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Abstract. A pass-move and a #-move are local moves on oriented links defined by

L. H. Kau¤man and H. Murakami respectively. Two links are self pass-equivalent (resp.

self #-equivalent) if one can be deformed into the other by pass-moves (resp. #-moves),

where none of them can occur between distinct components of the link. These relations

are equivalence relations on ordered oriented links and stronger than link-homotopy

defined by J. Milnor. We give two complete classifications of links with arbitrarily many

components up to self pass-equivalence and up to self #-equivalence respectively. So our

classifications give subdivisions of link-homotopy classes.

1. Introduction.

We shall work in piecewise linear category. All links will be assumed to be

ordered and oriented.

A pass-move [5] (resp. #-move [7]) is a local move on oriented links as illustrated in

Figure 1.1(a) (resp. 1.1(b)). If the four strands in Figure 1.1(a) (resp. 1.1(b)) belong to

the same component of a link, we call it a self pass-move (resp. self #-move) ([1], [13],

[14], [15]). We note that pass-moves and #-moves are called #(II)-moves and #(I)-

moves respectively in first author’s prior papers [13], [14], [15], [16], etc. Two links are

said to be self pass-equivalent (resp. self #-equivalent) if one can be deformed into the

other by a finite sequence of self pass-moves (resp. self #-moves). Two links are said to

be link-homotopic if one can be deformed into the other by finite sequence of self

crossing changes ([6]). Since both self pass-move and self #-move are realized by self

crossing changes, self pass-equivalence and self #-equivalence are stronger than link-

homotopy. Link-homotopy classification is achieved by J. Milnor [6] for 3-component

links, by J. Levine [4] for 4-component links, and by N. Habegger and X. S. Lin [2] for

all links. In this paper we give two complete classifications of links with arbitrarily

many components up to self pass-equivalence and up to self #-equivalence respectively.

So our classifications give subdivisions of link-homotopy classes.

An n-component link l ¼ k1 U � � �U kn is called a proper link if the linking number

lkðl � ki; kiÞ is even for any ið¼ 1; . . . ; nÞ. For a proper link l ¼ k1 U � � �U kn, we call

ArfðlÞ �
Pn

i¼1 ArfðkiÞ ðA Z2Þ the reduced Arf invariant [13] and denote it by ArfðlÞ,

where Arf is the Arf invariant ([11]). (The Arf invariant is sometime called the

Robertello-Arf invariant.)
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Theorem 1.1. Let l ¼ k1 U � � �U kn and l 0 ¼ k 0
1 U � � �U k 0

n be n-component links.

Then the following (i) and (ii) hold.

(i) l and l 0 are self pass-equivalent if and only if they are link-homotopic,

ArfðkiÞ ¼ Arfðk 0
i Þ for any i ði ¼ 1; . . . ; nÞ, and Arfðki1 U � � �U kipÞ ¼ Arfðk 0

i1
U

� � �U k 0
ip
Þ for any proper links ki1 U � � �U kip J l and k 0

i1
U � � �U k 0

ip
J l 0.

(ii) l and l 0 are self #-equivalent if and only if they are link-homotopic and

Arfðki1 U � � �U kipÞ ¼ Arfðk 0
i1
U � � �U k 0

ip
Þ for any proper links ki1 U � � �U kip J l

and k 0
i1
U � � �U k 0

ip
J l 0.

For two-component links, both self pass-equivalence classification and self #-

equivalence classification have been done by the first author ([15]). His proof can be

applied only to two-component links. So we need di¤erent approach to proving

Theorem 1.1.

A link l ¼ k1 U � � �U kn is said to be Z2-algebraically split if lkðki; kjÞ is even for any

i; j ð1a i < ja nÞ. We note that if l ¼ k1 U � � �U kn is Z2-algebraically split link, then l

and ki U kj ð1a i < ja nÞ are proper.

Theorem 1.2. Let l ¼ k1 U � � �U kn and l 0 ¼ k 0
1 U � � �U k 0

n be n-component Z2-

algebraically split links. If l and l 0 are link-homotopic, then

ArfðlÞ þ
X

1ai< jan

Arfðki U kjÞ ¼ Arfðl 0Þ þ
X

1ai< jan

Arfðk 0
i U k 0

j Þ ðA Z2Þ:

By combining Theorems 1.1 and 1.2, we have the following corollary.

Corollary 1.3. Let l ¼ k1 U � � �U kn and l 0 ¼ k 0
1 U � � �U k 0

n be n-component Z2-

algebraically split links. Then the following (i) and (ii) hold.

(i) l and l 0 are self pass-equivalent if and only if they are link-homotopic, ArfðkiÞ ¼

Arfðk 0
i Þ for any i, and Arfðki U kjÞ ¼ Arfðk 0

i U k 0
j Þ for any i; j ð1a i < ja nÞ.

(ii) l and l 0 are self #-equivalent if and only if they are link-homotopic and

Arfðki U kjÞ ¼ Arfðk 0
i U k 0

j Þ for any i; j ð1a i < ja nÞ.

2. Preliminaries.

In this section, we collect several results in order to prove Theorems 1.1 and 1.2.

Let l ¼ k1 U � � �U kn and l 0 ¼ k 0
1 U � � �U k 0

n be n-component links. Let D4 be the unit

4-ball, L# a link in qD4 as illustrated in Figure 2.1, and C# the cone with the center of

D4 and L#. Let A ¼ A1 U � � �UAn be a disjoint union of n annuli A1; . . . ;An. Suppose

that there is a continuous map f : A ! S3 � ½0; 1� with f ðqAÞH qðS3 � ½0; 1�Þ such

that

ðaÞ ðbÞ

Figure 1.1.
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(i) ðqðS3 � ½0; 1�Þ; f ðqAiÞÞ ¼ ðS3 � f0g; kiÞU ð�S3 � f1g;�k 0
i Þ ði ¼ 1; . . . ; nÞ, and

(ii) there are finite points p1; . . . ; pm in f ðAÞV ðS3 � ð0; 1ÞÞ such that
. the inverse image f �1ðpjÞ of each pj is a set of 4 points and belongs to a

single annulus,
. f : A�6

j
f �1ðpjÞ ! S3 � ½0; 1� is a locally flat embedding, and

. each pj has a small neighborhood NðpjÞ in S3 � ½0; 1� such that ðNðpjÞ;

NðpjÞVAÞ is homeomorphic to ðD4
;C#Þ,

where �X denotes X with the opposite orientation. Then f ðAÞ is called a pass-annuli

between l and l 0.

The following is proved by the first author in [14].

Lemma 2.1. Two links l and l 0 are self pass-equivalent if and only if there is a pass-

annuli between them.

It is known that a pass-move is realized by a finite sequence of #-moves ([8]).

Thus we have the following.

Lemma 2.2. If two links l and l 0 are self pass-equivalent, then they are self #-

equivalent.

A G-move [5] denotes a local move on oriented links as illustrated in Figure 2.2.

The following is known [5].

Lemma 2.3. A G-move is realized by a single pass-move.

Let l ¼ k1 U � � �U kn and l 0 ¼ k 0
1 U � � �U k 0

n be n-component links such that there is

a 3-ball B3 in S3 with B3 V ðl U l 0Þ ¼ l. Let b1; . . . ; bn be mutually disjoint disks in S3

such that bi V l ¼ qbi V ki and bi V l 0 ¼ qbi V k 0
i are arcs for each i. Then the link

Figure 2.1.

Figure 2.2.
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l U l 0 U ð6n

i¼1
qbiÞ � ð6 intðbi V ðl U l 0ÞÞÞ is called a band sum (or a product fusion [12]) of

l and l 0 and denoted by ðk1#b1k
0
1ÞU � � �U ðkn#bnk

0
nÞ. Note that a band sum of l and l 0 is

Z2-algebraically split if lkðki; kjÞ1 lkðk 0
i ; k

0
j Þ ðmod 2Þ ð1a i < ja nÞ.

The following is proved by the first author in [12].

Lemma 2.4. Two links l and l 0 are link-homotopic if and only if there is a band sum

of l and �l 0 that is link-homotopic to a trivial link, where ðS3;�l 0ÞG ð�S3;�l 0Þ.

By the definition of the Arf invariant via 4-dimensional topology ([11]), we have the

following.

Lemma 2.5. Let l and l 0 be proper links and L a band sum of l and �l 0. Then L is

proper and ArfðLÞ ¼ ArfðlÞ þArfðl 0Þ ðA Z2Þ.

The following lemma forms an interesting contrast to the lemma above.

Lemma 2.6. Let l ¼ k1 U k2 and l 0 ¼ k 0
1 U k 0

2 be 2-component links with lkðk1; k2Þ and

lkðk 0
1; k

0
2Þ odd. Let L ¼ ðk1#b1ð�k 0

1ÞÞU ðk2#b2ð�k 0
2ÞÞ be a band sum and L 0 a band sum

obtained from L by adding a single full-twist to b2; see Figure 2.3. Then L and L 0 are

proper and link-homotopic, and ArfðLÞ0ArfðL 0Þ.

Proof. Clearly L and L 0 are proper and link-homotopic. So we shall show

ArfðLÞ0ArfðL 0Þ.

Let ai be the ith coe‰cient of the Conway polynomial. Then we have

a3ðLÞ � a3ðL
0Þ ¼ a2ððk1#b1ð�k 0

1ÞÞU k2 U ð�k 0
2ÞÞ:

It is known that the third coe‰cient of the Conway polynomial of a two-component

proper link is mod 2 congruent to the sum of the Arf invariants of the link and the

components [9]. This and Lemma 2.5 imply ArfðLÞ �ArfðL 0Þ ¼ a3ðLÞ � a3ðL
0Þ ðA Z2Þ.

By [3],

a2ððk1#b1ð�k 0
1ÞÞU k2 U ð�k 0

2ÞÞ

¼ lkðk1#b1ð�k 0
1Þ; k2Þ lkðk2;�k 0

2Þ þ lkðk2;�k 0
2Þ lkð�k 0

2; k1#b1ð�k 0
1ÞÞ

þ lkð�k 0
2; k1#b1ð�k 0

1ÞÞ lkðk1#b1ð�k 0
1Þ; k2Þ:

Thus we have ArfðLÞ �ArfðL 0Þ ¼ 1 ðA Z2Þ. r

A D-move [8] is a local move on links as illustrated in Figure 2.4. If at least two

of the three strands in Figure 2.4 belong to the same component of a link, we call it a

Figure 2.3.
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quasi self D-move ([10]). Two links are said to be quasi self D-equivalent if one can be

deformed into the other by a finite sequence of quasi self D-moves.

The following is proved by Y. Nakanishi and the first author in [10].

Lemma 2.7. Two links are link-homotopic if and only if they are quasi self D-

equivalent.

3. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.2. Since l is link-homotopic to l 0, by Lemma 2.7, l is quasi

self D-equivalent to l 0. It is su‰cient to consider the case that l 0 is obtained from l by a

single quasi self D-move.

Suppose that the three strands of the D-move that is applied to the deformation

from l into l 0 belong to one component of l. Without loss of generality we may assume

that the component is k1. Note that ki and k 0
i are ambient isotopic for any ið01Þ, and

that ki U kj and k 0
i U k 0

j are ambient isotopic for any i < j ði0 1Þ. Since a D-move

changes the value of the Arf invariant ([8]), we have ArfðlÞ0Arfðl 0Þ, Arfðk1Þ0Arfðk 0
1Þ

and Arfðk1 U kjÞ0Arfðk 0
1 U k 0

j Þ. Thus we have ArfðlÞ ¼ Arfðl 0Þ and Arfðk1 U kjÞ ¼

Arfðk 0
1 U k 0

j Þ. So we have the conclusion.

We now consider the other case, i.e., the three strands of the D-move belong to

exactly two components of l. Without loss of generality we may assume that the two

components are k1 and k2. Note that ki and k 0
i are ambient isotopic for any i, and that

ki U kj and k 0
i U k 0

j are ambient isotopic for any i < j ðði; jÞ0 ð1; 2ÞÞ. Since ArfðlÞ0

Arfðl 0Þ and Arfðk1 U k2Þ0Arfðk 0
1 U k 0

2Þ, ArfðlÞ þArfðk1 U k2Þ ¼ Arfðl 0Þ þArfðk 0
1 U k 0

2Þ

ðA Z2Þ. This completes the proof. r

Lemma 3.1. Let l ¼ k1 U � � �U kn and l 0 ¼ k 0
1 U � � �U k 0

n be n-component Z2-

algebraically split links. If l and l 0 are link-homotopic, ArfðkiÞ ¼ Arfðk 0
i Þ ði ¼ 1; . . . ; nÞ

and Arfðki U kjÞ ¼ Arfðk 0
i U k 0

j Þ ð1a i < ja nÞ, then l and l 0 are self pass-equivalent.

Proof. Since l is link-homotopic to l 0, by Lemma 2.7, l is quasi self D-equivalent

to l 0. Let u be the minimum number of quasi self D-moves which are needed to deform

l into l 0. By Theorem 1.2, ArfðlÞ ¼ Arfðl 0Þ. Since a D-move changes the value of the

Arf invariant, u is even. It is su‰cient to consider the case u ¼ 2. Therefore, there is

a continuous map f : A ¼ A1 U � � �UAn ! S3 � ½0; 1� from a disjoint union of n annuli

A1; . . . ;An with f ðqAÞH qðS3 � ½0; 1�Þ such that

(i) ðqðS3 � ½0; 1�Þ; f ðqAiÞÞ ¼ ðS3 � f0g; kiÞU ð�S3 � f1g;�k 0
i Þ ði ¼ 1; . . . ; nÞ, and

Figure 2.4.
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(ii) there are two points p1; p2 in f ðAÞV ðS3 � ð0; 1ÞÞ such that
. the inverse image f �1ðptÞ of each pt is a set of 3 points and belongs to at

most two annuli,
. f : A� f �1ðp1ÞU f �1ðp2Þ ! S3 � ½0; 1� is a locally flat, level-preserving

embedding, and
. each pt has a small neighborhood NðptÞ in S3 � ½0; 1� such that ðNðptÞ;

NðptÞV f ðAÞÞ is homeomorphic to ðD4;CDÞ, where CD is the cone with the

center of the unit 4-ball D4 and the Borromean rings in qD4.

A singular point pt is called type (i) if f �1ðptÞHAi, and type ði; jÞ ði < jÞ if f �1ðptÞH

Ai UAj. Note that if pt is type (i) (resp. type ði; jÞ), then qðNðptÞV f ðAÞÞH f ðAiÞ

(resp. H f ðAi UAjÞ). For each i (resp. i; j), let ui (resp. ui; j) be the number of the

singular points of type (i) (resp. type ði; jÞ). We note that a number of D-moves

which are needed to deform ki into k 0
i (resp. ki U kj into k 0

i U k 0
j ) is equal to ui (resp.

ui; j þ ui þ uj). By the hypothesis of this lemma, we have ui and ui; j þ ui þ uj are

even. Hence ui and ui; j are even. This implies that both p1 and p2 are the same

type.

Suppose that p1 and p2 are type ði; jÞ. Without loss of generality we may assume

that ði; jÞ ¼ ð1; 2Þ and two components of the Borromean rings qðNðp1ÞV f ðAÞÞ belong

to f ðA2Þ. Let a be an arc in f ðA1ÞV ðS3 � ð0; 1ÞÞ that connects two singular points p1
and p2 of type ð1; 2Þ, and let ðS3;LÞ ¼ ðqNðaÞ; qðNðaÞV f ðA1 UA2ÞÞÞ. Then L is a 5-

component link as illustrated in either Figure 3.1(a) or (b). In the case that L is as

Figure 3.1(a), we can deform L into a trivial link by applying G-moves to the sublink

LV f ðA2Þ; see Figure 3.2. In the case that L is as Figure 3.1(b), we can deform L

into the link as in Figure 3.2(a) by two G-moves, one is applied to LV f ðA1Þ and the

other to LV f ðA2Þ; see Figure 3.3. It follows from this and Figure 3.2 that L can be

deformed into a trivial link by G-moves, one is applied to LV f ðA1Þ and the others to

LV f ðA2Þ.

Suppose that p1 and p2 are type (i). Let a be an arc in f ðAiÞV ðS3 � ð0; 1ÞÞ

that connects two singular points p1 and p2 of type (i), and let ðS3;LÞ ¼ ðqNðaÞ;

qðNðaÞV f ðAiÞÞÞ. By the argument similar to that in the above, L can be deformed

into a trivial link by applying G-moves to LV f ðAiÞ.

Therefore, by Lemma 2.3, we can constract pass-annuli in S3 � ½0; 1� between l and

l 0. Lemma 2.1 completes the proof. r

Figure 3.1.
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Proof of Theorem 1.1. Since a self pass-move (resp. a self #-move) is realized by

link-homotopy and it preserves Arf (resp. Arf) [15, Proposition], we have the ‘only if ’

part of (i) (resp. (ii)). We shall prove the ‘if ’ parts.

(i) For a link l ¼ k1 U � � � kn, let G o
l (resp. G e

l ) be a graph with the vertex set

fk1; . . . ; kng and the edge set fkikj j lkðki; kjÞ is oddg (resp. fkikj j lkðki; kjÞ is eveng).

Note that Go
l UG e

l is the complete graph with n vertices. For a band sum L ¼

K1 U � � �UKnð¼ ðk1#b1ð�k 0
1ÞÞU � � �U ðkn#bnð�k 0

nÞÞÞ of l and �l 0, let AL be a graph with

the vertex set fK1; . . . ;Kng and the edge set fKiKj jArfðKi UKjÞ ¼ 0g. (Note that L is a

Z2-algebraically split link since l and l 0 are link-homotopic.)

Claim. There is a band sum L of l and �l 0 such that L is link-homotopic to a trivial

link and AL is the complete graph with n vertices.

Proof. Let T be a maximal subgraph of G o
l that does not contain a cycle. Since

T does not contain a cycle, by Lemmas 2.4 and 2.6, there is a band sum L of l and l 0

such that L is link-homotopic to a trivial link and T H hðALÞ, where h : AL ! Go
l UG e

l

the natural map defined by hðKiÞ ¼ ki and hðKiKjÞ ¼ kikj. By Lemma 2.5, we have

G e
l H hðALÞ. Since h is injective and G o

l UG e
l is the complete graph, it is su‰cient to

prove that h is surjective. Let E be the set of edges which are not contained in hðALÞ,

and H o ¼ hðALÞVG o
l . Suppose E0q. Then there is an edge e A E such that there

is a cycle C in H o U e containning e whose any chord are not contained in Go
l , where

Figure 3.2.

Figure 3.3.
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a chord denotes an edge connecting two nonadjacent edges of C. (In fact, for each

ei A E, consider the minimum length li of cycles in H o U ei containning ei and choose

an edge e and a cycle C in H o U e containning e so that the length of C is equal

to minfli j ei A Eg.) Without loss of generality we may assume that C ¼ k1k2 � � � kck1
and e ¼ k1k2. Set lc ¼ k1 U � � �U kc and Lc ¼ K1 U � � �UKc. Since C has no chords

in G o
l , all chords are in G e

l . Thus we have kikj HH o UG e
l ð¼ hðALÞÞ for any i; j

ð1a i < ja cÞ except for ði; jÞ ¼ ð1; 2Þ. This implies ArfðKi UKjÞ ¼ 0 for any i; j

ð1a i < ja c; ði; jÞ0 ð1; 2ÞÞ. The fact that C has no chords in G o
l implies lc is a

propre link. By the hypothesis about the Arf invariants and Lemma 2.5, we have

ArfðLcÞ ¼ 2ArfðlcÞ ¼ 0 ðA Z2) and ArfðKiÞ ¼ 2ArfðkiÞ ¼ 0 ðA Z2Þ ði ¼ 1; . . . ; cÞ. Since

Lc is link-homotopic to a trivial link, by Theorem 1.2, ArfðK1 UK2Þ ¼ 0. This contradicts

e ¼ k1k2 A E. r

By Claim, there is a band sum L ¼ K1 U � � �UKn of l and �l 0 such that L is link-

homotopic to a trivial link, ArfðKiÞ ¼ 0 ði ¼ 1; . . . ; nÞ and ArfðKi UKjÞ ¼ 0 ð1a i <

ja nÞ. By Lemma 3.1, L is self pass-equivalent to a trivial link. Since L is a band

sum of l and �l 0, we can constract a pass-annuli between l and l 0. Lemma 2.1 com-

pletes the proof.

(ii) Since a #-move changes the value of the Arf invariant [7], by applying self #-

moves, we may assume that ArfðkiÞ ¼ Arfðk 0
i Þ for any i. Theorem 1.1(i) and Lemma

2.2 complete the proof. r
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