ Kl
>k−1}V

1−α(X̃k)
)
.

It follows that

n−1
E

(l)
x,θ

(
n∑

k=1

1{←
τ Kl

>k−1}W̃n+s,k

)
= O

(
n−p(1−ρ)/2)

and since ρ < 1, we are done. �

3.6. Proof of Proposition 2.5

For integers p ≥ 0, n ≥ 1 and a compact subset K of �, we define the random variables

Cn,p(K)
def= sup

l≥n

1{←
τ K>l}

∣∣∣∣∣
l∑

j=n

γp+j−1
(
ε̃
(1)
j + ε̃

(2)
j

)∣∣∣∣∣.
We will show that for any p ≥ 0, n ≥ 1, any compact subset K of � and any δ > 0,

sup
(x,θ)∈X0×�0

P
(p)
x,θ

(
Cn,p(K) > δ

) ≤ B(n,p), (31)

where the upper bound B(n,p) satisfies limn→∞ B(n,p) = 0 for any p ≥ 0 and limp→∞ B(n,

p) = 0 for any n ≥ 1. This implies the stated result by the same argument used in Andrieu et al.
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[2], Proposition 4.2 and Theorem 5.5. We have

Cn,p(K) ≤ sup
l≥n

1{←
τ K>l}

∣∣∣∣∣
l∑

j=n

γp+j−1ε̃
(1)
j

∣∣∣∣∣ + sup
l≥n

1{←
τ K>l}

∣∣∣∣∣
l∑

j=n

γp+j−1ε̃
(2)
j

∣∣∣∣∣. (32)

We start with the second term on the rhs of (32). By Doob’s inequality and B2, for N > n,

P
(l)
x,θ

(
sup

n≤l≤N

1{←
τ K>l}

∣∣∣∣∣
l∑

j=n

γp+j−1ε̃
(2)
j

∣∣∣∣∣ > δ

)

≤ δ−2
E

(l)
x,θ

(
N∑

j=n

γ 2
p+j−11{←

τ K>j}

∫
�2

θ̃j
(X̃j , y)q

(1)

θ̃j
(X̃j ,dy)

)

≤ C(K)δ−2

(
γ 2
p+nE

l
x,θ

(
1{←

τ K>n−1}V
2η+α(X̃n)

) +
N∑

j=n

γ 2
p+j

)
.

It follows that

P
(l)
x,θ

(
sup
l≥n

1{←
τ K>l}

∣∣∣∣∣
l∑

j=n

γp+j−1ε̃
(2)
j

∣∣∣∣∣ > δ

)
≤ C(K)δ−p

(
γ 2
p+nn

2η+α +
∑
j≥n

γ 2
p+j

)
. (33)

To deal with the first term on the right-hand side of (32), we proceed as in the proof of Theo-
rem 2.1. We consider the sequence {an,n ≥ 0} such that an ∝ n−ρ , an ∈ (0,1/2] where ρ ∈ (0,1)

is as in the statement of the proposition. For 1 ≤ n ≤ l and p ≥ 0, we introduce the partial sum

Sn,l(p,K)
def= 1{←

τ K>l}
l∑

j=n

γp+j ϒ̄θ̃j
(X̃j ),

where ϒ̄θ (x) = ϒθ(x)−h(θ). Under B2, ϒθ admits an approximate Poisson equation g̃a for any
j ≥ 1 and we have ϒ̄θ̃j

(X̃j ) = (1−aj )
−1g̃aj

(X̃j , θ̃j )−Pθ̃j
g̃aj

(X̃j , θ̃j ). Using this and following
the same approach as in the proof of Theorem 2.1, we decompose Sn,l(p,K) as

Sn,l(p,K) = T
(1)
n,l + T

(2)
n,l + T

(3)
n,l + T

(4)
n,l + T

(5)
n,l + T

(6)
n,l ,

where

T
(1)
n,l = 1{←

τ K>l}
l∑

j=n

1{←
τ K>j}γp+j

(
(1 − aj )

−1 − 1
)
g̃aj

(X̃j , θ̃j ),

T
(2)
n,l = 1{←

τ K>n}γp+ng̃an(X̃n, θ̃n) − 1{←
τ K>l}γp+lPθ̃l

g̃al
(X̃l, θ̃l),
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T
(3)
n,l = 1{←

τ K>l}
l−1∑
j=n

1{←
τ K>j+1}γp+j+1

(
g̃aj+1(X̃j+1, θ̃j+1) − g̃aj+1(X̃j+1, θ̃j )

)
,

T
(4)
n,l = 1{←

τ K>l}
l−1∑
j=n

1{←
τ K>j}(γp+j+1 − γp+j )g̃aj+1(X̃j+1, θ̃j ),

T
(5)
n,l = 1{←

τ K>l}
l−1∑
j=n

1{←
τ K>j}γp+j

(
g̃aj +1(X̃j+1, θ̃j ) − g̃aj

(X̃j+1, θ̃j )
)
,

T
(6)
n,l = 1{←

τ K>l}
l−1∑
j=n

1{←
τ K>j}γp+j

(
g̃aj

(X̃j+1, θ̃j ) − Pθ̃j
g̃aj

(X̃j , θ̃j )
)
.

We deal with each of these terms using similar techniques as in the proofs of Theorem 2.1 and
Theorem 2.2. Some of the details are thus omitted. Let δ > 0 arbitrary.

On term T
(1)
n,l . Take κ > 1 such that η + ακ < 1 − α. Then Proposition 3.2 yields

|g̃aj
(X̃j , θ̃j )| ≤ C(K)V η+ακ(X̃j ) on {θ̃j ∈ K}. Then we have

P
(p)
x,θ

(
sup
l≥n

∣∣T (1)
n,l

∣∣ > δ
)

≤ δ−1C(K)V (x)

(
γn+pn1−α−ρ +

∑
j≥n

γp+j j
−ρ

)
. (34)

On term T
(2)
n,l . Let ε > 0, κ > 1 such that ε ∈ (ρ, (1 − α)(η + κα)−1 − 1). That is (1 + ε)(η +

ακ) < 1 − α and ε > ρ. Then

P
(p)
x,θ

(
sup
l≥n

∣∣T (2)
n,l

∣∣ > δ
)

≤ (2/δ)1+εC(K)V (x)

(
γ 1+ε
p+nn

1−α +
∑

j≥n−1

γ 1+ε
p+j

)
. (35)

On term T
(3)
n,l . Take κ > 1 and δ > 0 such that 2η + α(κ + δ) < 1 − α and η + α(κ +

δ) < 1/2. By Proposition 3.3 and B2 |g̃a(x, θ) − g̃a(x, θ ′)| ≤ C(K) supθ∈K |ϒθ |V ηζδ(a)|θ −
θ ′|V η+α(κ+δ)(x). Then

P
(p)
x,θ

(
sup
l≥n

∣∣T (3)
n,l

∣∣ > δ
)

≤ (1/δ)C(K)

(
γ 2
p+n−1n

1+ρ−α +
∑
j≥n

γ 2
p+j−1j

ρ

)
V (x). (36)

On term T
(4)
n,l . We have

P
(p)
x,θ

(
sup
l≥n

∣∣T (4)
n,l

∣∣ > δ
)

≤ (1/δ)C(K)V (x)
(
n1−α(γp+n − γp+n+1) + γp+n

)
. (37)

On term T
(5)
n,l . Take κ ∈ (1,2) such that η + ακ < 1 − α. One can check as in Proposition 3.3

that for any compact K |Pθ g̃a(x, θ) − Pθ g̃a′(x, θ)| ≤ C(K)|a − a′|aκ−2V η+ακ(x). And for aj ∝
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j−ρ , |aj − aj−1|aκ−2
j ∝ j−1aκ−1

j = o(j−1). Hence, by Markov’s inequality, we get:

P
(p)
x,θ

(
sup
l≥n

∣∣T (5)
n,l

∣∣ > δ
)

≤ δ−1C(K)V (x)

(
n−αγp+n +

∑
j≥n

γp+j j
−1

)
. (38)

On term T
(6)
n,l Let κ > 1 such that 2(η + ακ/2) < 1 − α. Consider the term Dj =

1{←
τ K>j}γp+j (g̃aj

(X̃j+1, θ̃j ) − Pθ̃j
g̃aj

(X̃j , θ̃j )) so that T
(2)
n,l = 1{←

τ K>l}
∑l−1

j=n Dj . We note that

Dj is a martingale difference and by Doob’s inequality we get:

P
(p)
x,θ

(
sup
l≥n

∣∣T (6)
n,l

∣∣ > δ
)

≤ (1/δ)2C(K)V (x)

(
γ 2
p+n−1n

1−α+ρ +
∑
j≥n

γ 2
p+j−1j

ρ

)
. (39)

By combining (33)–(39) and (16), we get (31) as claimed.

3.7. Proof of the results of Section 2.7

3.7.1. Proof of Proposition 2.6

The function a(θ) is of class C 1. Hence, by Assumption C1 and the mean value theorem L =
{θ ∈ R: a(θ) = ᾱ} is not empty. It also follows from C1 that the function θ → ∫ θ

0 cosh(u)(ᾱ −
a(u))du is bounded from below; so we can find K1 such that w(θ) = ∫ θ

0 cosh(u)(ᾱ −a(u))du+
K1 ≥ 0. Moreover, (a(u) − ᾱ)w′(θ) = − cosh(θ)(a(θ) − ᾱ)2 ≤ 0 with equality iif θ ∈ L. By
Sard’s theorem w(L) has an empty interior. Again from C1, it follows that L is included in
a bounded interval of R and since limθ→±∞ w(θ) = ∞, we can find M0 such that L ⊂ {θ ∈
R: w(θ) < M0} and WM is bounded thus compact for any M > 0.

3.7.2. Proof of Proposition 2.8

A straightforward calculation using the boundedness of |∇ logπ(x)| implies that for any θ ∈ K,∣∣∣∣ ∂

∂θ
log(αθ (x, y)qθ (x, y))

∣∣∣∣ ≤ C(K)(1 + |y − x|2)

for some finite constant C(K). It follows that∫ ∣∣∣∣ ∂

∂θ
(αθ (x, y)qθ (x, y))f (y)

∣∣∣∣dy ≤ C(K)|f |
V

β
s

∫
(1 + |y − x|2)V β

s (y)qθ (x, y)dy.

We do a change of variable y = b(x) + eθ/2z, where b(x) = x + 0.5eθ∇ logπ(x) and using the
boundedness of |∇ logπ(x)|, we get:

sup
θ∈K

∫ ∣∣∣∣ ∂

∂θ
(αθ (x, y)qθ (x, y))f (y)

∣∣∣∣dy ≤ C(K)|f |
V

β
s
V β

s (x)

∫
(1 + |z|2)βs/2g(z)dz,

where g is the density of the mean zero d-dimensional Gaussian distribution with covariance
matrix Id . The stated result follows by an application of the mean value theorem.
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