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It is commonly acknowledged that V-functionals with an unbounded kernel are not Hadamard differen-
tiable and that therefore the asymptotic distribution of U- and V-statistics with an unbounded kernel cannot
be derived by the Functional Delta Method (FDM). However, in this article we show that V-functionals are
quasi-Hadamard differentiable and that therefore a modified version of the FDM (introduced recently in
(J. Multivariate Anal. 101 (2010) 2452–2463)) can be applied to this problem. The modified FDM requires
weak convergence of a weighted version of the underlying empirical process. The latter is not problem-
atic since there exist several results on weighted empirical processes in the literature; see, for example,
(J. Econometrics 130 (2006) 307–335, Ann. Probab. 24 (1996) 2098–2127, Empirical Processes with Ap-
plications to Statistics (1986) Wiley, Statist. Sinica 18 (2008) 313–333). The modified FDM approach has
the advantage that it is very flexible w.r.t. both the underlying data and the estimator of the unknown dis-
tribution function. Both will be demonstrated by various examples. In particular, we will show that our
FDM approach covers mainly all the results known in literature for the asymptotic distribution of U- and
V-statistics based on dependent data – and our assumptions are by tendency even weaker. Moreover, using
our FDM approach we extend these results to dependence concepts that are not covered by the existing
literature.

Keywords: Functional Delta Method; Jordan decomposition; quasi-Hadamard differentiability; stationary
sequence of random variables; U- and V-statistic; weak dependence; weighted empirical process

1. Introduction

For a distribution function (d.f.) F on the real line, we consider the characteristic

U(F) :=
∫ ∫

g(x1, x2)dF(x1)dF(x2) (1)

with g : R2 → R some measurable function, provided the double integral exists. A systematic
theory for the nonparametric estimation of U(F) was initiated in [14] and [27]. A natural esti-
mator for U(F) is given by

U(Fn) :=
∫ ∫

g(x1, x2)dFn(x1)dFn(x2), (2)
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where Fn denotes some estimate of F based on the first n observations of a sequence X1,X2, . . .

of random variables (on some probability space (�, F ,P)) being identically distributed accord-
ing to F . Sometimes U(Fn) is called von-Mises-statistic (or simply V-statistic) with kernel g. If
Fn is the empirical d.f. F̂n := 1

n

∑n
i=1 1[Xi,∞) of X1, . . . ,Xn, then we obtain

U(F̂n) = 1

n2

n∑
i=1

n∑
j=1

g(Xi,Xj ), (3)

and we note that U(F̂n) is closely related to the U-statistic

Un := 1

n(n − 1)

n∑
i=1

n∑
j=1:j �=i

g(Xi,Xj ). (4)

If X1, . . . ,Xn are i.i.d., then Un is an unbiased estimator whereas U(F̂n) is generally not so.
However, Un and U(F̂n) typically share the same asymptotic properties; cf. Remark 2.5 below.
Also notice that, in the nonparametric setting, Un is the minimum variance unbiased estimator
of U(F) = E[g(X1,X2)] whenever X1, . . . ,Xn are i.i.d. For background on U-statistics see, for
instance, [5,7,14,16,20,21,23].

We note that several features of a d.f. F can be expressed as in (1), for instance, the variance
of F , or Gini’s mean difference of two independent random variables with d.f. F ; for details, see
Section 3.

Our objective is the asymptotic distribution of U(Fn), that is, the weak limit of the empirical
error

√
n(U(Fn) − U(F)). In the existing literature, the starting point for the derivation of the

asymptotic distribution of U-statistics Un is usually the Hoeffding decomposition [14] of Un.
Using this decomposition, asymptotic normality of Un was shown in [14] for i.i.d. sequences, in
[19] for *-mixing stationary sequences, in [8,31] for β-mixing stationary sequences, in [10] for
associated random variables, and recently in [6] for α-mixing stationary sequences (recall from
[3], page 109: i.i.d. ⇒ ∗-mixing ⇒ β-mixing ⇒ α-mixing). Another approach is based on the
orthogonal expansion of the kernel g; see, for example, [9] and the references therein.

In this article, we derive the asymptotic distribution of U- and V-statistics by means of a Func-
tional Delta Method (FDM). The use of an FDM is known to be beneficial for the following
reason. Provided the functional U can be shown to be Hadamard differentiable at F , it is ba-
sically enough to derive the asymptotic distribution of Fn to obtain the asymptotic distribution
of U(Fn). Therefore, this method is especially useful for deriving the asymptotic distribution of
the estimator U(F̂n) based on dependent data, because – given the Hadamard differentiability –
one “only” has to derive the asymptotic distribution of F̂n based on data subjected to a certain
dependence structure. There are already several respective results on the asymptotic distribution
of F̂n based on dependent data in the literature (e.g., [4,24,30]), and new respective results (com-
bined with the assumed Hadamard differentiability) would immediately yield also the asymptotic
distribution of U(F̂n).

However, one has to be careful with the application of an FDM to our problem. The classical
FDM in the sense of [12,13,18] (see also [28,29]) cannot be applied to many interesting statistical
functionals depending on the tails of the underlying distribution, because the method typically



Asymptotic distribution of U- and V-statistics 805

relies on Hadamard differentiability w.r.t. the uniform sup-norm. For instance, as pointed out
in [28] and [22], whenever F has an unbounded support Hadamard differentiability w.r.t. the
uniform sup-norm can be shown neither for an L-statistic with a weight function having one
of the endpoints (or both endpoints) of the closed interval [0,1] in its support nor for a U-
statistic with unbounded kernel. However, in [2] a modified version of the FDM was introduced
which is suitable also for nonuniform sup-norms (imposed on the tangential space only), and
it was in particular shown that this modified version can also be applied to L-statistics with a
weight function having one of the endpoints (or both endpoints) of the closed interval [0,1] in
its support. In contrast to the classical FDM, our FDM is based on the notion of quasi-Hadamard
differentiability and requires weak convergence of the empirical process

√
n(F̂n − F) w.r.t. a

nonuniform sup-norm, that is, in other words, weak convergence of a weighted version of the
empirical process. Fortunately, the latter is not problematic, because there are many results on
the weak convergence of weighted empirical processes in the literature; see [26] for i.i.d. data,
and [4,24,30] for dependent data.

In the present article, we demonstrate that the modified version of the FDM can be applied to
derive the limiting distribution for U- and V-statistics with an unbounded kernel g. For simplicity
of notation, we restrict the derivations to kernels of degree 2. However, in Remark 4.2, we clarify
how the results can be extended to kernels of degree d ≥ 3. Using our FDM approach, we will
be able to a great extent to recover the results mentioned above (the conditions imposed by
our approach will turn out to be weaker by tendency) and to extend them to other concepts of
dependence; cf. Section 3.2. The FDM approach will also turn out to be useful when the empirical
d.f. is replaced by a different estimate of F , for instance by a smoothed version of the empirical
d.f.; cf. Example 3.4.

The remainder of this article is organized as follows. In Section 2, we state the conditions
under which the asymptotic distribution of U- and V-statistics can be derived by the modified
version of the FDM and present our main result. The conditions imposed can be divided into two
parts: on the one hand conditions on the kernel g and the d.f. F , and on the other hand conditions
on an empirical process. In Section 3, we give several examples for both, that is, for kernels g

and d.f. F as well as empirical processes fulfilling the conditions imposed. In the Appendix A,
we recall the Jordan decomposition of functions of locally bounded variation, which will be
beneficial for our applications in Section 3. Finally, in the Appendix B we give an integration-
by-parts formula and a sort of weighted Helly-Bray theorem. Both results are needed in Section 4
to show quasi-Hadamard differentiability of V-functionals.

2. Main result

Our main result is Theorem 2.3 below, which provides a CLT for the V-statistic U(Fn) subject
to Assumption 2.1. Let Dλ be the space of all càdlàg functions ψ on R with ‖ψ‖λ < ∞, where
‖ψ‖λ := ‖ψφλ‖∞ refers to the nonuniform sup-norm based on the weight function φλ(x) :=
(1 + |x|)λ, for λ ∈ R fixed. As usual, we let 0 · ∞ := 0. If λ ≥ 0, then we equip Dλ with the
σ -algebra Dλ := D ∩ Dλ to make it a measurable space, where D is the σ -algebra generated
by the usual coordinate projections πx : D → R, x ∈ R, with D the space of all bounded càdlàg
functions on R. Further, let BVloc be the space of all functions ψ : R → R being real-valued and
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of local bounded variation on R. For ψ ∈ BVloc, we denote by dψ+ and dψ− the unique positive
Radon measures induced by the Jordan decomposition of ψ (for details, see the Appendix A), and
we set |dψ | := dψ+ + dψ−. Finally, we will interpret integrals as being over the open interval
(−∞,∞), that is,

∫ = ∫
(−∞,∞)

.

Assumption 2.1. We assume that for some λ > λ′ ≥ 0 the following assertions hold:

(a) For every x2 ∈ R fixed, the function gx2(·) := g(·, x2) lies in BVloc ∩ D−λ′ . Moreover, the
function x2 
→ ∫

φ−λ(x1)|dgx2 |(x1) is measurable and finite w.r.t. ‖ · ‖−λ′ .
(b) The functions g1,F (·) := ∫

g(·, x2)dF(x2) and g2,F (·) := ∫
g(x1, ·)dF(x1) lie in BVloc ∩

D, and
∫

φ−λ(x)|dgi,F |(x) < ∞ for i = 1,2. Moreover, the functions g1,F (·) := ∫ |g(·,
x2)|dF(x2) and g2,F (·) := ∫ |g(x1, ·)|dF(x1) lie in D−λ′ .

(c) F is continuous, the double integral in (1) exists, and
∫

φλ′(x)dF(x) < ∞.
(d) Fn : � → D is (F , D)-measurable, and every realization of Fn is nonnegative and

nondecreasing, has variation bounded by 1, the double integral in (2) exists and∫
φλ′(x)dFn(x) < ∞, for every n ∈ N.

(e) The process
√

n(Fn −F) is a random element of (Dλ, Dλ) for all n ∈ N, and there is some
random element B◦ of (Dλ, Dλ) with continuous samples such that

√
n(Fn − F)

d→ B◦ in (Dλ, Dλ,‖ · ‖λ). (5)

The assumptions (a) and (b) will allow us to prove quasi-Hadamard differentiability of the
functional U (defined in (1)) at F ; see Section 4. At first glance, they seem to be awkward
but in an application their verification is often straightforward, see Section 3.1. To understand
the meaning of conditions (a) and (b), let us suppose that we want to derive the asymptotic
distribution of U- and V-statistics by means of the classical FDM in the sense of [12,13,18]. Then
we would have to prove Hadamard differentiability of the functional U given by (1) at F . If F has
an unbounded support this could be done by imposing Assumptions 2.1(a) and (b) with λ′ = 0,
that is, with the uniform sup-norm. Thus, as pointed out in the Introduction, an application of the
classical FDM for the derivation of the asymptotic distribution of U- and V-statistics would, inter
alia, require a uniformly bounded kernel g (cf. [22]). On the other hand, the modified FDM only
requires that this boundedness holds w.r.t. the weaker nonuniform sup-norm ‖ · ‖−λ′ for some
λ′ ≥ 0.

Remark 2.2. Notice that

(a)′ Assumption 2.1(a) could, alternatively, be imposed on gx1 defined similar as gx2 . Further
notice that the second requirement in Assumption 2.1(a) is rather weak. Indeed: In the
examples to be given in Section 3.1 the function x2 
→ ∫

φ−λ(x1)|dgx2 |(x1) even lies
in D.

(b)′ The last part of Assumption 2.1(b) implies g1,F , g2,F ∈ D−λ′ .
(c)′ Continuity of F is required for the application of the modified FDM.
(d)′ Assumption 2.1(d) is always fulfilled if Fn is the empirical d.f. F̂n.
(e)′ Assumption 2.1(e) does not require that F lies in Dλ or that Fn is a random element of

(Dλ, Dλ). These conditions would actually fail to hold.
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Theorem 2.3. Under Assumption 2.1, we have

√
n
(
U(Fn) − U(F)

) d−→ U̇ (B◦) in (R, B(R), | · |) (6)

with

U̇F (B◦) := −
∫

B◦(x)dg1,F (x) −
∫

B◦(x)dg2,F (x). (7)

Proof. First of all, notice that the integrals in (7) exist by Assumptions 2.1(b) and (e). Now,
let BV1,d be the space of all càdlàg functions in BVloc with variation bounded by 1, and U

be the class of all nonnegative and nondecreasing functions f ∈ BV1,d for which the integral
on the right-hand side of equation (8) below and the integral

∫
φλ′(x)df (x) exist. We define a

functional U : U → R by setting

U(f ) :=
∫ ∫

g(x1, x2)df (x1)df (x2), f ∈ U, (8)

so that U(F) and U(Fn) defined in (1)–(2) can be written as U(f ) with f := F and fn := Fn,
respectively. We are going to apply an FDM to the functional U . The version of the FDM we
need for our purposes is given in [2], Theorem 4.1. It is based on the notion of quasi-Hadamard
differentiability which is also introduced in [2], Definition 2.1.

Let Cλ be the space of all continuous functions in Dλ, and notice that Cλ is separable w.r.t.
‖ · ‖λ. For every f in U ’s domain U we define a functional U̇f : Cλ → R by setting

U̇f (v) := −
∫

v(x)dg1,f (x) −
∫

v(x)dg2,f (x), v ∈ Cλ, (9)

where gi,f is defined analogously to gi,F (cf. Assumption 2.1(b)). Lemma 4.1 below shows that,
subject to Assumption 2.1(a)–(c), the functional U is quasi-Hadamard differentiable at f := F

tangentially to Cλ〈Dλ〉 with quasi-Hadamard derivative U̇F . Thus, assumption (iv) of Theo-
rem 4.1 in [2] (with f = U , Vf = U, (V′,‖·‖V′) = (R, | · |), (V0,‖·‖V0) = (Dλ,‖·‖λ), C0 = Cλ,
θ = F and Tn = Fn) is fulfilled. Therefore, the statement of Theorem 2.3 would follow from the
FDM given in Theorem 4.1 in [2] if we could verify that also the conditions (i)–(iii) of this theo-
rem are satisfied. Conditions (i) and (ii) are satisfied by Assumption 2.1(d) and (e), respectively. It
thus remains to verify (iii), that is, that the mapping ω̃ 
→ U(W(ω̃)+F) is (F̃ , B(R))-measurable
whenever W is a measurable mapping from some measurable space (�̃, F̃ ) to (Dλ, Dλ) such that
W(ω̃) + F ∈ U for all ω̃ ∈ �̃. Since W is (F̃ , Dλ)-measurable and Dλ is the projection σ -field,
we obtain in particular (F̃ , B(R))-measurability of ω̃ 
→ W(x, ω̃) for every x ∈ R. Along with
the representation (1), this yields (F̃ , B(R))-measurability of ω̃ 
→ U(W(ω̃) + F). �

We emphasize that Theorem 2.3 is quite a flexible tool to derive the asymptotic distribution of
the plug-in estimate U(Fn). In fact: Apart from checking the technical Assumptions 2.1(a)–(d),
it is enough to establish the CLT (5) for Fn in order to obtain the CLT (6) for U(Fn). Section 3
below demonstrates this flexibility by various examples.
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Remark 2.4. If B◦ in Theorem 2.3 is a Gaussian process with zero mean and measurable co-
variance function � and if

∫ ∫
�(x, y)dgi,F (x)dgj,F (y) exists for every i, j ∈ {1,2}, then the

random variable U̇F (B◦) defined in (7) is normally distributed with mean 0 and variance

σ 2 :=
2∑

i=1

2∑
j=1

∫ ∫
�(x, y)dgi,F (x)dgj,F (y). (10)

Remark 2.5. If E[|g(X1,X1)|] < ∞ (in Examples 3.1 and 3.2 below we even have g(x, x) = 0
for all x ∈ R), then the particular V-statistic U(F̂n) and the U-statistic Un (defined in (3) and (4),
resp.) have the same asymptotic distribution. To see this, we first of all note that (for n ≥ 2)

√
n
(
Un − U(F)

)
= √

n
(
Un − U(F̂n)

) + √
n
(
U(F̂n) − U(F)

)
(11)

=
√

n

n − 1
U(F̂n) −

√
n

n(n − 1)

n∑
i=1

g(Xi,Xi) + √
n
(
U(F̂n) − U(F)

)
=: S1(n) − S2(n) + √

n
(
U(F̂n) − U(F)

)
.

As
√

n(U(F̂n) − U(F)) converges weakly to some nondegenerate limit, we obtain by Slutzky’s

lemma that S1(n) = 1
n−1

√
n(U(F̂n) − U(F)) +

√
n

n−1U(F) converges in probability to zero. Fur-
ther, by the Markov inequality we know that, for every ε > 0 fixed, P[|S2(n)| > ε] is bounded

above by 1
ε
E[|S2(n)|] which, in turn, is bounded above by

√
n

n−1
1
ε
E[|g(X1,X1)|]. So we also

have that S2(n) converges in probability to zero. Slutzky’s lemma and (11) thus imply that√
n(Un − U(F)) has indeed the same limit distribution as

√
n(U(F̂n) − U(F)).

Remark 2.6. The linear part of the Hoeffding decomposition of Un − U(F) (cf. [23], page 178)
multiplied by

√
n can be written as

∑2
i=1

∫
gi,F d(

√
n(F̂n − F)), for example, using the

integration-by-parts formula (22), as −∑2
i=1

∫ √
n(F̂n − F)dgi,F . Then, if we could show that

the degenerate part of Un converges in probability to zero (which is nontrivial for dependent
data), we could recover (6) with Un in place of U(Fn) by using (5) and the Continuous Mapping
theorem.

3. Examples

In this section, we give some examples for g, F and Fn satisfying Assumption 2.1. At first, in
Section 3.1, we provide examples for g (and F ) satisfying Assumptions 2.1(a)–(b). Thereafter, in
Section 3.2, we will give examples for Fn (and F ) satisfying Assumptions 2.1(d)–(e) for various
types of data. We assume throughout this section that Assumption 2.1(c) is fulfilled because its
meaning is rather obvious and the conditions imposed by it are fairly weak.
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3.1. Examples for g

In [1], one can find a number of examples for kernels g for which U(F) corresponds to a popular
characteristic of F . By means of two popular examples, we now illustrate how to verify the
Assumptions 2.1(a)–(b). It will be seen that the verification of these assumptions is easy, though,
at first glance, it may seem cumbersome. We will use the notion of Jordan decomposition ψ =
ψ(c) + ψ+

c − ψ−
c centered at some point c ∈ R. For the reader’s convenience, we have recalled

the essentials in the Appendix A.

Example 3.1 (Gini’s mean difference). If g(x1, x2) = |x1 − x2| and F has a finite first mo-
ment, then U(F) equals Gini’s mean difference E[|X1 − X2|] of two i.i.d. random variables X1
and X2 on some probability space (�, F ,P) with d.f. F . Then the Assumptions 2.1(a)–(b) are
fulfilled for λ′ = 1. Indeed: We have gx2(x1) = (x1 − x2)1(x2,∞](x1) − (x1 − x2)1[−∞,x2](x1),
so that the first part of Assumption 2.1(a) obviously holds. Further, the Jordan decompo-
sition (18) of gx2 centered at c = x2 reads as gx2(x1) = 0 + gx2

+
x2

(x1) − gx2
−
x2

(x1), where
gx2

+
x2

(x1) = (x1 − x2)1(x2,∞](x1) and gx2
−
x2

(x1) = (x1 − x2)1[−∞,x2](x1), and so, in view of
Lemma A.1, dg+

x2
(x1) = 1(x2,∞](x1)dx1 and dg−

x2
(x1) = 1[−∞,x2](x1)dx1. Now it can be seen

easily that also the second part of Assumption 2.1(a) holds; we omit the details. Let us now turn
to Assumption 2.1(b). We have

g1,F (x1)

= E
[
X21(x1,∞](X2)

] − x1P[X2 > x1] + x1P[X2 ≤ x1] − E
[
X21[−∞,x1](X2)

]
= x1

(
2F(x1) − 1

) − E[X2] + 2E
[
X21(x1,∞](X2)

]
= K + x1 + 2

(−x1
(
1 − F(x1)

) + E
[
X21(x1,∞](X2)

])
= K + x1 + 2

∫ ∞

x1

(
1 − F(x)

)
dx

with K := −E[X2]. The same representation holds for g2,F . So we obviously have gi,F = gi,F ∈
D−1 ∩BVloc for i = 1,2. Moreover, we have g′

i,F (x) = 2F(x)− 1, and so there is some constant
c ∈ R such that gi,F is nonincreasing on (−∞, c) and is nondecreasing on (c,∞), for i = 1,2.
Since the density of |dgi,F | on (−∞, c) and the density of |dgi,F | on (c,∞) are bounded, we
also have

∫
φ−λ(x)|dgi,F |(x) < ∞ for i = 1,2 and every λ > 1. That is, all parts of Assump-

tion 2.1(b) hold true. Thus, Assumptions 2.1(a)–(b) hold true.

If also Assumptions 2.1(d)–(e) hold true, then we obtain from Theorem 2.3 for the kernel
g(x1, x2) = |x1 − x2| that U̇ (B◦) = 2

∫
B◦(x)(1 − 2F(x))dx, because dg1,F (x) = dg2,F (x) =

(2F(x) − 1)dx.

Example 3.2 (Variance). If g(x1, x2) = 1
2 (x1 − x2)

2 and F has a finite second moment, then
U(F) equals the variance of F . In this case, the Assumptions 2.1(a)–(b) are fulfilled for λ′ = 2.
The verification of this is even easier than the elaborations in Example 3.1. We note that this time,
we obtain dg+

x2
(x1) = (x1 −x2)1(x2,∞](x1)dx1 and dg−

x2
(x1) = (x2 −x1)1[−∞,x2](x1)dx1 as well
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as dg+
i,F (xi) = (xi − E[Xj ])1(E[Xj ],∞](xi)dxi and dg−

i,F (xi) = (E[Xj ] − xi)1[−∞,E[Xj ]](xi)dxi

for i, j ∈ {1,2} with i �= j .

If also Assumptions 2.1(d)–(e) hold true, then we obtain from Theorem 2.3 for the kernel
g(x1, x2) = 1

2 (x1 −x2)
2 that U̇ (B◦) = 2

∫
B◦(x)(E[X1]−x)dx, because dg1,F (x) = dg2,F (x) =

(x − E[X1])dx.

3.2. Examples for Fn

Here we will give some examples for estimators Fn for F that satisfy Assumption 2.1(d)–(e). We
first consider the case of i.i.d. data.

Example 3.3 (Empirical d.f. of i.i.d. data). Let X1,X2, . . . be a sequence of i.i.d. random vari-
ables with d.f. F , and let λ ≥ 0. If F has a finite γ -moment for some γ > 2λ, then Theorem 6.2.1
in [26] shows that for the empirical d.f. F̂n of X1, . . . ,Xn,

√
n(F̂n − F)

d→ B◦
F (in (Dλ, Dλ,‖ · ‖λ)), (12)

where B◦
F is an F -Brownian bridge, that is, a centered Gaussian process with covariance function

�(x, y) = F(x ∧ y)F (x ∨ y). Thus, if λ > 0, if F has a finite γ -moment for some γ > 2λ, and
if g is a kernel satisfying Assumptions 2.1(a)–(b) for F and some λ′ ∈ [0, λ), then Theorem 2.3
shows that the law of

√
n(U(F̂n) − U(F)) converges weakly to the normal distribution with

mean 0 and variance given by (10) with �(x, y) = F(x ∧ y)F (x ∨ y). Alternatively, the result
can be stated as follows: If g is a fixed kernel and Fg,λ′ denotes the class of all d.f. F for which
Assumptions 2.1(a)–(b) hold with λ′ ≥ 0, then

√
n(U(F̂n) − U(F)) converges weakly to the

above mentioned normal distribution for every F ∈ Fg,λ′ having a finite γ -moment for some
γ > 2λ′. Indeed: In this case, we can choose λ ∈ (λ′, γ /2) in Assumption 2.1(e).

Example 3.4 (Smoothed empirical d.f. of i.i.d. data). Suppose that in the setting of Example 3.3
the empirical d.f. F̂n is smoothed out by the heat kernel pεn(·) with bandwidth εn ≥ 0, that is, that
F̂n is replaced by PεnF̂n with (Pε)ε≥0 the heat semigroup (i.e., Pεψ := ∫

R
ψ(y)pε(· − y)dy for

ε > 0, and P0 := I). Then, if F is also Lipschitz continuous and
√

nε
(γ−λ)/(2γ )
n → 0, the CLT (12)

(with F̂n replaced by PεnF̂n) still holds (cf. Corollary A.2 in [2]), and therefore the weak limit of
the law of

√
n(U(PεnF̂n)−U(F)) is still the normal distribution with mean 0 and variance given

by (10) with �(x, y) = F(x∧y)F (x∨y). Of course, at this point we have to ensure that under the
imposed assumptions the expression U(PεnF̂n) is well defined, that is, that Assumption 2.1(d)
is satisfied. Now, it can be easily deduced from Lemma 3.2 in [32] that in our setting PεnF̂n

lies in Dλ. Thus, if we assume that, for example, supx1,x2∈R |g(x1, x2)|φ−λ′(x1)φ−λ′(x2) < ∞,
Assumption 2.1(d) follows easily.

Let us now turn to the case of dependent data, which is our actual objective. Throughout the
examples presented below, we consider a strictly stationary sequence (Xi) = (Xi)i≥1 of random



Asymptotic distribution of U- and V-statistics 811

variables on some probability space (�, F ,P) with continuous d.f. F , and let as before F̂n de-
note the corresponding empirical d.f. at stage n. By strict stationarity, we mean that the joint
distribution of Xi+1, . . . ,Xi+m does not depend on i for every fixed positive integer m. We will
consider three popular dependency structures (α-, β- and ρ-mixing) in more detail in Examples
3.5, 3.6, and 3.7, respectively. There, we will also provide a comparison of the results obtained
by the approach considered here and the results obtained up to now. For the definition of α-, β-
and ρ-mixing (and other) mixing conditions and for examples of strictly stationary α-, β- and
ρ-mixing sequences see, for example, [3,11,17]. As usual, the corresponding mixing coefficients
will be referred to as α(n), β(n) and ρ(n), respectively. The application of our method to other
dependence concepts will be discussed in Example 3.8. Notice that the condition of α-mixing is
weaker than the condition of β-mixing (absolute regularity) under which CLTs for U-statistics
have been established in [8,31]. A CLT for strictly stationary α-mixing (strongly mixing) se-
quences of random variables has been given in [6].

Example 3.5 (Empirical d.f. of α-mixing data). Let (Xi) be α-mixing with α(n) = O(n−θ ) for
some θ > 1 +√

2, and let λ ≥ 0. If F has a finite γ -moment for some γ > 2θλ
θ−1 , then it can easily

be deduced from Theorem 2.2 in [24] that

√
n(F̂n − F)

d→ B̃◦
F (in (Dλ, Dλ,‖ · ‖λ)) (13)

with B̃◦
F a continuous centered Gaussian process with covariance function

�(s, t) = F(s ∧ t)F̄ (s ∨ t)
(14)

+
∞∑

k=2

[
Cov

(
1{X1≤s},1{Xk≤t}

) + Cov
(
1{X1≤t},1{Xk≤s}

)]
(cf. Section 3.3 in [2]). Thus, if g is a fixed kernel and Fg,λ′ denotes the class of all d.f. satisfying
Assumptions 2.1(a)–(b) for some λ′ ≥ 0, then Theorem 2.3 shows that the law of

√
n(U(F̂n) −

U(F)) converges weakly to the normal distribution with mean 0 and variance given by (10), with
� as in (14), for every d.f. F ∈ Fg,λ′ having a finite γ -moment for some γ > 2θλ′

θ−1 . Indeed: In this
case we can choose λ ∈ (λ′, γ (θ − 1)/(2θ)) in Assumption 2.1(e).

To compare our result with that of Theorem 1.8 in [6], we consider the kernel g(x1, x2) =
1
2 (x1 − x2)

2. For Theorem 1.8 in [6] to be applicable, we must assume that F has a finite γ -
moment for some γ > 4 (the same condition is necessary to ensure that the approach considered
here works). In this case, both integrability conditions in Theorem 1.8 in [6] are fulfilled, and the
condition on the mixing coefficients reads as follows: α(n) = O(n−θ ) for some θ > 3

2 + 1
2γ

+
5

γ−4 + 2
γ (γ−4)

= 3γ−1
2γ−8 . On the other hand, if F has a finite γ -moment for some γ > 4, in our

setting we may choose λ′ = 2, and so θ >
γ

γ−4 (and λ ∈ (2,
γ (θ−1)

2θ
)). Hence, our condition on the

mixing coefficients reads as follows: α(n) = O(n−θ ) for some θ >
γ

γ−4 . Notice that 3γ−1
2γ−8 >

γ
γ−4

holds for all γ > 4. Taking into account that in our setting, we must choose θ > 1 + √
2 for the

result of [24] to be applicable we find that our result relies on a weaker assumption on the mixing

coefficients than Theorem 1.8 in [6] whenever 3γ−1
2γ−8 > 1 + √

2, that is, γ < 7+8
√

2
2
√

2−1
.
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Example 3.6 (Empirical d.f. of β-mixing data). Let (Xi) be β-mixing with β(n) = O(n−θ )

for some θ > κ
κ−1 with κ > 1, and let λ ≥ 0. If F has a finite γ -moment for some γ > 2λκ ,

then it can easily be deduced from Lemma 4.1 in [4] that the CLT (13) still holds and that the
covariance function is again given by (14). Thus, if g is a fixed kernel and Fg,λ′ denotes the
class of all d.f. satisfying Assumptions 2.1(a)–(b) for some λ′ ≥ 0, then Theorem 2.3 shows that
the law of

√
n(U(F̂n) − U(F)) converges weakly to the normal distribution with mean 0 and

variance given by (10), with � as in (14), for every d.f. F ∈ Fg,λ′ having a finite γ -moment for
some γ > 2λ′κ . Indeed: In this case we can choose λ ∈ (λ′, γ

2κ
).

To compare our result with that of Theorem 3.1 in [31] (see also Theorem 1.8 in [6]), we
consider the kernel g(x1, x2) = 1

2 (x1 − x2)
2. For this theorem to be applicable, we must again

assume that F has a finite γ -moment for some γ > 4 (the same condition is again necessary
to ensure that the approach considered here works). In this case, both integrability conditions
in Theorem 3.1 in [31] (see also Theorem 1.8 in [6]) are fulfilled, and the condition on the
mixing coefficients reads as follows: β(n) = O(n−θ ) for some θ >

γ
γ−4 . On the other hand, if

F has a finite γ -moment for some γ > 4, in our setting we may choose λ′ = 2, and so κ < γ/4
(and λ ∈ (2,

γ
2κ

)). Hence, in view of θ > κ
κ−1 , our condition on the mixing coefficients reads as

follows: β(n) = O(n−θ ) for some θ >
γ

γ−4 . That is, both results impose the same condition on
the mixing coefficients.

Example 3.7 (Empirical d.f. of ρ-mixing data). Let (Xi) be ρ-mixing with
∑∞

n=1 ρ(2n) < ∞,
suppose

∑∞
k=2 |Cov(1{X1≤s},1{Xk≤t}) + Cov(1{X1≤t},1{Xk≤s})| < ∞, and let λ ≥ 0. If F has a

finite γ -moment for some γ > λ(2 + ε) with ε > 0, then it can easily be deduced from Theo-
rem 2.3 in [24] that the CLT (13) still holds and that the covariance function is again given by
(14) (cf. Section 3.3 in [2]). Hence, we again have in this case: If g is a fixed kernel and if we
denote by Fg,λ′ the class of all d.f. for which Assumptions 2.1(a)–(b) hold for some λ′ ≥ 0, then
Theorem 2.3 yields that the law of

√
n(U(F̂n)−U(F)) converges weakly to the normal distribu-

tion with mean 0 and variance given by (10) with � as in (14) for every F ∈ Fg,λ′ having a finite
γ -moment for some γ > λ′(2 + ε). Indeed: In this case, we can choose λ ∈ (λ′, γ /(2 + ε)).

Up to our best knowledge, the asymptotic distribution of U- and V-statistics of ρ-mixing data
has not been studied explicitly so far. Of course, every ρ-mixing sequence is also α-mixing (since
α(n) ≤ 1

4ρ(n); see [3], Inequality (1.12)), but the condition on the mixing coefficients imposed
in Example 3.7 is considerably weaker than the condition on the mixing coefficients imposed in
Example 3.5. Similar statements apply to further dependence concepts, and one also obtains that
further dependence concepts are also covered by our approach.

Example 3.8 (Further examples). Recently, a new dependence structure for sequences of ran-
dom variables was introduced in [30]. Thus, not surprising, limit distributions for U- and V-
statistics under this dependence concepts have not been derived so far. Anyhow, in [30] it was
also proved that, subject to certain conditions, the weighted empirical process

√
n(F̂n − F)φγ

converges weakly to a tight Gaussian process. Here F̂n is the empirical d.f. based on a sequence
of random variables fulfilling this dependence condition. From our Theorem 2.3 one can thus
(along the lines of Examples 3.5, 3.6, and 3.7) derive the limit distribution of U- and V-statistics
when the data fulfills the dependence structure in [30]. We omit the details.
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In [10], the limit distribution of U-statistics for associated sequences was derived using the
Hoeffding decomposition. To prove asymptotic normality of U-statistics for stationary and asso-
ciated sequences, it was required there that the partial derivatives of g are uniformly bounded.
This clearly excludes the variance of a random variable. On the other hand, our approach also
covers the variance for the case of stationary and associated sequences. Indeed: Let (Xi) be a
stationary, associated sequence with Cov(X1,Xn) = O(n−ν−ε) for some ν ≥ (3 + √

33)/2 and
ε > 0. Then, we can deduce from Theorem 2.4 in [24] that the CLT (13) still holds and the co-
variance function is again given by (14) whenever F has a finite γ -moment for some γ > 2λν

ν−3
(λ ≥ 0 fixed). Hence, we obtain from Theorem 2.3 (recall from Example 3.2 that Assumptions
2.1(a)–(b) are fulfilled for the variance with λ′ = 2) that the variance is included in our method
of proof whenever F has a finite γ -moment for some γ > 4ν

ν−3 ; in this case we can choose
λ ∈ (2, γ (ν − 3)/(2ν)).

4. Quasi-Hadamard differentiability of U

This section is concerned with the quasi-Hadamard differentiability (in the sense of Definition 2.1
in [2]) of the functional U defined in (8). Recall that quasi-Hadamard differentiability is needed
in the proof of Theorem 2.3. Recall also that BV1,d is the space of all càdlàg functions in BVloc
with variation bounded by 1, and that U is the class of all nonnegative and nondecreasing func-
tions f ∈ BV1,d for which the integral on the right-hand side of equation (8) and the integral∫

φλ′(x)df (x) exist. Moreover, we let BVloc,d be the space of all càdlàg functions in BVloc.

Lemma 4.1. Under Assumptions 2.1(a)–(c) (the continuity of F is actually superfluous at this
point), the functional U defined in (8) is quasi-Hadamard differentiable at f := F tangentially
to Cλ〈Dλ〉 with quasi-Hadamard derivative given by U̇f defined in (9) with f := F .

Proof. To prove the claim, we have to show that

lim
n→∞

∣∣∣∣U̇f (v) − U(f + hnvn) − U(f )

hn

∣∣∣∣ = 0 (15)

holds for each triplet (v, (vn), (hn)) with v ∈ Cλ, (vn) ⊂ Dλ satisfying f + hnvn ∈ U (for all n ∈
N) as well as ‖vn − v‖λ → 0, and (hn) ⊂ R0 := R \ {0} satisfying hn → 0. Let fn := f + hnvn.
We stress the fact that fn lies in U which is a subset of BV1,d, and that consequently hnvn is the
difference of two functions which both lie in U (notice that f lies in U by Assumption 2.1(c)).
For the verification of (15), we now proceed in two steps.

Step 1. To justify the analysis in Step 2 below, we first of all show that the three integrals∫
|g1,f |(x1)|dvn|(x1),

∫
|g2,f |(x2)|dvn|(x2),

∫ ∫
|g(x1, x2)||dvn|(x1)|dvn|(x2)

are finite for all n ∈ N. For the finiteness of these integrals, it suffices to show that for every n ∈ N∫ ∫
|g(x1, x2)|dfn(x1)df (x2) < ∞ and

∫ ∫
|g(x1, x2)|df (x1)dfn(x2) < ∞, (16)
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since |g1,f | ≤ ∫ |g(·, x2)|df (x2) and |g2,f | ≤ ∫ |g(x1, ·)|df (x1), since hn|dvn| = dfn +df , and
since f,fn ∈ U implies∫ ∫

|g(x1, x2)|df (x1)df (x2) < ∞ and
∫ ∫

|g(x1, x2)|dfn(x1)dfn(x2) < ∞.

(Notice that (16) by itself is also needed in Step 2 below.) We clearly have∫ ∫
|g(x1, x2)|df (x1)dfn(x2) ≤ ‖g2,f ‖−λ′

∫
φλ′(x2)dfn(x2).

From the second part of Assumption 2.1(b) we have ‖g2,f ‖−λ′ < ∞, and
∫

φλ′(x2)dfn(x2) < ∞
holds since fn ∈ U. That is, ‖g2,f ‖−λ′

∫
φλ′(x2)dfn(x2) < ∞. Similar arguments show that the

first inequality in (16) holds.
Step 2. By Step 1 and the triangular inequality we have∣∣∣∣U̇f (v) − U(f + hnvn) − U(f )

hn

∣∣∣∣
=

∣∣∣∣−
∫

v(x1)dg1,f (x1) −
∫

v(x2)dg2,f (x2)

− 1

hn

(∫ ∫
g(x1, x2)d(f + hnvn)(x1)d(f + hnvn)(x2)

−
∫ ∫

g(x1, x2)df (x1)df (x2)

)∣∣∣∣ (17)

≤
2∑

i=1

∣∣∣∣−
∫

v(xi)dgi,f (xi) −
∫

gi,f (xi)dvn(xi)

∣∣∣∣
+

∣∣∣∣hn

∫ ∫
g(x1, x2)dvn(x1)dvn(x2)

∣∣∣∣
=:

2∑
i=1

S1,i (n) + S2(n).

In order to show that S1,1(n) converges to zero, we will apply the integration-by-parts for-
mula (22) to

∫
g1,f (x1)dvn(x1). At first, we have to make clear that formula (22) can be applied,

that is, that the assumptions of Lemma B.1 are fulfilled.
It follows from Step 1 that the second condition in (21) holds true (where g1,f and vn play the

roles of u and v, resp.). Moreover, by the continuity of φ−λ we have∫
|vn(x1−)||dg1,f |(x1)

=
∫

|vn(x1−)φλ(x1−)φ−λ(x1−)||dg1,f |(x1)
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=
∫

|vn(x1−)φλ(x1−)|φ−λ(x1)|dg1,f |(x1)

≤ ‖vn‖λ

∫
φ−λ(x1)|dg1,f |(x1).

By Assumption 2.1(b) and the fact that vn ∈ Dλ, the latter bound is finite, so that also the
first condition in (21) holds true. We finally note that lim|x1|→∞ vn(x1)g1,f (x1) = 0. Indeed:
On one hand, |g1,f (x1)φ−λ′(x1)| is bounded above uniformly in x1 by Assumption 2.1(b)
and Remark 2.2(b)′. On the other hand, |vn(x1)φλ′(x1)| converges to 0 as |x1| → ∞ because
|vn(x1)φλ(x1)| is bounded above uniformly in x1 (recall λ > λ′). That is, the assumptions of
Lemma B.1 are indeed fulfilled.

Now, we may apply the integration-by-parts formula (22) to obtain

S1,1(n) =
∣∣∣∣−

∫
v(x1)dg1,f (x1) +

∫
vn(x1−)dg1,f (x1)

∣∣∣∣
≤

∣∣∣∣
∫

(vn − v)(x1)dg1,f (x1)

∣∣∣∣ +
∣∣∣∣
∫

(vn(x1−) − vn(x1))dg1,f (x1)

∣∣∣∣
≤ (‖vn − v‖λ + ‖vn − v‖λ + ‖v − vn‖λ)

∫
φ−λ(x1)|dg1,f |(x1).

The latter bound converges to zero by Assumption 2.1(b) and ‖v − vn‖λ → 0. That is,
S1,1(n) → 0. In the same way we obtain S1,2(n) → 0.

Thus, it remains to show S2(n) → 0. We will apply the integration-by-parts formula (22) to
the inner integral in S2(n). So at first we will verify that formula (22) can be used, that is, that
the assumptions of Lemma B.1 are fulfilled. By Assumption 2.1(a), we have gx2 ∈ BVloc,d, and
as mentioned above we also have vn ∈ BVloc,d. Further, the integrals

∫
g(x1, x2)df (x1) and∫

g(x1, x2)dfn(x1) exist by the fact that fn,f ∈ U and Fubini’s theorem. This and the represen-
tation vn = (fn − f )/hn imply

∫ |gx2(x1)||dvn|(x1) < ∞, that is, that the second condition in
(21) holds true. Moreover, by the continuity of φ−λ we have as above∫

|vn(x1−)||dgx2 |(x1) =
∫

|vn(x1−)φλ(x1−)φ−λ(x1−)||dgx2 |(x1)

=
∫

|vn(x1−)φλ(x1−)|φ−λ(x1)||dgx2 |(x1)

≤ ‖vn‖λ

∫
φ−λ(x1)|dgx2 |(x1).

By Assumption 2.1(a) and the fact that vn ∈ Dλ, this bound is finite, so that also the first condi-
tion in (21) holds true. We finally note that lim|x1|→∞ vn(x1)gx2(x1) = 0. Indeed: On one hand,
|gx2(x1)φ−λ′(x1)| is bounded above uniformly in x1 by Assumption 2.1(a). On the other hand,
|vn(x1)φλ′(x1)| converges to 0 as |x1| → ∞ since |vn(x1)φλ(x1)| is bounded above uniformly in
x1 (recall λ > λ′). That is, the assumptions of Lemma B.1 are indeed fulfilled.
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Now, we may apply the integration-by-parts formula (22) to the inner integral in S2(n) to
obtain

S2(n) =
∣∣∣∣−

∫ ∫
vn(x1−)dgx2(x1)d(fn − f )(x2)

∣∣∣∣
≤

∣∣∣∣−
∫ ∫

(vn(x1−) − v(x1−))dgx2(x1)d(fn − f )(x2)

∣∣∣∣
+

∣∣∣∣
∫ ∫

v(x1−)dgx2(x1)d(fn − f )(x2)

∣∣∣∣.
Since fn and f generate positive (probability) measures, and v and φ−λ′ are continuous, we may
continue with

≤ ‖vn − v‖λ

∫ (∫
φ−λ(x1)|dgx2 |(x1)φ−λ′(x2)

)
φλ′(x2)dfn(x2)

+ ‖vn − v‖λ

∫ (∫
φ−λ(x1)|dgx2 |(x1)φ−λ′(x2)

)
φλ′(x2)df (x2)

+
∣∣∣∣
∫ (∫

v(x1)dgx2(x1)

)
dfn(x2) −

∫ (∫
v(x1)dgx2(x1)

)
df (x2)

∣∣∣∣
≤ ‖vn − v‖λ

∫
Cφλ′(x2)dfn(x2) + ‖vn − v‖λ

∫
Cφλ′(x2)df (x2)

+
∣∣∣∣
∫ (∫

v(x1)dgx2(x1)

)
dfn(x2) −

∫ (∫
v(x1)dgx2(x1)

)
df (x2)

∣∣∣∣
=: S2,1(n) + S2,2(n) + S2,3(n)

with C := supx2

∫
φ−λ(x1)|dgx2 |(x1)φ−λ′(x2) (which is finite by the second part of Assump-

tion 2.1(a)). By Lemma B.2, which can be applied due to Assumption 2.1(a), and the facts that
v ∈ Dλ, ‖fn − f ‖λ → 0, and that

∫
φλ′(x2)df (x2) and

∫
φλ′(x2)dfn(x2) exist, the summand

S2,3(n) converges to 0. Since ‖vn −v‖λ → 0, and since
∫

φλ′(x2)df (x2) is finite because f ∈ U,
we also obtain S2,2(n) → 0. It remains to show S2,1(n) → 0. As ‖vn − v‖λ → 0, it suffices to
show that

∫
φλ′(x2)dfn(x2) is uniformly bounded from above. The latter follows from the finite-

ness of
∫

φλ′(x2)df (x2) and Lemma B.2 which is applicable since we clearly have φλ′ ∈ D−λ′ ,
and for every n ∈ N the integral

∫
φλ′(x2)dfn(x2) exists due to fn ∈ U. This proves the claim of

Lemma 4.1. �

Remark 4.2. We note that the proof of Lemma 4.1 basically applies also to V-functionals of the
shape U(F) = ∫ · · ·∫ g(x1, . . . , xd)dF(x1) · · ·dF(xd) with arbitrary d ≥ 2, provided Assump-
tions 2.1(a)–(b) (which ensure the quasi-Hadamard differentiability of U in the case d = 2) are
modified suitably and the definition of U̇f in (9) is replaced by U̇f (v) := −∑d

i=1

∫
v(x)dgi,f (x)

with gi,f (xi) := ∫ · · ·∫ g(x1, . . . , xd)df (x1) · · ·df (xi−1)df (xi+1) · · ·df (xd). In particular,
Theorem 2.3 then still holds for such general V-functionals. Let us exemplify the validity of
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the analogue of Lemma 4.1 for the case d = 3. To do so, we let M(λ,λ) be the space of all
measurable functions h : R2 → R such that supx1,x2

|h(x1, x2)φλ(x1)φλ(x2)| is finite. To ensure
the existence of the integrals as in Step 1 in the above proof, it is sufficient to require that the
functions gi,j,f (xi, xj ) := ∫ |g(x1, x2, x3)|df (xk), i, j, k ∈ {1,2,3}, i < j , k �= i, k �= j , are in
M(−λ′,−λ′), and that the functions gi,f (xi) := ∫ |g(x1, x2, x3)|df (xj )df (xk), i, j, k ∈ {1,2,3}
pairwise disjoint, lie in D−λ′ (cf. the second part of Assumption 2.1(b)). Then Step 1 still holds.
Let us turn to Step 2 in the above proof. In (17), we now obtain the bound

S1(n) + S2(n) + S3(n) :=
3∑

i=1

∣∣∣∣−
∫

v(xi)dgi,f (xi) −
∫

gi,f (xi)dvn(xi)

∣∣∣∣
+ hn

3∑
i,j=1:i<j

∣∣∣∣
∫ ∫

gi,j,f (xi, xj )dvn(xi)dvn(xj )

∣∣∣∣
+ h2

n

∣∣∣∣
∫ ∫ ∫

g(x1, x2, x3)dvn(x1)dvn(x2)dvn(x3)

∣∣∣∣,
where gi,j,f (xi, xj ) := ∫

g(x1, x2, x3)df (xk), i, j, k ∈ {1,2,3}, i < j , k �= i, k �= j . To ob-
tain S1(n) → 0, it suffices to assume that the functions gi,f satisfy the first part of Assump-
tion 2.1(b). To ensure that h−1

n S2(n) is bounded above, it suffices to assume that, similar to the
case d = 2, the functions gi,j,f satisfy Assumption 2.1(a) (with g replaced by gi,j,f ). Assum-
ing that for every fixed x2, x3 the function gx2,x3(·) := g(·, x2, x3), lies in BVloc ∩ D−λ′ , and
that (x2, x3) 
→ ∫

φ−λ(x1)|dgx2,x3 |(x1) lies in M(−λ′,−λ′) (cf. Assumption 2.1(a)), ensures that
h−2

n S3(n) is bounded above. Thus, S1(n) + S2(n) + S3(n) → 0.
Finally, we note that the case d = 1 is even easier. Here, we only need to assume g ∈ BVloc ∩

D−λ′ (instead of Assumptions 2.1(a)–(b)) and to replace (9) by U̇f (v) := − ∫
v(x)dg(x).

Appendix A: Jordan decomposition of functions in BVloc

Recall that for ψ ∈ BVloc and c ∈ R, the Jordan decomposition of ψ centered at c,

ψ = ψ(c) + ψ+
c − ψ−

c , (18)

is characterized as follows: ψ+
c and ψ−

c are the unique nondecreasing functions satisfying

ψ+
c (x) = V +([c, x],ψ), ψ−

c (x) = V −([c, x],ψ) ∀x ≥ c, (19)

ψ+
c (x) = −V +([x, c],ψ), ψ−

c (x) = −V −([x, c],ψ) ∀x < c, (20)

where V +([a, b],ψ) and V −([a, b],ψ) denote the positive and the negative variation of ψ on
the interval [a, b], respectively. For details see, for example, [15], page 34. In our applications,
we are mainly concerned with the positive measures dψ+

c and dψ−
c induced by ψ+

c and ψ−
c ,

respectively (provided ψ+
c and ψ−

c are right-continuous). The following lemma shows that dψ+
c

and dψ−
c are independent of c, although ψ+

c and ψ−
c typically do depend on c. In particular, the

definition |dψ | := dψ+
c + dψ−

c of the absolute value measure |dψ | is independent of c.
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Lemma A.1. Let ψ ∈ BVloc and c ∈ R. Then ψ+
c , ψ−

c differ from ψ+
0 , ψ−

0 only by constants
K+

c ,K−
c , respectively. In particular, the positive measures dψ+

c and dψ−
c are independent of c.

Proof. Let c > 0. Then, in view of (19)–(20), we have

ψ+
0 (x) = V +([0, x],ψ) = V +([0, c],ψ) + V +([c, x],ψ) = V +([0, c],ψ) + ψ+

c (x)

for x ∈ (c,∞), and similar we obtain ψ+
0 (x) = V +([0, c],ψ) + ψ+

c (x) for the cases x ∈ [0, c]
and x ∈ (−∞,0). That is, ψ+

c = ψ+
0 + K+

c for some constant K+
c . Analogously, we obtain

ψ+
c = ψ+

0 + K+
c for c ≤ 0, and ψ−

c = ψ−
0 + K−

c for c ≤ 0 as well as c > 0. �

Appendix B: Integration theoretical auxiliaries

Recall our convention
∫ = ∫

(−∞,∞)
and that BVloc,d denotes the space of all càdlàg functions in

BVloc.

Lemma B.1. Let u,v ∈ BVloc,d such that limx→±∞ u(x)v(x) = c± for some constants c+,

c− ∈ R. Then, if ∫
|v(x−)||du|(x) < ∞ and

∫
|u(x)||dv|(x) < ∞, (21)

we have the integration-by-parts formula∫
u(x)dv(x) = c+ − c− −

∫
v(x−)du(x). (22)

Proof. If −∞ < a < b < ∞, then one can proceed as in the proof of Theorem II.6.11 in [25] to
obtain ∫

(a,b]
u(x)dv(x) = u(b)v(b) − u(a)v(a) −

∫
(a,b]

v(x−)du(x), (23)

because
∫
(a,b] |v(x−)||du|(x) < ∞ and

∫
(a,b] |u(x)||dv|(x) < ∞. Now, choosing sequences

(an), (bn) ⊂ (−∞,∞) with an ↓ −∞ and bn ↑ ∞, the statement of the lemma follows from
(23), the continuity from below of the finite measures

∫
.
u+(x)dv+(x),

∫
.
u−(x)dv+(x), . . . on

(−∞,∞), and the assumption limx→±∞ u(x)v(x) = c±. �

Next, we give a sort of Helly–Bray theorem. Recall that BV1,d denotes the space of all càdlàg
functions on R with variation bounded by 1.

Lemma B.2. Let λ > λ′ ≥ 0, let ψ ∈ D−λ′ and suppose that f,f1, f2, . . . ∈ BV1,d are nonde-
creasing and satisfy limn→∞ ‖fn −f ‖λ = 0. Let

∫
φλ′(x)df (x) < ∞ and

∫
φλ′(x)dfn(x) < ∞

for every n ∈ N. Then the integrals
∫

ψ(x)df (x) and
∫

ψ(x)dfn(x) exist and we have

lim
n→∞

∫
ψ(x)dfn(x) =

∫
ψ(x)df (x).
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Proof. The first claim follows from∫
|ψ(x)|df (x) =

∫
|ψ(x)φλ′(x)φ−λ′(x)|df (x) ≤ ‖ψ‖−λ′

∫
φλ′(x)df (x)

and the analogous bound for
∫ |ψ(x)|dfn(x), n ∈ N.

Now let us turn to the second claim. Since ψφ−λ′ is a bounded càdlàg function on the compact
interval R, we may and do choose for each ε > 0 a step function ψ̃ε ∈ D with a finite number of
jumps and satisfying ‖ψφ−λ′ − ψ̃ε‖∞ ≤ ε. For ψε := ψ̃εφλ′ , we thus have ‖ψ − ψε‖−λ′ ≤ ε. Of
course, ∣∣∣∣

∫
ψ(x)dfn(x) −

∫
ψ(x)df (x)

∣∣∣∣
≤

∣∣∣∣
∫

ψ(x)d(fn − f )(x) −
∫

ψε(x)d(fn − f )(x)

∣∣∣∣
(24)

+
∣∣∣∣
∫

ψε(x)d(fn − f )(x)

∣∣∣∣
=: S1(n, ε) + S2(n, ε).

For the first summand, we obtain

S1(n, ε) =
∣∣∣∣
∫

φ−λ′(x)φλ′(x)ψ(x)d(fn − f )(x)

−
∫

φ−λ′(x)φλ′(x)ψε(x)d(fn − f )(x)

∣∣∣∣
≤

(∫
φλ′(x)dfn(x) +

∫
φλ′(x)df (x)

)
‖ψ − ψε‖−λ′ (25)

≤
(∫

φλ′(x)dfn(x) +
∫

φλ′(x)df (x)

)
ε

≤ Cε

for some finite constant C > 0 being independent of n and ε. For the last step, we used the
assumption

∫
φλ′(x)df (x) < ∞ and the fact that supn∈N

∫
φλ′(x)dfn(x) < ∞. The latter fact is

not completely obvious, so that we give the details: Because of
∫

φλ′(x)df (x) < ∞, it is clearly
sufficient to show that supn∈N | ∫ φλ′(x)d(f −fn)(x)| is bounded above by some finite constant.
By our assumptions and the bound (26) below, we can apply the integration by parts formula (22)
to the functions f − fn and φλ′ to obtain

∣∣∣∣
∫

φλ′(x)d(f − fn)

∣∣∣∣ ≤ 2‖f − fn‖λ′ +
∣∣∣∣
∫

(f − fn)(x−)dφλ′(x)

∣∣∣∣.
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By our assumptions, the first summand tends to 0 since ‖fn − f ‖λ′ ≤ ‖fn − f ‖λ. The second
summand is less than or equal to

∫ |(f − fn)(x−)||dφλ′ |(x) and we have

∫
|(f − fn)(x−)||dφλ′ |(x) =

∫
|φλ(x)(f − fn)(x−)|φ−λ(x)|dφλ′ |(x)

(26)

≤ 2‖f − fn‖λ

∫
R+

φ−λ(x)dφλ′(x).

Since ‖f − fn‖λ → 0 by assumption, and
∫

R+ φ−λ(x)dφλ′(x) < ∞ by λ > λ′ ≥ 0, the left-hand
side of (26) converges to 0. In particular, the left-hand side of (26) is bounded above uniformly
in n. This completes the proof of (25).

Now, the second claim of the lemma would follow from (24) and (25) if we could show that
S2(n, ε) converges to 0 as n → ∞ uniformly in ε ∈ (0,1]. By our assumptions and formula (27)
below, we can apply the integration by parts formula (22) to obtain

S2(n, ε)

=
∣∣∣∣
∫

ψε(x)φλ′(x)φ−λ′(x)d(fn − f )(x)

∣∣∣∣
≤ 2‖ψε‖−λ′ ‖fn − f ‖λ′ +

∣∣∣∣
∫

(fn − f )(x−)dψε(x)

∣∣∣∣
≤ 2(‖ψε − ψ‖−λ′ + ‖ψ‖−λ′)‖fn − f ‖λ′ +

∣∣∣∣
∫

(fn − f )(x−)dψε(x)

∣∣∣∣.
The first summand converges to 0 by our assumptions and ‖ψε − ψ‖−λ′ ≤ ε ≤ 1. Furthermore,
the second summand is less than or equal to

∫ |(fn − f )(x−)||dψε|(x). Recalling ψε = ψ̃εφλ′
and that ψ̃ε is a step function with a finite number of jumps, we now obtain

∫
|(fn − f )(x−)||dψε|(x)

≤ ‖ψ̃ε‖∞
∫

|(fn − f )(x−)||dφλ′ |(x)

(27)

= ‖ψ̃ε‖∞
∫

|(fn − f )(x−)φλ(x)|φ−λ(x)|dφλ′ |(x)

≤ 2(‖ψφ−λ′ ‖∞ + 1)‖fn − f ‖λ

∫
R+

φ−λ(x)dφλ′(x),

and this expression converges to 0 because ‖fn − f ‖λ → 0 and λ > λ′ ≥ 0. That is, S2(n, ε)

indeed converges to 0 as n → ∞ uniformly in ε ∈ (0,1]. �
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