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Abstract. Let 7(-) be a (not necessarily exponentially bounded, not necessarily
nondegenerate) o-times integrated C-semigroup and let —B be the generator of a (Cp)-
group S(-) commuting with 7°(-) and C. Under suitable conditions on 7'(-) and S(-) we
prove the existence of an a-times integrated C-semigroup V(-), which has generator 4 + B
provided that 7'(-) is nondegenerate and has generator 4. Explicit expressions of V(-)
in terms of 7'(-) and S(-) are obtained. In particular, when B is bounded, V(-) can be
constructed by means of a series in terms of 7(-) and powers of B.

0. Introduction.

This paper is concerned with the perturbation of o-times integrated C-semigroups
which may be degenerate and may be not exponentially bounded.

We first recall some related definitions. Let X be a complex Banach space and let
B(X) be the Banach algebra of all bounded (linear) operators on X. For re|[—1, o),
let j,:[0,00) — R be defined as j_;:=the Dirac measure at 0; jo=1; j.(¢):=
t"/I'(r+1), t>0, and ;,(0) =0 for r> —1 with r#0, where I'(-) is the Gamma
function.

For o > 0, a family of operators {7'(¢);t > 0} < B(X) is called an o-times integrated
C-semigroup on X (cf. [9]-[14], [22]) if

(@) T()x:[0,00) — X is continuous for each x e X;

(b) T(0)=0, CT(-)=T(-)C, and

1 S+t s t 1
T(t)T(s)x:F “ —J —‘[}(H—s—r)“ T(r)Cxdr

() [Jo 0 0

for xe X and t,5 > 0.
T(-) is called a (0-times integrated) C-semigroup (cf. [2]-[4], [20], [21]) if T(0) = C
and T(1)T(s) = T(t+ s)C for all ¢,5s > 0.
When C =1, an a-times integrated C-semigroup reduces to an o«-times integrated
semigroup (cf. [1], [3], [7], [15], [16]), and a C-semigroup becomes a classical (Cj)-
semigroup (cf. [5], [8]).

T(-) is called exponentially bounded if there exist M >0, w>0 such that
|T(¢)|]] < Me"" for all t >0. If C =1 and each T'(¢) is a hermitian operator, then 7(-)
has to be exponentially bounded [11]. But, unlike (Cj)-semigroups, in general, an o-
times integrated C-semigroup may be not exponentially bounded (cf. [9]).
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For convenience, we use the notation (j, * 7')(¢) for the operator defined by

t

(Jr*xT)(t)x := J Ji(t—s)T(s)xds for all xe X.
0

T(-) is said to be nondegenerate if 7(z)x = 0 for all 7 > 0 implies x =0. If T(:) is
nondegenerate, then C is injective and one can define a subgenerator as a closed oper-
ator 4; which satisfies CD(A4;) = D(A4,), CA;x = A;Cx for xe D(A;), R(1xT)(t)) =
D(A4,) and

(IxT)t)A; <« A1(1«T)(t) =T(t) —ju.(1)C, t=0.

It is known (cf. [10], [12]) that 4 := C~'4,C is also a subgenerator and it is an exten-
sion of all subgenerators, that is, 4 is the maximal subgenerator. We call this 4 the
generator of T(-). It follows that C~'4C = 4 and we have

t

mCx = Jo T(s)yds for all t>0.

A is well-defined as a closed linear operator. In general A4 is not densely defined and
the resolvent set p(A4) is not necessarily nonempty.

To our knowledge, all known perturbation theorems for integrated semigroups are
obtained under the assumption of exponential boundedness. For instance, Xiao and
Liang [23, Theorem 1.3.5] proved that if 4 is the generator of an exponentially bounded
a-times integrated semigroup 7(-) and B e B(X) commutes with 4, then A + B is also
a generator of an a-times integrated semigroup. See also and for the case of
a € N. Perturbation theorems for nondegenerate C-semigroups can be found in [19].
Based on Propositions [L1 and to be given in Section 1, we attempt to prove in this
paper some perturbation theorems for w«-times integrated C-semigroups without the
assumptions of exponential boundedness and nondegeneracy.

As a motivation we first consider a C-semigroup 7'(-) and a (Co)-group S(-) (with
generator —B satisfying T(¢)S(s) = S(s)T(¢), t > 0, se R. Clearly, the family {V'(¢) :=
S(—=1)T(¢);t = 0} is also a C-semigroup, and V() is nondegenerate if and only if 7'(-)
is. It is known [23, Theorem 1.3.6] that if 7'(-) has generator 4 and if B € B(X), then
A + B is the generator of V'(-). When B is unbounded, 4 + B may be not closed, and
so not a generator (cf. [6, p. 39]). Is A4 + B closable? and, if yes, is 4 + B the generator
of V(-)? The answers are affirmative; we shall see that 4 + B is the generator of
V(-). We further observe that V(-) satisfies S(7)V(s) = V(s)S(¢) and 1 *[S(1* V)] =
(IS) x (1 x T), ie.,

o

xeD(A) and Ax=y < T(t)x —

J Su)(1* V) (u)du

0
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As will be seen, actually this condition is also sufficient for a function V(:) to be a C-
semigroup.

In Section 2, these facts will be generalized to the case that 7'(:) is an a-times
integrated C-semigroup. It is proved in that if there is a strongly contin-
uous function V :[0,00) — B(X) such that V(0) =39 ,C, CV(t) =V ()C, S(t)V(s) =
V(s)S(¢), and

(*) (Jux [S(A* V))(2) = [(JuS) *x (1 x T)](¢) for all >0,

then V() is an o-times integrated C-semigroup. Moreover, if A is the generator of
T(-), then A + B is closable and 4 + B is the generator of V(-).

When is there a V(-) satistying V' (0) = 6o,,C, CV(t) = V(¢)C, S(t)V(s) = V(s)S(2),
and (%)? and how to construct it? Respective sufficient conditions on S(-) and on T(+)
for the existence of V'(-) will be given in Section 3 and Section 4; in Section 3 we prove
that the generator —B of S(-) being bounded is sufficient, and in Section 4, a sufficient
condition is given on 7T(-) for the case that « = 1. In both cases, explicit formulas
((3.13), (3.14), (4.1), (4.2)) for the expression of V(-) in terms of 7'(-) and S(-) are
obtained. For use in Sections 2 and 3, we collect some characterization results and two
combinatorial lemmas in Section 1.

1. Preliminaries.

We prepare some propositions and lemmas in this section for use in the latter
sections. The following proposition gives a characterization of an «-times integrated C-
semigroup (see also [10, Proposition 2.3]).

ProposiTiON 1.1. T() is an o-times integrated C-semigroup if and only if T(-)
commutes with C and satisfies T(0) =y ,C and

(11)  [T(0) = ju()C)(1 % T)(s) = (1 % T)()[T(s) — ju(s)C] for all s,t > 0.

Proor. Let U(t)x:=(1*T)(t). Suppose T7T(-) is an o-times integrated C-
semigroup on X. We can write the equation in (b) as

T(s)T(t)x = J:[ja_l(r)CT(s +t—r)—ju1(s+t—r)CT(r)|xdr.

Integrating it with respect to ¢ and using integration by parts, we obtain:

(1.2) T(s)U(t)x = E[ja_l(r)CU(s +t—r)—ju(s+t—r)CT(r)|xdr
= <Jts+l B J:)jal(s +t—r)CU(r)xdr — j,(t)CU(s)x

and (after interchanging s and )
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t

(1.3) T(HU(s)x = L[ja_l(r)CU(s +t—r1)—ju(s+t—r)CT(r)|xdr

X

for xe X and s,7>0. Comparing and [1.3), we obtain

J~:+t B J;) Juo1(s+t—=1r)CU(r)xdr — j,(s)CU(t)x

T@ﬂﬂﬁx+h0ﬂlﬂ@x=<rH—J{ir)h4@+t—wCUUMdr

0 0 0
= T(0)U(s)x +j.(s) CU(1)x.

Since U(t) commutes with C and T'(s), we obtain (1.1).

Conversely, we suppose that 7'(-) satisfies (1.1). We show that U(-) is an (a + 1)-
times integrated C-semigroup. Then 7'(-) is an o-times integrated C-semigroup. First,
we replace s by s+¢—r and ¢ by r in (1.1). Then we have for xe X

TUs+t—rx—U@r)T(s+t—r)x=j,(r)CU(s+t—r)x—U(r)j,(s+t—r)Cx.
By integrating the right-hand-side with respect to r from 0 to ¢, we obtain from
CT(-)=T(:)C that

t

J[ja<r)CU(S+ t—r)xdr— J U(r)ju(s+t—r)Cxdr
0 0

:J:‘ joc(S+t—r)CU(r)xdr—J Ju(s+t—r)CU(r)xdr

( O

s+t N t
J —J —J)ju(s—l—t—r)CU(r)xdr.
0 o Jo
On the other hand, from the left-hand-side we have

JIT(V>U(S+[—V)de’— Jl Ur)T(s+t—r)xdr
0 0

=UU(s+1t—r)x|) + L UnNT(s+t—r)xdr— Jo UnNT(s+t—r)xdr

— U()U(s) — U(O)U(s + 1) = U(1)U(s)

for #,5 > 0. Therefore U(-) is an (a4 1)-times integrated C-semigroup. This com-
pletes the proof. [

We also need the following characterization theorem, which is proved in for
a«=neN and in for general real o > 0.

ProprosITION 1.2. T(:) is an o-times integrated C-semigroup with generator A if
and only if it commutes with C and A is a closed operator satisfying C'AC = A,
R((1xT)(t)) = D(A) and

(1.4) (IxT)Y)A < A(1 = T)(t) = T(¢) — ju(t)C for all t > 0.
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We shall also need the following lemmas.

LemMma 1.3 (cf. [10, Lemma 2.1]). Let r,s > —1.

(a) If rt+s> _27 then jr * js :errerl-

(b) Let f:[0,b] = X be Bochner integrable. If j.xf =0 on [0,b], then f =0
almost everywhere.

LemMMA 1.4. Let A be a closed linear operator on X, let r > 0 and f,g € C(]0,4], X).
Then (j, x f)[0,a] = D(A) and A(j, = f) = (jr*g) if and only if f[0,a] = D(A) and
Af =g¢.

Proor. The sufficiency follows from the closedness of 4 and the existence of j, * f
and j, *g. To show the converse, take an s > 0 such that n:=r+ s+ 1 is a positive
integer. Since A is closed, we have for every ¢ € [0, d]

Un * 9)(2) = Js * Ur % 9)(2) = Js * (AU * f))(2)
= A(js * (rx /))(2) = A(jn * f)(2).

Taking differentiation n+ 1 times, we obtain, again by the closedness of A, that

f10,a] =« D(A) and Af = g. 0
As usual, we use the notations (/) =r(r—1)---(r—n+1)/n! and (j) =1 for
any real number r. Let {a_i,ap,a1,...} be real numbers defined by a_; := () =1

and

—+ o —o
= (=) (" - —0.1.2.....
o= (0T = () m=0a2

Lemma 1.5. Let {a_1,a9,a1,...} be as defined above. Then for n=0,1,2,...

(1.5) fank(‘;g“):o.

Proor. We have for n=0,1,2,...

ntl n—+o ian n—k+o n—+ o
- _ | n+l1—k
g;“k( )= ()

k=0
| ol witx(m—k+a)(n—k —=140a)--- (1 + o)
= ;(_1) (n+1—k)

m+a)yn—14a)---(n—k+1+a)
k!

:(n+oc)(n—1+oc)---oc"z+l(_1)n+1k (n+1)!

(n+1)! £ (n+1— k)lk!

:<n+a).(1_1>n+1:0' 0

n+1



1120 Y.-C. L1 and S.-Y. SHAW

Lemma 1.6. For every n=0,1,2,... and real number x,

(1.6) ;(kilxk):(if)

Proor. First, we suppose x = m is a positive integer. Define a function

Differentiating the left hand side m times, we obtain

10 =33 ) [t = v [ imea] = (3 Jetiato

ki;( ):gjn(f)]jkdt) (since(
S () =3, ) (30

n=0 kio<kT 1) <Z)f'1(f)-

Comparing the last expression and the definition of f, we obtain from the uniqueness of
coefficients of a power series that (”*"') =37 (7 )(}) for all n=0,1,2,... and
m=1,2,... Therefore holds for every n=0,1,2,... and for all positive integers
x. Since both (+7) and 77 o(,7,)(}) are polynomials with th.e same degree.n +1, it
follows from the fundamental theorem of algebra that they are identical. This proves

1.6). O

=

):0 for k2m+1)

> 3
> 3

8

2. A general perturbation theorem.
The next theorem is the main result in this section.

THEOREM 2.1. Let T(-) be an o-times integrated C-semigroup on a Banach space
X and let S(-) be a (Cy)-group with generator —B. Suppose S(t)T(s) = T(s)S(t) and
S(t)C = CS(¢t) for all s,t>0. There is at most one strongly continuous function
V:[0,00) — B(X) such that V(0) =0y ,C, CV(t)=V(t)C, S(t)V(s) = V(s)S(t), and
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t

t
(2.1) J Ju(t —u)S(u)(1 % V) (u) du = J Ju()S(u)(1 % T)(t — u) du
0 0
for all s,t>0. If V() is such a function, then
(@) V() is an a-times integrated C-semigroup.
(b) T() is nondegenerate if and only if V(-) is nondegenerate.
(c) If A is the generator of T(-), then A+ B is closable and A + B is the generator
of V(:). If A+ B is closed, then actually A + B is the generator. This is true
in particular when B e B(X).

To prove this theorem, we need the following proposition.

PROPOSITION 2.2. Let T(-) and S(-) be two commuting o-times and [-times inte-

grated C-semigroups on X with generators A and B, respectively. Then the following
hold.
(i) A+ B is closable and satisfies:

(A+B)cC Y44+ B)C and A+Bc C'4+BC.
(i) If either one of T(-) and S(-) is a (Cy)-semigroup, then

C'4+BC=4+B.

Proor. (i) First, we show that 4 + B is closable. Let {x,} be a null sequence in
D(A + B) such that (4 + B)x, converges to a vector y€ X. We need to show y =0.
Observe that S(7)T'(s) = T'(s)S(¢) implies that S(1)Ax = AS(¢)x for x e D(4). Hence
we have

(IxT)Y()(A*S)(s)y = im (1% T)(2)(1 x S)(s)(A + B)x,

n— oo

— tim {[T(1) — o (1) C)(1  S)()x, + (1% TY(D)IS(s) — jp(1)Clx,}

= [T(1) =ju()CI(1 % S) ()0 + (1 + T)(0)[S(s) —Jjp(s)CJO =0

and then T(¢)S(s)y = 0 for all 5,7 € (0, c0), by differentiation. Then the nondegeneracy
of T(-) and S(-) imply y =0. Therefore A 4+ B is closable.

Let xe D(A+ B) = D(A)ND(B). Since A and B are generators, by
1.2, we have C~'4Cx = Ax and C"!'BCx = Bx, so that Cx e D(4)N D(B) = D(A + B)
and ACx = CAx and BCx = CBx. Hence (A4+ B)Cx= ACx+ BCx = C(A+ B)x
and so xeD(C'(4+B)C) and (A+B)x=C!'(4+B)Cx. Hence (A+B)c
C~'(4+ B)C. Next, we show A+ B<c C'A+BC. If xe D(A+ B), then there is
a sequence {x,} in D(A4 + B) such that (x,, (4 + B)x,) — (x, A+ Bx). As above, we
have (4 + B)Cx, = C(A + B)x, — CA + Bx. This with the fact that Cx, — Cx implies
that Cxe D(A+ B) and A+ BCx= CA+ Bx, or A+ Bx= C !4+ BCx. Therefore
A+Bc C'4+BC.

(i) Assume S(-) is a (Cp)-semigroup. It remains to show the inclusion:
C'"4+BCcA+B. Llet xeD(C'A4+BC) and y:=C'4+BCx. Then Cy=
A+ BCx. So, there is a sequence {z,} in D(A4+ B) such that (z,,(4+ B)z,) —
(Cx, Cy) strongly as n — oo. Therefore we have for every s, € [0, o0)
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(LxT)(s)(1xS)(2)Cy = lim (1% T)(s)(1 % S)(?)(4 + B)z,

n— oo

= lim [(1 % $)()[T(s) —ju(s)Clzu + (1 T)()(S(t) — 1)z

= (1=8)(O)[T(s) —ju(s)C]Cx + (1 x T)(s5)(S(t) — I)Cx.
Since T'(-), S(-), and C commute, it follows from the injectivity of C that
(L« T)(s)[(1 % ) () y = (S(1) = D)x] = [T () = juls)CI(1 % S)(2)x

for every s,1€[0,00). By the definition of generator, this implies that (1 xS)(¢f)xe
D(A) and

A1+« S)(t)x =1 xS)()y— (S(t) = I)x= (1% S)(t)y — B(1 x S)(t)x
for all > 0. Hence we have for every ¢t >0
(I1xS)(1)y=(A+ B)(1 xS)(t)x = A+ B(1 xS)(t)x.

By differentiation, we have S(#)x € D(4 + B) and S(t)y = A+ BS(t)x. Since S(0) =1,
this implies that x e D(4 + B) and y = 4 + Bx. Therefore C~'4 + BC = A+ B. This
completes the proof. O]

PrOOF OF THEOREM 2.1. Suppose Vi(-) and F3(-) are two functions with the
desired properties. Then it follows from (2.1) that the function V(:):= Vi(:) — Va(+)
satisfies  [; 7,(t — u)S(u)(1 % V)(u)du=0 for all +>0. By Lemma 1.3, we have
S()(1=V)(t) =0 for all #>0. Since S(¢) is injective, we must have V' (-) = 0.

(a) Differentiating (2.1) we obtain

(2.2) J; Ju—1(t —u)Sw)(1 % V) (u) du = J; Ja(u)S(u)T(t — u) du
for all # > 0. Since 1 x V' commutes with S(-), it commutes with the generator —B, i.e.,
(1% V)(u)xe D(B) and B(l* V)(u)x = (1% V)(u)Bx for x € D(B). Thus
S’ (u) (1% V)(u)x = —=BSu)(1 * V)(u)x = —=S(u)B(1 x V)(u)x
= —=S(u)(1 % V)(u)Bx
for all u > 0. Using integration by parts, the closedness of B, and (2.1), we obtain for
x € D(B)

Jo Ju—1(t —u)S(u)(1 * V) (u)xdu

= — L; Ju(t —u)S(u)(1 % V) (u)Bx du + 0jg((t — u)S(u)V (u)x du

= — JOZ Ju(t —u)BS(u)(1 % V)(u)x du + ;ja(z — w)S(u) V (u)x du

= —BJO Jo()S(u)(1 % T)(t — u)x du + I, Ju(t —u)S(u) V(u)x du.
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Combining this and (2.2), and by the closedness of B again, we obtain that

(2.3) Jo Ja(u)S(u)(1 % T)(¢t — u) duB

- BJ @) S@) (1 T)(¢ — u) du
0

t t

=— J Ja()S(u)T(t — u) du + J Ju(t —u)S(u)V(u) du
0 0
for every t > 0. Since (j,S) * j,(£)C = j, * (j»S)(¢)C for all > 0 and T(-) is an a-times
integrated C-semigroup, using (2.1), (2.3), the commutativity of S(-) and 7'(-), and (1.1),
we have for all 5,7 >0

jo jsmz — w)S(u) (s — 0)S@{(1* V)W)V (8) — julv) C]

0
— [V (1) — j,(u)C)(1 % V) (v)} dvdu

t s

= JO Jo(t = w)S(u)(1 % V) (u) duu - L Jals = 0)S(@)[V(v) = ju(v)C] dv

\)

- L Jo(t =) S@)[V (u) — ju () C] dlut - JO Juls = 0)S(W)(1* V)(v) dv

_ J; (@S (1% T)(t = u) du- “0 J2(0)S(0) T (s — v) dv

s S

+BJ ja(v)S(v)(l*T)(s—v)dv—J F(@)S®) juls — ) C o
0 0

t

- _Jo Ju()SW)T(t — u) du—l—BL Ju(u)S(u)(1 % T)(t — u) du

t N

— | Ju(u)S(u)j, (2t — u)Cdu} . J Ju(0)S)(1 % T)(s — v) dv
0 0

B Jo (jj“(u)s(”)j“(“)s(”){(l « T) (1 —u)[T(s — v) — ju(s — v)C]

—[T(t—u) —j,(t —u)C](1 % T)(s — v)} dvdu

+ U;ja(u)S(u)(l « T)(t — u) duB — BJO Ju(u)S(u)(1 % T)(t — u) du

-J;ja(v)S(v)(l x T)(s — v) dv

_ JO L Jo(0)S (1) () S (0)0 dvdua + 0 = 0.

Therefore, by and the invertibility of S(u) we have
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(L« V) (u)[V(v) —ju(v)C] = [V(u) — ju(u)C](1 x V)(v) for all u,v>0.

Since V(-) is assumed to satisfy V' (0) =0y ,C and V(t)C = CV(¢t) for all +>0, it
follows from [Proposition 1.1 that V(-) is an o-times integrated C-semigroup.

(b) If T(-) is nondegenerate and V(¢/)x =0 for t>0 and some xe X, then
(2.1) implies (1 * ((j,S) * T))(1)x = (jS) * (1 * T))(t)x = 0, so that, by [Lemma 1.3(b),
S(1) J"Ot Ju(t = 8)(S(=$)T(s))xds = ((juS) * T)(#)x =0 for all +>0. Since S(z) is in-
jective, J"(;(ja(t —8)(S(=s$)T(s))xds =0 and hence S(—¢)T(t)x =0 for all > 0. Then
the injectivity of S(—¢) and the nondegeneracy of 7'(-) imply x = 0. Conversely, if V(+)
is nondegenerate and 7(f)x =0 for all +>0 and some xe X, then (2.1) implies
S()(1 = V)(t)x =0 for all >0, by Lemma [.3. Therefore the injectivity of S(7) for all
t > 0 together with the nondegeneracy of V/(-) implies x = 0.

(c) The closability of 4 + B follows from [Proposition 2.2(i). Since (1 % T)(1)A <
A(1 % T)(t) = T(t) — j,(¢)C for t >0, and since A4 is closed and S(¢#)4y = AS(t)y for
y e D(A) we have R(jot Ju(u)S(u)(1 % T)(t — u)xdu) = D(A) and

Jo Ju(u)S(u)(1 % T)(t — u) duAd

cA Jo Ju(u)S(u)(1 % T)(t — u) du = J Ju()S(w)A(1 % T)(t — u) du

- I J)S@)[T(t — 1) — jult — u)C)du

B ELI o () S)(1 % T)(t — u) du — u;joc(t — u)S(u) ju(u)C du

— %Jo Ju(t—u)S(u)(1 % V)(u) du — :0 Ju(t —u)S(u) j, (1) C du

= L Ju—1(t—u)Su)(1 V) (u) du — Oja(t —u)S(u)j,(u)C du

for all #>0. This and (2.1) imply that

Jo Ju(t —u)S(u)(1 % V)(u)A du

- AJ it — WS (15 V) (u) du
0

= J Ju—1(t —u)S(u)(1 % V) (u) du — J Ju(t —u)S(u) jy(u)C du.
0 0

Then by [Lemma .4 we have

(2.4) Jo Sw) (1« V)(u)Adu < A Jo S(u)(1 % V)(u) du

t

=S() (1% V)(t) — Jo S(u) jy(u)C du.
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On the other hand, we obtain from (2.1), (2.2) and (2.3) that

J; Ju(t —u)S(u)(1 % V) (u)Bdu

- Brja(t — ) S@u)(1 % V) (u) de
0

t

= Jljx(t —u)S(u)V(u) du — J Ja—1(t —u)S(u)(1 % V)(u) du.
0 0

Since B is closed, application of yields

(2.5) J; S(u)(1 % V)(u)Bdu = BJ; S) (1% V) (1) du

= J; Sw)V (u)du— S(t)(1 % V)(2).

Hence, from and (2.5) we have for every >0

(2.6) J; Sw)(1* V) (u)(A+ B)du = (A + B) L; S(u)(1 % V) (u) du

_ j S() [V (1) — /o () C]

Since 4 + B is closable, by [Lemma 1.4, we have R(S(¢)(1* V)(z)) = D(4 + B) and
2.7) S()(1% VYO AT B = AT BS@)(1+ V(1) = SOV(1) — /(1) C].

Since S(¢) is injective, (1 % V)(t)4A + B = V(t) —j,(t)C. On the other hand, since S(-)
commutes with V(-), we have R((1* V)(£)S(t)) =« D(A+ B) and A + B(1 % V)(£)S(t) =
[V(t) —ju()C]S(¢). Then, by the surjectivity of S(#), we obtain that R((1 x V')(¢)) <
D(A+B) and

A+ B(lxV)(t)=[V(t) —j.(t)C].

Hence A + B is a subgenerator of V(-). By [Proposition 2.2(ii), we have C~'4 + BC =
A+ B. Tt follows from [Proposition 1.2 that A + B is the generator of V(-). If Be
B(X), it is clear that 4+ B is closed and hence A4 + B is the generator of V(-).
This is also the result of Section 3. O

3. Perturbation by bounded operators.

In order to construct the desired V(-) for the case that B € B(X), we first define the
bounded operators Q,, ,, m=0,1,2,..., n=—-1,0,1,..., on X by

(3.1) Omn(t) = jm(t)(JuxT)(t), t=0, mn=0,
(3.2) Om—1(t) == ju(®)T(¢), t=0, m>0.

Define the strongly continuous families G,(-) by



1126 Y.-C. L1 and S.-Y. SHAW

n+l

(3.3) Gu(1) = an 1k Qkni(t), 120, n=-1,0,1,2,....
k=0

We first prove two lemmas about the operators Q,, , and G,.

Lemma 3.1. (i) For t >0 and n=—1,0,1,..., we have
(3-4) (1% Qo.n)(1) = Qo.nt1(?)
and for m > 1
(3:3) (1% Q) (1) = Q1 (1) = (1% Qu1.n11)(0):

(i) If A is the generator of T(-), then for t >0 and n=—1,0,1,..., we have
(3.6) A% Qo,n)(1) = Qo.n(t) = jntar1(1)C
and
(3.7) A1 % Qi n)(1) = Omn(t) = (1% Omt1,0) (1)

N A T

Proor. (i) If m =0, then we have for n=—1,0,1,... and 1 >0
(1% Qon)(8) = (1 (i x T))(8) = (1% Jiu) * T)(2) = (i1 * T)(2).
If m > 1, integrating and using integration by parts, we have for n = —1,0,1,...
and 1> 0
t
(1 Q0 )(1) = | (o) T)(s) ds

t

:mmmH*ﬂm—Lm4®uM*nwﬁ

= Omnr1 (1) = (1% Qp1,011)(2).
(ii) Integrating (1.4) n-times, we obtain from the closedness of A that
(3.8) A= TV = (o1 TYE) —jnialC, 120
By and (3.1}, we have
(L% Q0.0)(0) = Gn A(Lx T))(0) = (i (T = 1) )1
= (Jn * T)(t) = jnt14a(6) C = Qo,u(1) = jn+144(1) C,
(3.9) AQmn1(1) = jim (1) (i * [T — ju C])(1)
= Oum,n(1) = jm (1) (jn * juC)(2)

m+n+1-+o

m )jm+n+l+oc(t)c

- 0l -
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and

(310) A<1 * Qm—l,n+1)<t)

= ijfl<S)A(jn+l * T)(S) ds

t

= ij—1<s)(jn * [T _jOCCD(S) ds

= O[Qm_lm(S) —jn1—l(s)jn+l+oc(s) C] ds

= (1% Qpm_1.0)(?) — J

’(m+n+a
0

m—1 )jn1+n+ot(s)CdS

m-+n—+ o
m—1

— (15 0,1

Since ("t1) =(,",)+ () for all re R and me N, (3.7) follows from [3.5), and

m—1

10} 0
Lemma 3.2. For t >0,
(@) A(1xG_1)(t) = G_1(t) — ju(t)C and
(b) A(1xGy)(t) = Gy(t) — (1 x G,—1)(t) for n=0,1,2,....

)jm+n+1+ac(f)c~

ProOOF. Since G_;(¢) =a_1Q0._1(t) =T(¢), (a) is (1.4). We show (b). Using
[Lemma 3.1 and [I.5), we have for every >0 and n=0,1,2,...

n+l

A(l * Gn)(t) = Zan—kA(l * ka—k)(t)
k=0

n+l1

= a,A(1% Qo.n)(1) + > anicA(1 % O i) (1)
k=1

= a, [QO,n(t) — Jnt1+4(2) C]

n+1

+ ;an_k |:Qk,n—k([) — (1% Qk—1,04)(2) — ( X )jn+1+a(l)c]

n+l

= Zan—ka,n—k(t) - (1 * Zan—l—ka,n—l—k> (1)
k=0 k=0
n+1
— (an + Z n—k (n —l: a))jnJrlJra(t)C
=1

= Gu(t) — (1 x G,_1)(2).
This completes the proof. L]
PROPOSITION 3.3. For a given Be B(X), let V,(t) := > 7_ | B¥"'1Gi(t) for t =0
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and n=0,1,2..... Then {V,(-)} converges in operator norm to a strongly continuous
Sfunction V(-), uniformly for t in compact subsets of [0, o0).

Proor. Let 7 :=[o], the largest integer less than or equal to o, and let S, :=
sup ||T(s)|| for t>0. Then

0<s<t
/+1 {+1 ‘
] = n—+o < n—+1¢+ _ n—+1¢ + s(n+1+/)(.
n+1 n+1 l

Thus we have |a,| < (n+1+7)". Then for >0 and every n=0,1,2,...

n+1

(3.11) GOl <> lan—k Qr.nic(1)]]
k=0
n+1 ,
<Y (n=k+ 1+ k@ G x T)(@)]]
k=0
n+1 /
<> =k + 140 (@) jnr1()B,
k=0
/ n+1
LBt 140 i(w 1>tn+1
(n+1)! =\ k
s )" n+1+20)
- (n+1)!
Therefore we have for all 0 <s <t
o0 o  n+l
(3.12) STUB G < YD B an-k Quenic (D)
n=-—1 n=—1 k=0

220"+ 1+0"

n—=—

It follows from the M-test that V(¢):=>." | B"'G,(f) converges absolutely and

n=-—1
uniformly on compact subsets of [0,00). Hence V(-) is strongly continuous on [0, o0).

[

THEOREM 3.4. (i) The function V(-) in Proposition 3.3 has the following two
expressions:

(3.13) V() = Z B"™1G, (1) = efBZan,IB"(jn,l « T)(1)

|
NN
o3
[+
7 N
|
S KR
~__
oy
=
—
~
N
|
*
3
=

Il
QN
o3
[+
VN
S
|
[S—
+
R
~_
|
=
=
<
N
L
*
3
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0

(3.14) 70 =3 (2) B Gt T

n=0

the series being absolutely convergent in operator norm and uniformly for t in any compact
subset of [0, 00).
(i) V(-) satisfies the equations:

(3.15) (13 ZBZ("”) (—B)" (= T)(0),
n=0
(3.16) J Ju(t —8)eB(1x V) (s)ds = J Ju(8)e™B(1 % T)(t — 5) ds
0 0
for all t > 0.

Proor. (i) Since e'® = S"7 | B¥ji () for t > 0, it follows from [3.5) and [3.12) that

= f: B G,(1 ZB G (
n=-—1

an—l—anQk,n—l—k(t)

m
=" " ay1B"(juo1 * T)(1)
n=0

for every + > 0. This proves [3.13). Moreover, the series converges in operator norm
and absolutely and uniformly on any compact subset of [0, c0).
Since (7%) = (""1"*)(=1)" for all n > 0, we obtain from [3.13) and [Lemma 1.6 that

for every t >0

V(t)ze’32< )8+ 0
zfj(‘”)< "G * T)(1)
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_ i(k+1)(k)< B e DO+ T0)
o _::0 :1 ( kj 1) ( k) (=B TIO + TC0)
_ gg(kjl) ("7 )em G 0+ 70)
_ f; S () ) B i+ 70+ 700

_ g(;‘) (—B)* J; Jer(t— $)e"BT(s) ds.

This completes the proof of [3.14).
(i) To see [3.15), by and we have for every >0

m

(1% Qu)(®) = > (1) OQutnsrk(t) for all m=0,1,2,..., n=-1,0,1,....
k=0

Since Ef:o (" = (k'k”‘) for k=0,1,2,..., it follows from the above proof of
that

I
QN
=
[
(s
S
|
S =
_|_
KR
~—~
I
|
SN—
N
T
&
3
T
—
~.
)
hy
*
~
N——
—~
=
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0 k n— o
:efBZ<Z( o ))(—1)"Bk<fk*T><r>

t>0

Since

we have

t

Jo Ju(t —8)eB(1x V) (s)ds = (j, x W)(f) = Jo Ju(8)eB(1 % T)(t — s) ds.

The proof is complete. []

Finally, by applying Theorems 1.3 and B.4, we obtain the following bounded per-
turbation theorem.

THEOREM 3.5. Let T(-) be an o-times integrated C-semigroup on X and let B € B(X)
be commuting with T(-) and C. Then the function V(-), given by (3.13) and (3.14), is an
a-times integrated C-semigroup. Moreover, if T(-) is nondegenerate and has generator A,
then V(-) is nondegenerate and has generator A+ B.

ProoOF. Clearly, V(0) =y ,C. The assumption that B commutes with C and 7(-)
implies that CV(t) = V(¢t)C and S(¢)V(s) = V(s)S(¢) for s,z > 0. Hence the theorem
follows from [Theorem 3.4(ii) and [Theorem 2.1.

Next, we give a direct proof for the case that 7(-) is nondegenerate. By [Lemmal
3.2 and Proposition 3.3, we obtain from the closedness of A4 that

(A+ B)(1xV)(2)

_ { i( . ) (~B)" A * T)(1) — (~B)" (o T)(1)

n=1 n

+ (4+ B)(1 T)(t)}



1132 Y.-C. L1 and S.-Y. SHAW

:{i{(ﬂT) ("F )|
+<1T°‘>( Y(1% T)(¢) — i(n ) (=B)"jn—1 % ju(1)C
+<A+B><1*T><r>}

tB - n & n+1
=e g —B Lk T)(t) + 1

- i<n : a) (—=B)"(jn— *jaC)(t)}
n=0
_efBZan 1B"(ju_1 % T)( fBZ(nJra) ) Jnta () C

n=0

= V(t) —]“(I)C

for t > 0. Note that BC = CB and BT(-) = T(-)B imply that 4 + B commutes with
V(¢t) and C. Therefore 4+ B is a subgenerator of V(-). Then the same argument
in the proof of (c) of Mheorem 2.1 shows that A4 + B is actually the generator of
V(). [

REMARKS. (i) generalizes and extends a result in [23, Theorem 1.3.5],
therein Xiao and Liang proved that formula defines an o-times integrated
semigroup with generator 4 + B if A4 generates an exponentially bounded a-times
integrated semigroup 7(-) and Be B(X) commutes with A.

(ii) If 7(-) is an n-times integrated C-semigroup, then the expression of V(+)
reduces to the finite series:

2 n k. .B
V(t) = —B 1 xe”T)(t), t>0.
0=3(3 )B s 0
In particular, if 7 =0 and C =1, then we have V(f) = eBT (1) = e'“*B) as the per-
turbation (Cp)-semigroup. This also follows from the classical bounded perturbation
theorem for (Cp)-semigroups (cf. [S, Theorem III.1.3]).

4. Perturbation of nondegenerate once integrated C-semigroups.

The next theorem presents sufficient conditions on a once integrated C-semigroup
T(-) so that a once integrated C-semigroup V(-) as described in [Theorem 2.1 exists.

THEOREM 4.1. Let T(-) be a once integrated C-semigroup on X and let S(-) be
a (Co)-group on X with generator —B such that S(t)T(s) = T(s)S(¢) and S(t)C = CS(¢)
for all s,t > 0. Suppose there is a nonempty bounded subset E of X* such that the
following conditions hold:
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(1) ||x]] < sup [{x,x*>| for all xe X,
x*eE

(i) For every x* € E and x € X, {T(-)x,x*) is continuously differentiable on (0, c0);
(1) F(t;x,x*) = (d/dt){T(t)x,x*>, t > 0, is linear on x and for every t > 0 there
is a number M; >0 such that sup |F(s,x,x*)| < M,||x| - ||x*|| for all t>0,
xeX, and x* € E. O<s=t
Then for every t >0 the linear operator V(t): D(B) — X defined by
t
(4.1) V(t)x = T(t)S(t)x — J T(u)S(u)Bxdu for x e D(B)
0
can be extended to the whole space X and the extended operator function, still denoted
by V(-), is a once integrated C-semigroup. Moreover, if T(-) is nondegenerate and has
generator A, then V(-) is nondegenerate and has generator A + B.

Proor. It is clear that V(-)x is strongly continuous for every xe D(B). Let
x*e E and x e D(B). Since

%(T(u)ﬂu)x,x*) = }g% YT (u+ h)(S(u+ h) — S(u))x, x*>

+ lim YT+ h) — T(u)S(u)x, x*>

— (T (w)S(u)Bx, x> + F(u, S(u)x, x°),

we have for every >0

V(O)x,x*> =<T(6)S(t)x,x*)y — J; (T (u)S(u)Bx,x* du

= (T()S()x,x*> — (T (u) S(u)x, x* |y + Jo F(u, S(u)x, x*) du

_ L:F(u S(u)x, x*) du.

Thus we obtain from conditions (i) and (iii) that

V(x| < SJJI)E|<V(t)x,X*>|

J(:F(u, S(u)x, x*) du

= Sup
x*eE

<tM; sup |[S(u)| - [[x]| - sup [[x"].
—t<u<0 x*ekE
Since E is bounded, this implies that V(-)|pp) is uniformly bounded on compact subset
of [0,00). Since D(B) is dense in X, each V' (¢) can be extended to a bounded linear
operator on X. We still denote it as V(). Since V(-)|pp Is strongly continuous on
[0, 00), its extension V() is also strongly continuous on [0, c0).
By the definition of V(-), it is easy to see that V'(-) commutes with S(-), 7(-), and
C. On the other hand, we have for every x e D(B)
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t t

S(u) T (u)x du — S(t) Jo Ji(t — u)S(u) T (u) Bx du

S(E)(1# V)(£)x = S(t)J

0
— (S* T)(1)x — [(1S) = T)(1)Bx.

Since 1% (j1S)(£)Bx = —uS(u)x|; + fé S(u)xdu = —j(1)S(t)x + (1 % S)(z)x, we have for
every x € D(B)

1 (S« V)](t)x =1« Sx T(t)x —j1 * T * (j1S)(¢)Bx
= *xS*xT(t)x— 1% Tx[—S+1%S](t)x
= (1S) * (1 % T)(2)x.

It follows from the denseness of D(B) that [j; = (S(1*V))|(z) = (j1S)* (1 =« T)(t) for
all £ > 0. That is, (2.1) holds for o« = 1. Hence the conclusion follows from
2.1. O

ExampLE 1. Let X :=C([0,0),Y) with Y a Banach space, and let Ty(-) be
the translation semigroup on X. Define [7'(¢)x](s) := IOI[T o(u)x|(s) du for s,¢ >0 and
x e X. Itis known that 7(-) is a nondegenerate once integrated semigroup. So, it has
the generator A. Let us take E := {J;€ X*;0,x = x(s) for xe€ X,s>0}. It is clear
that E satisfies the three conditions of [Theorem 4.1. Suppose S(-) is a (Cy)-group on
X with generator —B and suppose S(-) commutes with 7(-). Then asserts
that 4 + B is the generator of a once integrated semigroup V'(-), which is the extension
of the operator defined by (4.1).

LEMMA 4.2.  For the once integrated semigroup T(-) in Example 1, the function V(-)
determined by (4.1) has the expression:

(4.2) [V(0)x](s) = JI[T 0() S(u)x]|(s) du

0

t

= JO[S(u)x](s—i-u) du, s5,1>0, xeX.

Proor. Indeed, denoting by V(-) the function defined by the last integral and using
integration by parts, we have for x* :=d,€ E and x € D(B)

t

V(t)x,x*) = Jo {To(r)[x + (1% S)(r)Bx], x*> dr

= (T()x,x*> + (T (r)(1 % S(r)Bx,x* |5 — Jo (T (r)S(r)Bx,x* ) dr

=T()x,x*> + {T()(1 % 8)(£) Bx,x*» — {[1 x (T S)](£) Bx, x*
=T ()S(t)x — [1 % (TS)](¢)Bx,x*.

Therefore we get (4.1) for all xe D(B) and ¢ > 0. O
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ExamPpLE 2. Let T(-) be a once integrated C-semigroup on X. Suppose 7'(f)x :=
fOI To(u)xdu, x € X, t > 0 for some operator function 7;(-) which is locally bounded and
strongly continuous on (0,00). Then the conditions (i)—(iii) of are satisfied
when E is the closed unit ball of X*. So, if S(-) is a (Cyp)-group on X with generator
—B, and if S(-) commutes with 7'(-) and C, then it follows from that the
function V'(-) given by (4.1) is a once integrated C-semigroup, which has generator
A+ B if T(-) has generator 4. A similar calculation as in yields the
expression: V' (#) = [y To(u)S(u) du, t > 0.

In particular, if 7(-) is a hermitian once integrated C-semigroup on X with
generator A. (For instance, X = C(Q) and T(¢) = J"(; ge’? ds for t >0, where Q is a
compact Hausdorff space, ¢ € X is real-valued, and p a real-valued measurable function
defined on @ such that 7'(-) is strongly continuous.) Then 7°(-) is norm infinitely
differentiable on (0, c0) and there is an operator-value function 7 : [0, c0) — B(X) such
that 7y(0) = C, Ty(-) is locally bounded on [0,c0), and T(#)x = fé To(u)xdu for all
t>0 and xe X (see [11, Theorem 2.3(d)] and [13]). Hence hermitian once integrated
C-semigroups are particular case of this example.
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