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PROPERTIES OF MEROMORPHIC SOLUTIONS
OF SOME CERTAIN DIFFERENCE EQUATIONS

CHANG-WEN PENG AND ZONG-XUAN CHEN'

Abstract

This paper considers some properties of meromorphic solutions of the nonlinear
difference equation

P /()
0(z. f(2)’

where P(z, f(z)) and QO(z, f(z)) are polynomials in f having rational coefficients and no
common roots.

(JE+D)+/ENUE) +f(z-1) =

1. Introduction and main results

In what follows, we assume the reader is familiar with the basic notion of
Nevanlinna’s value distribution theory (see [15, 18, 23]). We also use notations

1
a(f), u(f), A(f), }(7) for the order, the lower order, the exponents of

convergence of zeros and poles of f, respectively. Moreover, we say that a
meromorphic function g is small with respect to f if T(r,g) = S(r, f), where
S(r, f) =0(T(r,f)) outside a possible exceptional set of finite logarithmic mea-
sure. We also make use of the notion of hyper-order, defined as

oa(f) = i log log T(r,f).

r—0 log r
Recently, a number of papers (see [1-8, 10-14, 16, 17, 19, 21]) focused
on complex difference equations and difference analogues of Nevanlinna theory.
As the difference analogues of Nevanlinna theory are being investigated, many
results on the complex difference equations are rapidly obtained.
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Ablowitz, Halburd and Herbst [1] considered the difference equations of the
type

(L.1) S+ fz=1) = R(z f(2),

where R(z, f(z)) is rational in both of its arguments, and the operation * stands
either for the addition or the multiplication. Ablowitz et.al. obtained the fol-
lowing theorem therein:

THEOREM A ([1]). If the second-order difference equation (1.1) admits a non-
rational meromorphic solution of finite order, then deg;(R) < 2.

The following theorem is due to Ramani, Grammaticos, Tamizhmani and
Tamizhmani.

THEOREM B ([20]). If the second-order difference equation

P(z, f(2))
1.2 fz+D+f)f(2)+ fz—1)) =———~5,
(1.2) SE+D+/@)SE)+/(z-1)) 0G.7()
where P(z, f(z)) and Q(z, f(z)) are polynomials in f having rational coefficients
and no common roots, admits a non-rational meromorphic solution of finite order,
then deg,(P) <4 and deg,(Q) <2

In Theorem B, we see that if equation (1.2) admits a transcendental mer-
omorphic solution of finite order, then deg,(P) <4 and deg,(Q) <2. It is
natural to ask if p =deg,(P) >4 and ¢ =deg,(Q) >2 or p—g¢ >3, what do
we get?

In the following, we will answer the above questions, and obtain Theorem
1.1 as show below.

THEOREM 1.1.  Suppose that f is a transcendental meromorphic solution of the

equation
P(z, f(2))

1.3 z4+ 1)+ f(z )+ f(z—1)) =R(z, f(2)) = —"75,
(1.3) S+ D+ )+ f(z-1)) = Rz /(2)) 0C. 1)
where P(z, f(2)) = ao(z) +a1(2)f(2) + -+ a(2)f (=) and Oz, /() = bo(z) +
bi(z)f(2) + -+ by(z) f(2)? are relatively prime polynomials in f, a(z),...,a,(z),
bo(z),...,by(z) are rational functions with a,(z)b,(z) #0. Let m=p—q>3.

1) If f is entire or has finitely many poles, then there exist constants K > 0
and ry > 0 such that

(1.4) log M(r, f) > K(%)

holds for all r > ry.
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2) If f has infinitely many poles, then there exist constants K > 0 and ry > 0
such that

(1.5) n(r, f) > K(m—1)"

holds for all r > ry.
Furthermore, by 1) and 2), we can get a>(f) = 1.

From Theorem B and Theorem 1.1, we can get the following Corollary
1.1.

CoRrROLLARY 1.1. Suppose that the second-order difference equation (1.2)
satisfies the hypothesis of Theorem B. If equation (1.2) admits a non-rational
meromorphic  solution of  finite order, then deg,(P) <4, deg,/(Q)<2 and
deg/(P) — deg,(Q) <2

Remark 1.1. Under the conditions of deg,(P) <4, deg,(Q)<2 and
deg,(P) — deg,(Q) < 2, equation (1.2) may have meromorphic solution of infinite
order, which can be seen by the following example.

Example 1.1. The difference equation

S+ D)+ @)/ ()+ [z 1)) =413(2)

has a solution f(z) = exp{e*}, where o(f) = .

In what follows, we consider the properties of meromorphic solutions of
finite order of equation (1.3), and get Theorem 1.2.

THEOREM 1.2.  Suppose that equation (1.3) satisfies the hypothesis of Theorem
1.1, and f is a finite order transcendental meromorphic solution of equation (1.3).
Then, we have

) If p=q=0, then o(f) > 1.

2) If ag(z) #0, then A(f) = a(f). (

NIfgq=p, q=1 and P(z,f(z)) £ 0, then A l)a(f).

f
4) If P(z,f(z)) #£0, then max{i(f),}v(l)}—a(f) except (f(z+1)+

FONE) +fE=1) = a(2)) /
Remark 1.2. If P(z,f(z)) =0, we may get l(;) . And when
P(z, f(2)) = ax(2) f(2), we may get max{ ( )} < a(f). Which can be

seen by the following two examples.
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Example 1.2. The difference equation
(fE+D+fE)f(z)+f(z—1))=0

has a solution f(z) = e™, where A(}) =0 and o(f) = 1.

Example 1.3. The difference equation

S+ D)+ f@)f(E)+f(z=1) =4(2)

%)}:0 and o(f) = 1.

When deg,(P) =0 and deg,(Q) = 0, we consider the properties of rational
solutions of equation (1.3), and get Theorem 1.3.

has a solution f(z) = >, where max{},( f ),2(

THEOREM 1.3. Let R(z) :E be an irreducible rational function. We
consider the difference equation 0(2)
P
(16) Ut 1)+ S E) + 1= 1) =5

where P(z), Q(z) are polynomials with deg P(z) = p and deg Q(z) = q.
1) Suppose that p > q and p — q is an even number or zero. If equation (1.6)

has an irreducible rational solution f(z) = %, where m(z), n(z) are polynomials
with deg m(z) = m and deg n(z) = n, then

m-n=L"4

2
2) Suppose that p < q and q — p is an even number. If equation (1.6) has an

irreducible rational solution f(z) = 1’7:((22))’ where m(z), n(z) are polynomials with
deg m(z) = m and deg n(z) = n, then

n—m=1L.

3) If |p—q| is an odd number, then equation (1.6) has no rational solution.

2. Proof of Theorem 1.1

1) We multiply out the denominators of the coefficients a;(z) (i =0,
L,....,p), bu(z) (n=0,1,...,¢) in (1.3) to obtain

2.1 S+ D+ +/(z-1) = Ri(z 1(2),
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Ao(2) + 41 (2)f(2) + -+ 4 (2)/(2)"

Bo(z) + Bi(2)f(2) + -+ By(2) f(2)*”
Ai(z) (i=0,1,...,p), B,(z) (n=0,1,...,q) are polynomials.

Suppose that f, the solution of (2.1), is transcendental entire. Furthermore,
denote /, = deg B,, t =deg A,. The maximum modulus principle yields

M(r+1,f(z) =2 M(r, f(z £ 1))
for z satisfying |z| =r. Choosing d > max{ly,/,...,l;}, it follows that

(2.2) M(r,Ri(z,f(2)) = M(r,(f(z+ 1) + f(2)(f(2) + f(z—1)))
< M(r+ 1,41 ()% < CM*(r+ 1, £(2)),

where Ri(z, f(z)) = and all coefficients

when r is large enough, where C is a positive constant. Furthermore

P

2_ Al

> |4,(2)f ()| = (Apr (2) ()" |+ + [4o(2)])

> 214,/ ()| = 3PP+ o(1))

for z satisfying |z| = r such that |f(z)| = M(r,f). And

>

n=0

< 2 @ = g+ DN,
when r is large enough. Hence

PYAICIICE
i Ba(2)f(2)"
[4p(2)f ()] = (14p1 (22" [ + -+ [4o(2)])
— B@SEH + [Bi(2) S (2)] + [ Bo(2)]

31/ (@) (1 +o(1)) L o
> 2 G+ DO 2q+ 1) NP1+ 0(1)),

when r is sufficiently large and for z satisfying |z| = r such that |f(z)| = M(r, f).
So that we have

|Ri(z, /(2))] =

@ M f(2)"

03 MERESE) = =

Y
\
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when r is sufficiently large and for z satisfying |z| = r such that |f(z)| = M(r, f).
By (2.2) and (2.3), we deduce

(2.4) 2log M(r+ 1, f(z)) > mlog M(r, f(z)) + g(r),

where |g(r)] < K log r for some K >0, when r is large enough. By iterating
(2.4), we have that

@3) fog M0+ /() > (5] Tow M(r. 1) + B ),

where

R N () R R R 1))‘

K (m\ ' Elog(r+k) K (m\/ '\ log(r + k)
= 5(5> 2 S 5(5) 2T N

= 5) S )

Since log(r + k) < (log r)(log k) for r and k sufficiently large, we have that

ilog(r+kk < i (log r)(log k) o nglng

W R e TR

:iak: = log k

[
k=0 k=0 (M
2

NS
log(k + 1)/(—)
Wil 2 . log(k+1)

2 2
=lim ———=—<1,
m m

Pt ap k- a\< k= logk
log k/(§>

log k
we see that the series I = Zfzoik

m

2)

(2.6) B <K' (%)j log 7

Set

Since

is convergent. Hence
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Since, by the hypothesis, f is transcendental entire, we have the inequality
log M(r, f) = 2K’ log r for r large enough. Thus (2.5) and (2.6) imply

m\’
(2.7) log M(r+j,f(z)) > K’ <5) log r,

which holds for r sufficiently large, say r>ry. By choosing re€ [ro,ro+ 1)
arbitrarily and letting j — oo for each choice of r, and set s=r+ j, then
j=s—r>=s—(ro+1). Thus, we have

s—ro—1 s
log M (s, f(z)) =log M(r + j, f(z)) > K’ (g) logro = K" (g)

—(ro+1)
holds for all s > sy =ry+ 1, where K" = K’ (—) log rp. We have proved
the assertion in the case of f being entire.

Suppose now that f, the solution of (1.3), is meromorphic with finitely many
poles. Then there exists a polynomial P(z) such that g(z) = P(z)f(z) is entire.

Substituting f(z) = % into (1.3) and again multiplying away the denominators,
we will obtain an equation similar to (2.1). Applying the same reasoning above
to g(z), we obtain that for sufficiently large r, log M(r, f) =log M(r,g) +

O(logr) > (K" —¢) (%) =K" (%) , where K"'(>0) is some constant.

2) We multiply out the denominators of the coefficients a;(z) (i=0
L,....p), by(z) (n=0,1,...,¢9) in (1.3) to obtain (2.1). Suppose that f(z) i
a meromorphic function with infinitely many poles. Since 4;(z) (i=0,1,...,p
B,(z) (n=0,1,...,q) are polynomials, we see that there is a constant M >
such that all zeros of A;(z) (i=0,1,...,p), B,(z) (n=0,1,...,q9) are in D
{z:|Rez| < M,|Imz| < M}.

Set

w2

I o

Dy ={z:Rez>M}; Dy={z:Rez< —-M};
Dy={z:Imz>M}; Dy={z:Imz<—-M}.

Since f(z) has infinitely many poles, we see that there exists at least one of
D, (s=1,2,3,4) such that f(z) has infinitely many poles in it. Suppose that z
is in one of D, (s =1,2,3,4) such that D, has infinitely many poles of f(z), and
z is a pole of f(z) having multiplicity ko > 1. Then the right-hand side of (2.1)
has a pole of multiplicity mk, at zp. Thus, there is /; € {1,—1} such that zy + /,
is a pole of f(z) of multiplicity k; > mTko

We divide this proof into the following two cases.

Case 1. Suppose that /; = 1. Then zy + 1 is a pole of f(z) of multiplicity
ky.
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Suppose that f(z) has infinitely many poles in D; and zye€ D;. Then
zo+ 1 € D; since zp € D;. Substitute zp + 1 for z in (2.1) to obtain

(f(20+2) + f (20 + 1)) (S (20 + 1) + f(20))
Ao(zo + 1)+ -+ Ay(z0 + 1) fP(z0 + 1)
Bo(zo+ 1)+ -+ By(zo+ 1)f49(z0 + 1)

That is

(2.8)  f(z0+2)f(z0+ 1) + f(20 +2)f (20) + /(20 + 1) + [ (20 + 1) f (20)
Ao(zo+ 1)+ -+ Ap(z0+ 1) fP(z0+ 1)

C Bo(zo+ 1) 4+ By(zo+ 1) f9(zo + 1)
By (2.8) and m=p—¢q >3, we conclude that zp+2 is a pole of f(z) of
multiplicity k, = (m — 1)k;.  Obviously zp +2 € D;.
Substitute zp +2 for z in (2.1) to obtain

(29)  f(z0+3)f(20+2) + f(z0+3)f(z0 + 1) + (20 +2) + f (20 +2) [ (20 + 1)
_ Aoz +2)+ -+ A4p(20 +2) /(20 + 2)
By(zo+2) 4+ By(zo+2)f(z0+2)

By (2.9) and m=p—¢q >3, we conclude that zp+3 is a pole of f(z) of
multiplicity k3 = (m — 1)ky = (m — 1)2k1. Obviously zy + 3 € Dy.

Similarly, zo+ne Dy is a pole of f(z) of multiplicity k, = (m — 1)k,_
—...=(m—1)""k. Thus, there is a sequence {zo +jeD (j=1,2,...,
n,...)} are poles of f(z) of multiplicity k; = (m— 1)’ 'k;. Since ki =
(m—1)""k; — o0, as j — oo, and since f(z) does not have essential singularities
in the finite plane, we must have |zo + j| — 0, as j — co. It is clear that, for j
large enough, say j > jo,

m—1)""k <kil+m—1)+-+m—-1)""
<n(|zo + jl, f) < n(lzo + j, f) < n(t+j, ),

where ¢ € [|zo], |z0| + 1] can be chosen arbitrarily. Letting j — oo for each choice
of t, and set r=1t+j, then j—1=r—t—1>r— (|zo] +2). Thus, we have

n(r, f) = (m—17""k > ky(m = 1)~ = K(m—1)"

holds for all r > rg := jo+ 1 + |zo|, where K = ky(m —1)"**? " The fact that
ro and K both depend on |zp| is not a problem, since zp is fixed.

Suppose that f(z) has infinitely many poles in D3 (or D4). Then we may
use the same method as above.

Suppose that f(z) has infinitely many poles in D, and zye D;. Set
deg 4, = A(>0). Since zyp € D,, we know that zp + 1 has two possibilities:

(i) If zo + 1 ¢ D,, this process will be terminated and we have to choose
another pole zy of f(z) in the way we did above.
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(i) If zo+ 1€ Dy, then zp+ 1 is a pole of f(z) of multiplicity k; > Wl_k()’
since the right-hand side of (2.1) has a pole of multiplicity mk, at zo. 2

Substitute zp + 1 for z in (2.1) to obtain (2.8). And we conclude that zy + 2
is a pole of f(z) of multiplicity k, = (m — 1)k;.

If zg + 2 ¢ D, this process will be terminated and we have to choose another
pole zp of f(z) in the way we did above.

If zo+ 2 € Dy, then we see that the right-hand side of (2.1) has a pole of
multiplicity mk, at zy+ 2.

Substitute zy 4 2 for z in (2.1) to obtain (2.9). Hence we see that zop + 3 is a
pole of f(z) of multiplicity k3 = (m — )k, = (m — 1)%k;.

We proceed to follow the steps (i) and (i) as above. Since there are
infinitely many poles of f(z) in D,, we will find a pole zy(€ D2) of f(z) such
that zo +n1(e Dy) is a pole of f(z) of multiplicity k,, = (m — 1)k, _1)=---=
(m— 1)"171k1. And z satisfies zo +n; + 1 ¢ Do, that is Re(zo +n +1) > —M.
By (2.1) and m = p — ¢ > 3, we conclude that zp+n; +1 is a pole of f(z) of
multiplicity kg, 1) = (m — Dk, = (m —1)"k;.

Substitute zg 4+ n; + 1 for z in (2.1) to obtain

(2.10) flzo+m+2)f(zo+m+1)+ fzo+m +2)f(z0+m)
+ 220+ m 4+ 1) + [ (20 +m + 1) f (20 +m1)

_Ao(zo+nm+ 1)+ -+ Ap(zo+m + 1) fP(z0 +n1 + 1)
By(zo+m + 1)+ -+ By(zo+m +1)f9z0+nm +1)°

We see that the right-hand side of (2.10) has a pole of multiplicity at least
Pkn 1y — A — qk(n,+1) = mk, 1) — A at zo +ny + 1. Without loss of generality,
suppose that the right-hand side of (2.10) has a pole of multiplicity mk,, 1) — 4
at zo +n; + 1.

In the left-hand side of (2.10), we see that f?(z) has a pole of multiplicity
2K 41y at zo+n1+1, f(z)f(z—1) has a pole of multiplicity k,, + k(, 1) at
log(A4 + 1) — log(m — 2)k;

log(m — 1)
(m— Z)k(n|+l) =(m—2)(m— l)nlkl >A+1>A4. Thus mk(nlJrl) —A> 2k(m+1)
and 2k(,11+]) > k,,l + k(n1+l)-

Hence, by (2.10), we conclude that zp+n; +2 is a pole of f(z) of multi-
plicity k(n1+2) = Wlk<n]+1) —A- k(n]+1) = (m — 1)k<nl+l) —A=(m-— 1)n1+1k1 —A.

Since Re(zo+n; + 1) > —M, we have Re(zo+n3+2)> Re(zo+n +1) >
—M. Substitute zo +n; +2 for z in (2.1) to obtain

zo+n +1. Bym>3, whenn1>max{ ,1 ¢, we have

(2.11)  flzo+m+3)f(z0+m +2)+ f(z0+m +3)f(z0 +m +1)
+ /20 +m +2) + f(z0+m +2)f(z0+m + 1)

_Ao(Zo-f-I’H+2)+"'+AP(Z()+711+2)fp(20+n1+2)
Bo(Zo—l—I’ll—|—2)+-"+Bq(20+7’l1+2)f‘1(20+n1+2)'
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We see that the right-hand side of (2.11) has a pole of multiplicity at least
Pkn 42y — A — qk(n,+2) = mk, 12y — A at zo +ny; + 2. Without loss of generality,
suppose that the right-hand side of (2.11) has a pole of multiplicity mk, 5 — 4
at zo +ny + 2.

In the left-hand side of (2.11), we see that f2(z) has a pole of multiplicity
2K(n42) at zo+n +2, f(z)f(z—1) has a pole of multiplicity kg, 41) + k(12
at zop+mn +2. By m>3, when n > max{lOg(A + 1) — log(m = 2)k ,1},

log(m — 1)
we have (m—=2)(m—1)"k; >A+1>A. Hence, (m = 2)k(12) =
(m—2)[(m—1)""Vky — A] > A. Thus mk, ) — A > 2k 12 and 2k, ) >
kn 1) + Ky +2)-

Hence, by (2.11), we conclude that zy + n; + 3 is a pole of f(z) of multiplicity
K +3) = Ml 2) = A = kin 2y = (m = Dk 12 = A = (m = D[(m = 1)y — 4
—A=(m—1)""k —A[(m-1)+1].

We proceed to follow the steps as above. We will find zg+n; +n, is a
pole of f(z) of multiplicity Kk, n,) = (m — D" ey — A[(m— 1) -
(m —1)+ 1] such that Re(zo +n; +mny) > M, that is zo +n; +ny € Dy.

Set k=K = (m—1)"" "y —Alm - 1) 4 (m— 1) + 1.
Then

_ D |
— _1 ni+ny—1 —A(m
k= m=DT (m—1)—1
That is

_ _ ny+ny—1 _ (Wl - 1)”2_1 A

k= (m 1) ki — A P +m )

- (m - 1)”2*1 o o n N A

*W[(’” 2)(m—1)"ky — A] o
When #n,>2 and n > max{lOg(A +1) — log(m — 2)k, , 1}, we  have

log(m — 1)

(m—=2)(m—1)"k; > A+1, that is (m—2)(m—1)""k; — A4 > 1. Hence we see
that
(m—1)""! A

kzﬁ[(m—m(m—l)”‘kl —A]—Fm > 1.

Set zy :=zp+mn +ny. Then z;(e D) is a pole of f(z) of multiplicity k > 1.
Applying the same reasoning that f(z) has infinitely many poles in D, we
obtain

n(r, f)>Km—1)"

holds for all r >ry. The fact that ry and K both depend on |zj| is not a
problem, since z;(e D;) is fixed by zo(e D»).
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Case 2. Suppose that /; = —1. Then zp—1 is a pole of f(z) of multi-

plicity k; > mTkO

Suppose that f(z) has infinitely many poles in D, and zye D,. Then
zo — 1 € D, since zp € D,. Substitute zp — 1 for z in (2.1) to obtain

(2.12)  f(z0)f (20— 1)+ f(20)f (20 = 2) + f*(z0 = 1) + f (20 — 1)f (20 — 2)
_Ao(zo— 1) 4+ Ap(zo — 1) fP(z0 — 1)
Bo(Z()— 1)+"'+Bq(20— 1)fq(Z()— 1)
By (2.12) and m = p—¢q >3, we conclude that zp—2 is a pole of f(z) of
multiplicity k, = (m — 1)k;.  Obviously zyp — 2 € D,.

Similarly, zo —n(e D) is a pole of f(z) of multiplicity k, = (m —1)""'k;.
Thus, there is a sequence {zo —je D, (j=1,2,...,n,...)} are poles of f(z) of
multiplicity k; = (m — 1)/ 'k, Since k; = (m — 1)/ "'ky — o0, as j — oo, and
since f does not have essential singularities in the finite plane, we must have
|zo —j| — o0, as j — oo. It is clear that, for j large enough, say j > jj,

m—=1)"ky <ki(14+m=1) 4+ (m—1)"
<n(lzo —j|, f) < n(lzo| + j, f) < n(t+ j, f),

where 7 € [|zo], |z0| 4+ 1] can be chosen arbitrarily. Letting j — oo for each choice
of t, and set r=1¢+j, then j—1=r—t—1>r—(|zo]| +2). Thus, we have
that

n(r, f) = (m—17"k > ky(m = 1)~ = K(m —1)"

holds for all r > ry:= jo + 1 + |zo|, where K = ky(m —1)"*"2  The fact that
ro and K both depend on |zy| is not a problem, since z, is fixed.

Suppose that f(z) has infinitely many poles in D3 (or D4). Then we may
use the same method as above.

Suppose that f(z) has infinitely many poles in D; and zye D;. Set
deg A, =A4>0. Since zp € D;, we know that zp — 1 has two possibilities:

(i) If zo — 1 ¢ Dy, this process will be terminated and we have to choose
another pole zyp of f(z) in the way we did above. mk

(ii) If zo — 1 € Dy, then zp — 1 is a pole of f(z) of multiplicity k; > >
since the right-hand side of (2.1) has a pole of multiplicity mk, at z.

Substitute zp — 1 for z in (2.1) to obtain (2.12). And we conclude that
zo—2 is a pole of f(z) of multiplicity k» = (m — 1)k;.

We proceed to follow the steps (i) and (ii) as above. Since there are
infinitely many poles of f(z) in D;, we will find a pole zy(€ D;) of f(z) such
that zo —ni(e Dy) is a pole of f(z) of multiplicity k, = (m—1)""'k,. And
zo satisfies zo— (n; + 1) ¢ Dy, that is Re(zo — (n+1)) <M. By (2.1) and
m=p—q >3, we conclude that zo — (n; + 1) is a pole of f(z) of multiplicity
k(n1+1) = (m — 1)kn1 = (Wl — l)nlkl.
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Substitute zop — (n; + 1) for z in (2.1) to obtain
(2.13)  flzo —m)f(z0 — (m + 1)) + f(z0 — 1) f(z0 — (m1 +2))
+ 20— (m + 1)+ f(20 = (m +1))f (20 = (m +2))
_ Ao(zo = (m 4+ 1) + -+ 4p(20 — (m + 1)) /(20 = (m + 1))
Bo(zo — (m + 1))+ -+ By(zo — (m + 1)) f4(z0 — (m + 1))

We see that the right-hand side of (2.13) has a pole of multiplicity at least
PK+1) — A — qkn 1) = MKy 41y — A at zo — (np 4 1). Without loss of gen-
erality, suppose that the right-hand side of (2.13) has a pole of multiplicity
Mk(m-H) —A at zo— (m +1).

In the left-hand side of (2.13), we see that f2(z) has a pole of multi-
plicity 2k, 1) at zo—(m +1), f(z+1)f(z) has a pole of multiplicity
kny 4 Ky +1) (< 2k, 11y) at  z—(m+1). By m=>3 when n >

log(4+1) —log(m—2)k
ax{ el +lo)g(m _gi) ) 1,1}, we have (m— 2)ky 1) = (m—2)(m—1)"k,
>A+1>A. Thus mk(nl_H) —A4> 2k(n1+l)~

Hence, by (2.13), we conclude that zy — (n; +2) is a pole of f(z) of multi-
plicity k(n|+2) = mk<nl+1> —A- k(n]Jrl) = (m - 1)k<n1+1) —A= (m - 1)n1+1k1 —A.

We proceed to follow the steps as above. We will find zp — (n; +ny) is a
pole of f(z) of multiplicity k(s 1ny = (m—1)""""ky — A[(m — 1) 4.+
(m —1) 4+ 1] such that Re(zp — (n +n2)) < —M, that is zy — (n; + n2) € D.

Set k= Ky gy = (m— 1" ey — Al — 1) 4 (m— 1) + 1.
Then

(m—1)""" A

k= [(m — 2)(m — 1)"ky — A] +

m—2

1 _ _

og(A + 1) —log(m — 2)k, Al we  have
log(m — 1)

(m—2)(m—1)"k; > A+ 1, that is (m—2)(m—1)"k; — A > 1. Hence we see

that

m—2

When n,>2 and n > max{

(m _ 1))1271

k= m—2

n A

— —1)"k — —>1.
(= 2)m = 1)kt — A] + 2 =1

Set zj :=zp— (n +mn2). Then z(e D;) is a pole of f(z) of multiplicity
k>1.

Applying the same reasoning that f(z) has infinitely many poles in D,, we
obtain,
n(r, ) = K(m—1)"

holds for all r>ry. The fact that ry and K both depend on |zj| is not a
problem, since z; is fixed by z.
Furthermore, by (1.4), we have that

(2.14) log log M(r, f) > rlog %4— log K.
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Thus, by (2.14) we get

log K
log r + log <log %—i— °g )

— log log log M(r, f
o log log log (r,f)zﬁm _

o:(f) =

r— log r r—o0 log r
And by (1.5), we have that
(2.15) log n(r, f) = rlog(m—1) + log K.
Thus, by (2.15) we get

Thus, Theorem 1.1 is proved.

3. Proof of Theorem 1.2

We need the following lemmas to prove Theorem 1.2.

Lemma 3.1 (see [10, 19]). Let f be a transcendental meromorphic solution of
finite order o of the difference equation

P(Z,f):(),

where P(z, f) is a difference polynomial in f(z) and its shifts. If P(z,a) # 0 for a
slowly moving target function a, i.e. T(r,a) = S(r,f), then

1
m<r, f_> = 00" 1) + 5(r, )
outside of a possible exceptional set of finite logarithmic measure.

Lemma 3.2 (see [19]). Let f be a transcendental meromorphic solution of
finite order o of a difference equation of the form

H(z, [)P(z, [) = O(z, ),

where H(z, f) is a difference product of total degree n in f(z) and its shifts,
and where P(z,f), Q(z, f) are difference polynomials such that the total degree
deg O(z, f) <n. If H(z, f) contains just one term of maximal total degree, then
for each &> 0,

m(r,P(z, f)) = O(r° ) + S(r, f)
possibly outside of an exceptional set of finite logarithmic measure.

Lemma 3.3 (Valiron-Mohon’ko)(see [18]). Let f(z) be a meromorphic
function. Then for all irreducible rational function in f,

— (JO(Z) + al(Z)f(Z) + . 4 am(Z)f(Z)m
R(z, f(2) = bo(z) +bi1(2)f(z) + -+ bn(Z)f(z)”




110 CHANG-WEN PENG AND ZONG-XUAN CHEN

with meromorphic coefficients a;j(z) (i=0,1,...,m), bj(z) (j=0,1,...,n), the
characteristic function of R(z, f(z)) satisfies

T(r,R(z, f(2))) = dT(r, ) + O(¥(r)),
where d = degy R = max{m,n} and ¥(r) = max; {T(r,a;),T(r,b;)}.

In the remark of [13, p. 15], it is pointed out that the following Lemma 3.4
holds.

Lemma 3.4. Let [ be a nonconstant finite order meromorphic function.
Then

Nr+1L,f)=N@rf)+Swf), Te+1,1)=Tf)+ S f)

outside of a possible exceptional set of finite logarithmic measure.

Remark 2.1. In [8], Chiang and Feng proved that if f is a meromorphic

. . 1
function with exponent of convergence of poles /l(—) =A< oo, 1#0 be fixed,
then for each ¢ > 0, f

N(r, f(z+m) = N(r, f) + O(*"**) + O(log r).

Lemma 3.5 (see [22]). Let fi(z) (j=1,...,n) (n>=2) be meromorphic
Sunctions, gj(z) (j=1,...,n) be entire functions, and satisfy

(i) M fi(z)e™ = 0;

(ii) when 1< j<k<n, gi(z) — gi(z) is not a constant,

(iii) when 1 <j<n, 1 <h<k<n, T(r,f;) =0(T(r,e? %)), (r— oo, r¢E),
where E < (1, 00) is of finite linear measure or finite logarithmic measure. Then

fiz)=0 (j=1,...,n).

Lemma 3.6 (see [9]). Let g:(0,+w0)— R, h:(0,4+0)— R be non-
decreasing functions. If (1) g(r) < h(r) outside of an exceptional set of finite
linear measure, or (i) g(r) < h(r), r¢ HU(0,1], where H < (1,00) is a set of
finite logarithmic measure, then for any o > 1, there exists ro >0 such that
g(r) < h(ar) for all r > ro.

Lemma 3.7 (see [3]). Let f(z) be a transcendental meromorphic function with
a(f) <1, and let g,(z) and g,(z)(# 0) be polynomials, c,c2(# ¢1) be constants.
Then

h(z) = g2(2) f(z + c2) + 91(2) f(z + 1)

is transcendental.

Proof of Theorem 1.2. Suppose that f(z) is a finite order transcendental
meromorphic solution of (1.3).
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1) If p=¢=0, then (1.3) can be rewritten as

(3.1) (f(z+1)+f(z))(f(z)+f(z_1)):ZEE2'

Suppose that ag(z) = 0. Then we have that

(fE+ D+ fE)f(e)+f(z-1)) =0.

Thus, we have f(z+ 1)+ f(z) =0 or f(z)+ f(z—1) =0.

If fz+1)+ f(z) =0, then f(z+1)=—f(z), that is f(z+2) = f(2).
Hence f(z) is a periodic function. Therefore a(f) > 1.

If f(z)+ f(z—1) =0, by the same reasoning as above, we know f(z) is a
periodic function. Therefore o(f) > 1. a(2)

Suppose that ay(z) #0. Set R(z) = ho2) Then R(z) has only finite many
poles and zeros. Thus, there exists a real number M > 0 such that all poles and
zeros of R(z) in D={z:|z| < M}.

Contrary to the assertion o(f) > 1, we suppose that o(f) < 1. Set y(z) =
f(z)+ f(z—1). By Lemma 3.7 and o(f) < 1, we conclude that y(z) = f(z) +
f(z—1) is a transcendental meromorphic function. And (1.3) becomes the
following difference equation

(3.2) y(z+ Dy(z) = R(2).
And we have o(y) <o(f)<1. From (3.2), we know that y(z+1)* =

1 .
y(;(; )R(z). By [8, Theorems 2.1, 2.2, Corollary 2.6], we obtain
2T (r, y(2)) = T(r, UChy 1)> + O(logr) = N(r, 1) + N(r, y(2)) + S(r, ).
¥(2) ¥(2)
So y(z) must have infinitely many poles and zeros.

Set
Dy ={z:Rez>M}; Dy={z:Rez< —-M};
Dy=A{z:Imz>M}; Dy={z:Imz<—-M},
where M} = M + 1. Since y(z) has infinitely many zeros, we see that there
exists at least one of D; (j=1,2,3,4), say Dy, such that y(z) has infinitely many

zeros in D;. Suppose that a point zo € D; satisfies y(zo) = 0. By (3.2), we see
that y(zo+1) = o0 and zp+ 1 € D;. Substituting zyp + 1 into (3.2) to obtain

(3.3) y(zo+2)y(z0 +1) = R(z0 + 1).

By (3.3) and y(zp + 1) = o0, we conclude that y(zo +2) =0, and zy +2 € Dy.

Similarly, zo+2n(e D;) is a zero of y(z). Thus, there is a sequence
20,20 +2,...,20 +2n,..., they are zeros of y(z). Thus, we get A(y)>1. A
contradiction.
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If y(z) has infinitely many zeros in D3 (or Dy4), then we may use the same
method as above.

If y(z) has infinitely many zeros in D, and zy € D, satisfies y(zo) = 0, then
we can consider the other form of (3.2)

(3.4) y@)y(z—=1)=R(z—-1).

By y(z0) =0 and zy € D, we get y(zo—1) = o0 and zy — 1 € D,. Substituting
zo — 1 into (3.4) to obtain

(3.5) ¥(z0 — Dylz0 — 2) = Rizo — 1).

By (3.5) and y(zp — 1) = o0, we conclude that y(zo —2) =0, and zy — 2 € D».
Similarly, zo—2n(e D;) is a zero of y(z). Thus, we conclude that
20,20 — 2,...,20 — 2n, ... are zeros of y(z). Thus, we get A(y) > 1. A contra-
diction.
2) We prove that A(f)=a(f). Set

E(z,f(2) = 0 f) S+ 1) + f(2)(f(2) + f(z - 1))
—ap(z) = —ap(2)f7(2) = 0.
Thus, since ap(z) # 0, we see that
E(z,0) = —ay(z) £ 0.
By Lemma 3.1, we have that

m<r, }) = 0(r°N1) L S(r, f)

outside of a possible exceptional set of finite logarithmic measure. So that

Vl — rf r(f(f)*l“rll p
N(,f) T(r.f) + O )+ S0 f)

outside of a possible exceptional set of finite logarithmic measure.
Hence, by Lemma 3.6, we have A(f) = a(f).
3) By (1.3), we have that

(3.6) 0/ + D+ 1))+ f(z=1)) = Pz, f(2))-
Since ¢ > p, ¢ > 1 and P(z, f(z)) #0, by Lemma 3.2 and (3.6), we have that
(37 m(r, (fz+ 1)+ f)f(2) + f(z = 1)) = O™ "1) + S(r, /)

possibly outside of an exceptional set of finite logarithmic measure. From
Lemma 3.3 and (1.3), we get

(3.8) Tr,(fc+ D+ @)@+ f(z=1))=qT @, f)+S(r.[)
By (3.7) and (3.8), we get
(39) N, (fz+ 1)+ /N +[(z=1) =qT(r, f)+ O™ ~*) + S(r, )



CERTAIN DIFFERENCE EQUATIONS 113

possibly outside of an exceptional set of finite logarithmic measure. By Lemma
3.4, we have that

(310) N (f+ D)+ /) +f(—1)
<ON(r, f(2) + N, f(z + 1) + N(r, /(= — 1))
<2N(r,f(2)) +2N(r+ 1, f(z)) =4N(r, f(2)) + S(r, f)

possibly outside of an exceptional set of finite logarithmic measure. By (3.9)
and (3.10), we get

(3.11) qT(r, )+ OV~ + S(r, f) <AN(r, f(2))
possibly outside of an exceptional set of finite logarithmic measure. Hence by
Lemma 3.6 and (3.11), we get 4 (}) > a(f). Tlllus, we get /1(%) =a(f).

4) If ap(z) #£0, by 2), we get max{/l(f),/1<7>}: Af) = clr(f). |

If g=p, g1 and P(z, f(2)) # 0, we have max{l(f),i(f) } _ ’“(f) _

a(f).

Thus, we only consider p — ¢ = 1,2 and ag(z) = 0. By Corollary 1.1, we see
that deg,(P) <4, deg,(Q) <2 and deg,(P) — deg,(Q) <2. Therefore, (1.3) has
the following six forms:

(1.3), fE+D)+f@)fE)+f(z-1) =a(2)f(2),
where a;(z) # 0.

(13),  (fE+D+fEU(E)+fz=1)=a(2)/(z) +a(2)/(2),
where a,(z) # 0.

(1.3); (f(Z+1)+f(z))(f(z)+f(Z,1)):"1(2) (
where ay(z)b;(z)bo(z) # 0.

(13), (fE+D)+/@)S()+/(z-1)) =
where a3(z)bi(z)bo(z) # 0.

(13)s (fE+D)+/E)f()+f(z-1) =
where a3(z)by(z)bo(z) # 0.
(1.3)s SE+D)+/E)U ) +/(-1)
2
(

_ a9 f (@) + ax(2)/*(2) + a3(2)/3(2) + as(2)/*(2)
bo(2) +b1(2)f(2) + b2(2) f3(2) ’
where a3(z)by(z)bo(z) # 0.

a1(2)f(2) + ax(2) f*(2) + a3(2)./* (2)
bo(z) +b1(2)f (2 ’

a1(2)f(2) + a(2)%(z) + a3(2)/*(2)
bo(2) + b1(2)f(2) + b2(2) /*(2)
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Suppose that max{/l( f ),A(}) } < o(f). By Hadamard factorization theo-
rem, f(z) can be rewritten as
f(2) = h(z)e®

where d(# 0) is a constant, n(> 1) is an integer, A(z) is a nonzero meromorphic
function satisfying

o(h) = max{/l( f),l(%) } < a(f).

Firstly, we consider equation (1.3),.
Substituting f(z) = h(z)e®" into (1.3);. We get

(h(z 4+ 1)e/EHD" L h(2)e®")(h(z)e®" + h(z — 1)eC™") = a1 (2)h(z)e®".
Thus, we have that

(3.12)  (h(z + Dhi(2) + h(2))(h(z) + h(z — Dh_1(2))e**" = a1 (2)h(z)e®",

where  hy(z) = et and  h_y(z) = e D" Set H(zZ) =
(h(z + Dy (2) + h(2))(h(z) + h(z — Dh_1(z)). By (3 12), we get
(3.13) H(z2)e*"" — a)(2)h(z)e®" = 0.

From Lemma 3.5 and (3.13), we have that a;(z) =0. A contradiction. Hence

we conclude that max{/l( ), A (}) } a(f).

Similarly, we have max{A ( )} to equation (1.3), except
e+ +fE)FE) +f(z-1)) =al(z

Secondly, we consider equation (1. )3
Substituting f(z) = h(z)e®" into (1.3);. We get
(h(z + De= 0" 1 h(2)e™") (h(2)e™” + h(z — D)e=D")

_ a1 (2)h(z2)e®" + ay(z)h?(z)e>*"
T by(@) + bi@h(2)e

That is
(314)  (bo(2) + b1 (=)™ (h(z + Dy (2) + hE)(AG) + Az — 1y (2))e
= a1(2)h(z)e®" + ar(z)*(z)e**",

where  hy(z) = ="t and  h_y(z) = e~ (D" et H(Z) =
(h(z+ D)hi(z) + h(z))(h(z) + h(z = 1)h-1(2)). By (3.14), we get

(3.15)  bi(2)h(2)H(2)e3"" + [bo(2)H(z) — ar(2)h?(2)]e**" — ay(2)h(z)e™" = 0.
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From Lemma 3.5 and (3.15), we have that

a1(2) = bo(2)H(2) — a3 () = by ()h(:)H (2)
Since  b(z)h(z) £0, we get H(z)=0. Thus by(z)H(z) — ar(z)h*(2)
—ay(z)h*(z) =0. Moreover, ay(z) =0. A contradiction

1
Hence we conclude that max{)»( f ),/1<7)}: a(f).
Thirdly, we consider equation (1.3)

Substituting f(z) = h(z) into (1.3),. We get

(h(z + 1)e?)" £ n(2)e®")(h(z)e®" + h(z — 1)edE=D")
i (2)h(z)e®" + ar(2)h*(2)e**" + ax(z)h3(z) 3"
N bo(z) + b1 (z)h(z)ed"

By the same reasoning as above, we get
(3.16)

=0.

dz"

[b1(2)h(z)H (2) — a3(2)h*(2)]e*F" + [bo(z) H(2) — ax(2)h*(2)]e**"
—a(2)h(z)e® =
(

From Lemma 3.5 and (3.16), we have that

a(z) = bo(2)H(2) — ar(2)h*(z) = by (2)h(z2)H(z) — a3(z)h*(z) = 0.
Since h(z) £ 0, we get ax(z) = 170(}122)(1'12)(2) and a3(z) = bl(hzz)(Hz)(Z) Thus
@(E)(2) + ax2f ) + () 15E) = ) Bole) + 1)L

This is a contradiction since P(z, f(z)) and Q(z, f(z)) are relatively prime
polynomials in f. |
Hence we conclude that max{i(f),i( )} a(f).

f
Finally, we consider equations (1.3); and (1.3),.
Substituting f(z) = h(z)e®" into (1.3)s and (1.3), respectively. By the same
reasoning as above, we get
(3.17) by(2)h*(2)H (2)e* " + [by(2)h(z)H (2) — a3(2)h*(2)]e**"
+ [bo(2)H(2) — az(2)h*(2)]e**" — a1 (2)h(z)e®" =0
and
(3.18)  [ba(2)h*(2)H(z2) — as(2)h* (2)]e*™" 4 by (2)h(z) H(z) — a3(2)h*(z)]e>*"
+[bo(2)H(z) — ax(2)h*(2))*F — ar(2)h(z)e® =0

respec_tively.

Similarly as above, from Lemma 3.5 and (3.17), we have that a3(z) =0. A
contradiction.
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1
Hence max< A(f), A =) p = o(f).
And by L { 35<f2} _b0)H(2) _bhi(9)H()
y Lemma 3.5 and (3.18), we get ax(z) = 202 , a3(z) = 20
and ay( )_M Th
n 4\Z) = hz(Z) . us

ai(2)f(2) + ax(2) f(2) + a3(2) 1>(2) + as(2) f*(2)

— O () + b )+ ),

This is a contradiction since P(z, f(z)) and Q(z, f(z)) are relatively prime

polynomials in f. 1
Hence we conclude that max{l( f ),i(—)}: a(f).
Theorem 1.2 is proved.

4. Proof of Theorem 1.3

Suppose that f(z) is a rational solution of (1.6). Then f(z) can be written
as

me) (e ¢ S
4.1) f(z)= = — 4.4 +do+diz+ -+ dz’,
2 (z—2)" (z-2)
where z; (j=1,...,k) are poles of f(z) with multiplicities /; respectively,
¢ (#0),...,¢n (j=1,...,k) and d,...,d; are constants.
1) Suppose first that p > ¢ and p — ¢ is an even number. By (1.6) and
(4.1), we have

m(z+1) m(z)\ (m(z) m(z—1)\ P(z)
2 G0 +50) G a6 ) ~oor

m(z+1) 0 m(z)

If degm(z)=m < n=degn(z), then — 0, — 0 and
—0 as z— 0. But —=— o as z— . Thus (4.2) is a contra-
n(z—1) 0(z)
1 -1
diction. If m = n, then m(z+1) — a, m(z) —a and m(z— 1) —a as z — oo,
n(z+1) n(z) n(z—1)

where a is a nonzero constant. This is also a contradiction. So m > n. Thus
we can assume that d; #0 (s>1). Since for sufficiently large z,

f(z) = dz* (1 +0(1)),

/
(4.3) f
P
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where 4*(# 0) is some constant. By (1.6) and (4.3), we obtain
(4.4) 4d7z"(1+ o(1)) = A*z774(1 + o(1))
for sufficiently large z. So, by (4.4), we have that

_._P—q
m-n=s="——.
Now we suppose that p =¢. Thus for sufficiently large z
P(z)
=A"(1+o0(1)),
ol = A (1 o(1)

where A*(#0) is some constant. If m < n, then using the same method as
above, we get a contradiction. If m >n, then we may assume that d; #0
(s > 0). Using the same method as above, we have that for sufficiently large z,

44222 (1 + o(1) = A°(1 + o(1).

Hence we have m—nzOz%.

2) Suppose that p < g and ¢ — p is an even number. By (1.6) and (4.1), we
also obtain (4.2).

1
If degm(z) =m >n=degn(z), then ’%(274_1) — 00, m(z) — oo and
mz=1) oo as co. But P() 0 as e +oo) Thus (4 2()Z)is a contra
— z — 0. ——~—0 as z — oo. . -
n(z—1) Q(z)
diction. If m = n, then mz+1) — a, m(z) — a and M —a as z — o,
n(z+1) n(z) n(z—1

where a is a nonzero constant. This is also a contradiction. So m <n. By
(4.2) we obtain

(4.5) 0(2)[m(z + Dm(z)n(z — Dn(z) + m(z + Dm(z — )n*(z)
+m?(2)n(z + Dn(z — 1) + m(2)m(z — Dn(z + Dn(z)]
= P(z)n*(z)n(z 4+ Dn(z — 1).

Set
m(z) = apz™+ - - -,
(4.6) n(z) =buz"+ -+,
' P(Z):dpzp_i_...’
Q(Z) = qzq+...7
where n>1, m>0 and ¢ =1, p>0. By (4.5) and (4.6), we obtain
(4.7 4L,al bRz = g pAartn
— 2 d
By (4.7), we see that n—m Y P

2 by 4y
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3) If p>gq, then |p —g| = p— ¢ is an odd number. Suppose that equation

m(z)

(1.6) has a rational solution f(z) = o) From the proof in 1), we see that if
p>q, then m—n= % This contradicts our supposition that p — ¢ is an

odd number. So, (1.6) has no rational solution.

If p < g, then |p — gq| = ¢ — p is an odd number. Using the same method as
above, we conclude that (1.6) has no rational solution.

Thus, the Theorem 1.3 is proved.
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