
J. Math. Soc. Japan
Vol. 55, No. 4, 2003

Complete non-compact spacelike hypersurfaces of
constant mean curvature in de Sitter spaces

By Sebasti\’an MONTIEL

(Received Apr. 9, 2001)
(Revised Apr. 16, 2002)

Abstract. We use the half-space model for the open set of a de Sitter space
associated to the steady state space to obtain some sharp a priori estimates for the height
and the slope of certain constant mean curvature spacelike graphs. These estimates
allow us to prove some existence and uniqueness theorems about complete non-compact
constant mean curvature spacelike hypersurfaces in de Sitter spaces with prescribed
asymptotic future boundary. Their geometric properties are studied.

1. Introduction.

Constant mean curvature hypersurfaces are first order solutions to the iso-
perimetric problem both when the ambient space is a Riemannian manifold as well as it
is a Lorentzian manifold. In the first case, they have been extensively studied. In the
second case, they have also attracted a big amount of interest from a physical point of
view (see [C], [CB], [CFM], [Gol], [Go2], [MT], [St]), because they are convenient initial
data for the Cauchy problem corresponding to the Einstein equation and suitable tools
in the study of gravitational waves.

From a mathematical point of view, they exhibit nice Bernstein type properties.
In fact, some of the first papers dealing with existence and uniqueness of this type of
hypersurfaces were written by Calabi [C] and Cheng and Yau [CY]. They discovered a
Bernstein theorem for entire maximal (i.e. identically zero mean curvature) spacelike
hypersurfaces in a Minkowski space. Later and by way of contrast, Treibergs [Tr]
showed that there are a lot of entire spacelike graphs in the Minkowski space with non-
zero constant mean curvature and he classified them according to their behaviours at the
infinity.

In this paper we shall deal with spacelike hypersurfaces $\Sigma^{n}$ of the de Sitter
space $S_{1}^{n+1}$ , which can be thought of as the hyperquadric of the Minkowski $(n+2)-$

dimensional space consisting of the unit spacelike vectors. This de Sitter space is the
simplest example of globally hyperbolic and spatially closed Lorentzian manifold. It is
1-connected and has positive constant sectional curvature and, so, it is the Lorentzian
analogue to the round sphere in Riemannian geometry.

The de Sitter space has a lot of complete spacelike hypersurfaces with constant
mean curvature (see Section 3 below) with a good geometrical behaviour. The umbilical
ones are obtained by intersecting $S_{1}^{n+1}$ with hyperplanes. According to the causal
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character of the hyperplane, the corresponding hypersurface will be isometric to a
sphere, a Euclidean space or a hyperbolic space. Goddard [Gol] had conjectured that
those umbilical examples were the only complete spacelike hypersurfaces of $S_{1}^{n+1}$ with
constant mean curvature. The author [Mol] solved this conjecture in the affirmative
when the hypersurface $\Sigma^{n}$ is compact (the case $n=2$ had been already studied by
Akutagawa in [Ak] and the maximal case in [CFM] $)$ . In this way, an earlier theorem
due to Akutagawa [Ak] and also in part to Ramanathan [R] was generalized. This
result says that, if the constant mean curvature $H$ of a complete spacelike hyper-
surface $\Sigma^{n}$ of $S_{1}^{n+1}$ satisfies $H^{2}<4(n-1)/n^{2}$ , if $n>2$ , or $H^{2}\leq 1$ , if $n=2$ , then it is
umbilical. In fact, under this assumption on the mean curvature, the Gauss equation
for the hypersurface implies that its Ricci curvature is bounded from below by a positive
constant. So, according to the Bonnet-Myers theorem, it must be compact and then
one obtains the Akutagawa result via the above-mentioned theorem in [Mol]. Later,
Oliker showed in [O1] that this Bernstein type property is stable with respect to per-
turbations of the data.

These results by Akutagawa and the author give the best possible sufficient
condition for a complete spacelike hypersurface in $S_{1}^{n+1}$ being umbilical. Indeed, non-
umbilical examples with $n=2$ and $H^{2}>1$ were exhibited in [Ak], and the author
pointed out in [Mol] that, for $n>2$ and $H^{2}\geq 4(n-1)/n^{2}$ , there are also non-umbilical
complete hypersurfaces. Precisely, these examples were the hyperbolic cylinders (cf.
[A1], [KKN] $)$ whose squared constant mean curvatures (depending only on its radius)
take any value in [$4(n-1)/n^{2},$ $+\infty$ [. Hence it seems natural to study complete (and $a$

fortiori non-compact) spacelike hypersurfaces $\Sigma^{n}$ in $S_{1}^{n+1}$ with constant mean curvature
$H$ such that $H^{2}\geq 4(n-1)/n^{2}$ . Are there any examples besides the umbilical ones and
the hyperbolic cylinders? The author gave in [Mo2] a partial uniqueness result for the
boundary value $4(n-1)/n^{2}$ . In this paper we shall see that this uniqueness fails to
hold, at least when $H^{2}>1$ . In fact, we shall construct complete non-compact spacelike
hypersurfaces of the de Sitter space with constant mean curvature $H$ such that $H^{2}>1$

and with prescribed asymptotic future boundary (see Section 7 for a definition). To do
that, we shall consider the half $\mathscr{H}^{n+1}$ of the de Sitter space which models the so-called
steady state space (cf. [HE], p. 127) and we shall use that this extendible (and so non-
complete) space is isometric to the half-space $R_{+}^{n+1}=R^{n}\times R^{+}$ , endowed with the
Lorentzian metric

$ds_{(x,x_{n+1})}^{2}=\frac{1}{x_{n+1}^{2}}(|dx|^{2}-(dx_{n+1})^{2})$ $(x\in R^{n}, x_{n+1}\in R_{+})$ .

In this setting, the horizontal hyperplanes $x_{n+1}=t,$ $ t\in$ ] $O,$ $+\infty$ [, are umbilical spacelike
hypersurfaces of constant mean curvature $H=1$ (for graphs we shall use the upward
orientation) and we shall refer to them as time slices of the steady state space. The
horizontal hyperplane $x_{n+1}=0$ which is the boundary of $\mathscr{H}^{n+1}$ represents its future
infinity (see [HE], where it is usually denoted by $\ovalbox{\tt\small REJECT}^{+}$ ).

By using this upper half-space model, we shall obtain some height and gradient
estimates for spacelike graphs with constant mean curvature $H>1$ over certain compact
domains in a given time slice. They allow us to solve on these domains the Dirichlet
problem corresponding to the constant mean curvature equation, with zero boundary
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data. A careful control of the height and the slope of these solutions will lead us to
find complete spacelike hypersurfaces with constant mean curvature $H>1$ whose
asymptotic future boundary is a given compact domain with mean convex boundary
of the future infinity $\ovalbox{\tt\small REJECT}^{+}$ of the steady state space. These hypersurfaces are umbilical
only when the prescribed asymptotic boundary is chosen to be a round sphere in $\ovalbox{\tt\small REJECT}^{+}$ .
Moreover, they are never hyperbolic cylinders, since this type of cylinders have
asymptotic future boundaries with codimension bigger than one.

2. Halfspace model for the steady state space.

We denote by $R_{1}^{n+2}$ the $(n+2)$ -dimensional Minkowski space, which is nothing but
the real vector space $R^{n+2}$ endowed with the Lorentz metric defined by

$\langle u, v\rangle=u_{0}v_{0}+\cdots+u_{n}v_{n}-u_{n+1}v_{n+1}$ ,

for all $u,$
$v\in R^{n+2}$ . The one-sheeted hyperboloid

$S_{1}^{n+1}=\{p\in R_{1}^{n+2}|\langle p, p\rangle=1\}$

consisting of all unit spacelike vectors in $R_{1}^{n+2}$ , equipped with the induced metric, is
a geodesically complete Lorentzian manifold with constant curvature one, usually called
de Sitter space, which has the topology $S^{n}\times R$ . Take a non-zero null vector $a\in R_{1}^{n+2}$

in the past half of the null cone (with vertex at the origin), that is, $\langle a, a\rangle=0$ and
$\langle a, e_{n+1}\rangle>0$ , where $e_{n+1}=(0, \ldots, 0,1)$ . Then the open region of the de Sitter space
given by

$\mathscr{H}^{n+1}=\{p\in S_{1}^{n+1}|\langle p, a\rangle>0\}$

is the so-called steady state space (Figure 1).
Of course, $\mathscr{H}^{n+1}$ is extendible and, so, non-complete, being only half a de Sitter

space. Its boundary, as a subset of $S_{1}^{n+1}$ , is the null hypersurface

$\{p\in S_{1}^{n+1}|\langle p, a\rangle=0\}$ ,

Figure 1. de Sitter and steady state spaces.
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whose topology is $R\times S^{n-1}$ . The characteristic property of this space is that it admits
a foliation by means of the spacelike hypersurfaces

$L^{n}(\tau)=\{p\in S_{1}^{n+1}|\langle p, a\rangle=\tau\}$ $\tau\in]0,$ $+\infty[$ ,

which are (see [Mol]) umbilical hypersurfaces of the de Sitter space having constant
mean curvature one with respect to the unit past directed normal fields

$N_{\tau}(p)=-p+\frac{1}{\tau}a$ $(p\in L^{n}(\tau))$ .

In the steady state model of the universe, matter is supposed to move along geodesics
normal to these hypersurfaces. Then, they represent constant time slices and, since all
of them are isometric to a Euclidean space $R^{n}$ , in this cosmological setting, the geometry
of the spatial sections remains unchanged. It is convenient to notice that the hyper-
surfaces $L^{n}(\tau)$ approach to the boundary of $\mathscr{H}^{n+1}$ when $\tau$ tends to zero and that, when
$\tau$ tends to $+\infty$ , they approach to the spacelike future infinity for timelike and null lines
of the de Sitter space, that, following [HE], we will denote by $\ovalbox{\tt\small REJECT}^{+}$ .

Now, we recall that there exists a well-known upper half-space model for $\mathscr{H}^{n+1}$ that
we need to use. In fact, consider the map $\emptyset$ : $\mathscr{H}^{n+1}\rightarrow R^{n+1}=R^{n}\times R$ by

(1) $\phi(p)=\frac{1}{\langle p,a\rangle}(p-\langle p, a\rangle b-\langle p, b\rangle a, 1)$ ,

where $b\in R_{1}^{n+2}$ is another null vector such that $\langle a, b\rangle=1$ (and so $b$ is in the future
half of the null cone, that is, $\langle b, e_{n+1}\rangle<0)$ and where $R^{n}$ stands for the orthogonal
complement of the Lorentz plane spanned by $a$ and $b$ . Then, it is immediate to see that
the image of $\emptyset$ lies in the half-space $R_{+}^{n+1}=R^{n}\times R_{+}$ and that $\emptyset$ is a diffeomorphism
from $\mathscr{H}^{n+1}$ to $R_{+}^{n+1}$ . Moreover, if $v\in T_{p}\mathscr{H}^{n+1}=T_{p}S_{1}^{n+1}$ , we have

(2) $(d\phi)_{p}(v)=\frac{1}{\langle p,a\rangle}(v-\langle v, a\rangle b-\langle v, b\rangle a, 0)-\frac{\langle v,a\rangle}{\langle p,a\rangle^{2}}(p-\langle p, a\rangle b-\langle p, b\rangle a, 1)$ .

From this, it is straightforward to check that

$\langle(d\phi)_{p}(v), (d\phi)_{p}(v)\rangle=\frac{1}{\langle p,a\rangle^{2}}\langle v, v\rangle$ .

Hence the map $\emptyset$ : $\mathscr{H}^{n+1}\rightarrow R_{+}^{n+1}=R^{n}\times R_{+}$ is an isometry provided that we put on the
half-space $R_{+}^{n+1}$ the Lorentz metric $g$ given by

$ g_{(x,x_{n+1})}(u, v)=\frac{1}{x_{n+1}^{2}}\langle u, v\rangle$ $(x\in R^{n}, x_{n+1}\in R_{+})$ ,

for all $u,$
$v\in R^{n+1}$ , that is, the Minkowski metric divided by $x_{n+1}^{2}$ . It is important to

point out that the isometry $\emptyset$ inverts time orientation.
Then the half-space $R_{+}^{n+1}$ endowed with that Lorentz metric

(3) $g_{(x,x_{n+1})}=\frac{1}{x_{n+1}^{2}}(|dx|^{2}-(dx_{n+1})^{2})$
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Figure 2. Geodesics in the upper half-space model.

is an upper half-space model for the steady state space. The existence of this upper
half-space model leads us to think of $\mathscr{H}^{n+1}$ as the Lorentzian analogue to usual
hyperbolic space and allows us to use suitable modifications of the Riemannian technics
(for example in [Anl], [An2], [LM], [NS], [To]) to study its constant mean curvature
hypersurfaces. Taking into account that, according (1),

(4) $x_{n+1}(\phi(p))=\frac{1}{\langle p,a\rangle}$ $(p\in \mathscr{H}^{n+1})$ ,

the time slices $L^{n}(\tau)$ correspond to the horizontal hyperplanes $x_{n+1}=1/\tau=t$ , where
$t\in]O,$ $+\infty$ [ that we shall denote by $L^{n}(t)$ . All of them are umbilical spacelike hyper-
surfaces which have constant mean curvature one with respect to the upward orientation
because

$(d\phi)_{p}(N_{\tau}(p))=\frac{1}{\tau}(0,1)$ $(p\in L^{n}(\tau))$ .

Notice that, in this model of the steady state space, the spacelike future infinity $\ovalbox{\tt\small REJECT}^{+}$ is
represented by the boundary hyperplane $x_{n+1}=0$ and the unit geodesic flow normal
to the hypersurfaces $L^{n}(\tau)$ , with $ 0<\tau$ , corresponds to the vertical lines through that
boundary hyperplane. This model also shows that the causal structures (see [HE],
p. 127) of $\mathscr{H}^{n+1}$ and of the open half-space $R_{+}^{n+1}$ of $R_{1}^{n+1}$ are the same.

Also, using this upper half-space model for $\mathscr{H}^{n+1}$ , we can easily visualize its
isometries. They are, from (3), just the conformal maps of the Minkowski space
$R_{1}^{n+1}$ preserving the half-space $R_{+}^{n+1}$ , for example, horizontal translations or Euclidean
homotheties with center in the future infinity $\ovalbox{\tt\small REJECT}^{+}$ .

Geodesics and totally geodesics submanifolds of $\mathscr{H}^{n+1}$ , corresponding in the
hyperquadric model to intersections of the de Sitter space $S_{1}^{n+1}$ with affine subspaces of
$R_{1}^{n+2}$ passing through the origin, are represented in Figure 2 with respect to the upper
half-space frame.

3. Umbilical hypersurfaces and hyperbolic cylinders.

We are interested in spacelike hypersurfaces of a de Sitter space with constant
mean curvature. Basic examples are the umbilical ones, which are obtained by inter-
secting $S_{1}^{n+1}$ with affine hyperplanes

$\{p\in R_{1}^{n+2}|\langle p, c\rangle=\sigma\}$ ( $c\in R_{1}^{n+2}-\{0\}$ and $\sigma^{2}>|c|^{2}$ )
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of the ambient Minkowski space. Choosing the orientation on these hypersurfaces so
that the corresponding (constant) mean curvature is non-negative, we have that $H\in[0,1$ $[$

when $c$ is a timelike vector, $H=1$ when it is null and $ H\in$ ] $1,$ $+\infty$ [ when $c$ is a space-
like vector. Moreover, the corresponding hypersurface is isometric to a sphere, or to
a Euclidean space, or to two copies of a hyperbolic space, respectively (see [Mol] for
more details).

When the spacelike hypersurface of $S_{1}^{n+1}$ with constant mean curvature is compact
without boundary, we proved in [Mol] that it must be one of these umbilical examples.
We also know that, in the non-compact case, there are non-umbilical examples with a
good geometrical behaviour: the hyperbolic cylinders given by

$\{p\in S_{1}^{n+1}|p_{0}^{2}+\cdots+p_{k}^{2}=\cosh^{2}r\}$

for $r>0$ and $1\leq k\leq n-1$ . We pointed out in [Mol] that, for a suitable orienta-
tion, they have constant mean curvatures, taking all the possible values in the
interval [$2\sqrt{n-1}/n,$ $+\infty$ [ . They have two connected components which are iso-
metric to a product of an $(n-k)$ -dimensional hyperbolic space and a k-dimensional
sphere.

In order to construct other hypersurfaces of this type in the de Sitter space, we
shall restrict ourselves to spacelike immersions $\psi$ : $\Sigma^{n}\rightarrow \mathscr{H}^{n+1}\subset S_{1}^{n+1}$ . We shall start
by using the upper half-space model for $\mathscr{H}^{n+1}$ . So it will be identified with $R_{+}^{n+1}$ with
the conformal metric (3). Let $N^{\prime}$ be a unit (timelike) normal field for $\psi$ with respect to
the Minkowski metric. Hence

$N=\psi_{n+1}N^{\prime}$

is a unit normal field for $\psi$ with respect to the metric (3) of $\mathscr{H}^{n+1}$ . Now we will
denote by $k_{i}^{\prime}$ and $k_{i},$ $i=1,$

$\ldots,$
$n$ , the principal curvatures of the immersion $\psi$ computed

respectively with respect to the Minkowski and the de Sitter metrics and the choices of
unit normal fields. Analogously we will represent by $H^{\prime}$ and $H$ the corresponding
mean curvatures. By using the relation between the Levi-Civita connections of the two
considered conformal metrics, we see that these principal and mean curvatures are
related as follows

(5) $ k_{i}=\psi_{n+1}k_{i}^{\prime}+N_{n+1}^{\prime}=-\langle k_{i}^{\prime}\psi+N^{\prime}, e_{n+1}\rangle$ $i=1,$
$\ldots,$

$n$ ,

(6) $ H=-\langle H^{\prime}\psi+N’, e_{n+1}\rangle$ ,

where $e_{n+1}=(0, \ldots, 0,1)\in R^{n+1}$ .
A consequence from (5) is that the umbilical hypersurfaces of $\mathscr{H}^{n+1}$ are just

the umbilical hypersurfaces of the Minkowski space $R_{1}^{n+1}$ which are contained in the
half-space $R_{+}^{n+1}$ . That is, hyperplanes and one-sheeted and two-sheeted hyperboloids
invariant under rotations whose axis is a vertical line. If we restrict ourselves to
spacelike hypersurfaces, we have only spacelike hyperplanes and two-sheeted hyper-
boloids. Among them, only the hyperplanes and the lower sheets of hyperboloids are
complete (notice that upper sheets intersect the boundary $\langle p, a\rangle=0$ when one uses the
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original definition of $\mathscr{H}^{n+1}$ ). Using (6), one can see that, in the half-space model, the
value of the constant mean curvature $H$ of each hyperboloid

$\{x\in R_{+}^{n+1}|\langle x-c, x-c\rangle=-r^{2}\}$

depends on the radius $r>0$ and the height $c_{n+1}$ of the center $ c=(c_{1}, \ldots, c_{n+1})\in$

$R^{n+1}$ . Let denote by $Q_{+}(r, c)$ the upper hyperboloid of radius $r$ and center $c$ , and
denote the lower hyperboloid by $Q_{-}(r, c)$ . Let $\Pi(u)$ be (the part included in the half-
space model of) the hyperplane perpendicular to a unit upward timelike vector $u=$

$(u_{1}, \ldots, u_{n+1} )$ $\in R_{1}^{n+1}$ . The following table is for the constant mean curvatures $H$ of
$Q_{\pm}(r, c)$ and $\Pi(u)$ with respect to the upward normal vector (see also Figure 3).

Also, it is not difficult to check that one of the components of each hyperbolic
cylinder is contained in $\mathscr{H}^{n+1}$ (choosing the vector $a$ as (0, $\ldots,$

$0,1,$ $-1)\in R^{n+2}$ ) and that
it appears in the half-space model of $\mathscr{H}^{n+1}$ as the set

$\{x=(x_{1}, \ldots, x_{n+1})\in R_{+}^{n+1}|x_{1}^{2}+\cdots+x_{k+1}^{2}-x_{n+1}^{2}\cosh^{2}r=0\}$ .

Figure 3. Spacelike umbilical hypersurfaces.
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Figure 4. A hyperbolic cylinder.

When $k=n-1$ this set is a half of a cone whose vertex is in the boundary of $R_{+}^{n+1}$ (see
Figure 4).

4. Constant mean curvature graphs and maximum principles.

Consider again a spacelike immersion $\psi$ : $\Sigma^{n}\rightarrow \mathscr{H}^{n+1}$ in the upper half-space model
for the steady state space. Since normal vectors at each point of $\Sigma^{n}$ are timelike, the
product $\langle N, e_{n+1}\rangle$ cannot vanish anywhere for any unit vector field $N$ normal to the
immersion. From now on we shall choose the orientation of our hypersurfaces so that

$\langle N, e_{n+1}\rangle<0$ ,

that is, so that $N$ points upwards. In this way $N$ will be future directed in the
Minkowski space but past directed in $\mathscr{H}^{n+1}$ (recall that the isometry $\emptyset$ changes time
orientations).

Since each hyperplane $(d\psi)_{p}(T_{p}\Sigma^{n}),$ $p\in\Sigma^{n}$ , is spacelike it projects one to one
onto the future infinity $\ovalbox{\tt\small REJECT}^{+}$ (the boundary hyperplane $x_{n+1}=0$ ) and also onto any time
slice $L^{n}(t)$ (the horizontal hyperplane $x_{n+1}=t$) with $ t\in$ ] $O,$ $+\infty$ [. Then each spacelike
immersion can be locally described as a graph on $\ovalbox{\tt\small REJECT}^{+}$ or on any $L^{n}(t)$ .

Suppose that $\Omega$ is a domain in $R^{n}$ , that $f$ is a positive smooth function defined on
$\Omega$ and that our immersion $\psi$ is given by

$\psi(x)=(x, f(x))$ $(x\in\Omega\subset R^{n})$ ,

that is, $\psi$ is the graph of the function $f$ . Then

$N^{\prime}=\frac{1}{\sqrt{1-|\nabla f|^{2}}}(\nabla f, 1)$

is an upward unit normal field for the Minkowski metric (notice that $|\nabla f|^{2}<1$ is
necessary because $\psi$ is spacelike). Thus

$-nH^{\prime}=div(\frac{\nabla f}{\sqrt{1-|\nabla f|^{2}}})$ on $\Omega$ .
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Using (6) and the fact that, in our case, the immersion $\psi$ is the graph of $f$ , we have

$H^{\prime}=\frac{1}{f}(H-\frac{1}{\sqrt{1-|\nabla f|^{2}}})$ .

Combining these two equalities one can see that $f$ is a solution to a second order partial
differential equation.

PROPOSITION 1. Let $\Omega$ be a domain in $R^{n}$ and $f\in C^{2}(\Omega)$ a positive function. Its
graph $\psi(x)=(x, f(x))\in R_{+}^{n+1}$ is a spacelike hypersu face in the steady state space $\mathscr{H}^{n+1}$

with (not necessarily constant) mean curvature $H$ with respect to the past directed normal
field if and only if $|\nabla f|^{2}<1$ and $f$ satisftes the following quasilinear elliptic equation:

(7) $div(\frac{\nabla f}{\sqrt{1-|\nabla f|^{2}}})=-\frac{n}{f}(H-\frac{1}{\sqrt{1-|\nabla f|^{2}}})$ on $\Omega$ ,

where $\nabla$ and $div$ are the Euclidean gradient and divergence operators on $R^{n}$ .

In this paper, we shall solve the Dirichlet problems associated to this equation
(7) with boundary conditions either $f=t,$ $ t\in$ ] $O,$ $+\infty$ [, that is, the boundary of the
hypersurface is contained in a time slice, or $f=0$ , that is, its future asymptotic
boundary (see Section 7 below for a precise definition) is prescribed.

Since this equation (7) is elliptic, the difference $fi-f_{2}$ of any two solutions $fi$ and
$f_{2}$ satisfies a linear elliptic equation on a neighborhood of each point. So the Hopf
maximum principle for linear elliptic equations (see [GT], Theorem 9.2, or [H]) can be
applied to this difference. Now, let $\Sigma_{1}^{n}$ and $\Sigma_{2}^{n}$ be the corresponding graphs, which are
two spacelike hypersurfaces immersed in the steady state space $\mathscr{H}^{n+1}$ with the same
constant mean curvature $H$ . If $\Sigma_{1}^{n}$ and $\Sigma_{2}^{n}$ have a common point $p=(x, t)$ where they
are tangent, we will say that $\Sigma_{1}^{n}$ lies above $\Sigma_{2}^{n}$ near $p$ when $fi\geq f_{2}$ on a certain
neighborhood of the point $x$ . Hence, if $\Sigma_{1}^{n}$ lies above $\Sigma_{2}^{n}$ the difference $f_{1}-f_{2}$ has a
local minimum at $x$ and the mentioned maximum principle implies that $fi$ and $f_{2}$ and,
so, the two hypersurfaces, coincide on a neighborhood of the point $p$ . From that, it
follows easily the following result.

THEOREM 2 (Tangency principle). Let $\Sigma_{1}^{n}$ and $\Sigma_{2}^{n}$ be two spacelike hypersu faces
immersed in the steady state space with the same constant mean curvature (with respect
to the past directed or upward orientation). Suppose that they are tangent at a common
non-boundary point $p$ and that $\Sigma_{1}^{n}$ lies above $\Sigma_{2}^{n}$ near $p$ . Then they coincide in $a$

neighborhood of $p$ .

REMARK 1. There is an analogous boundary tangency principle when the common
point $p$ is in $\partial\Sigma_{1}^{n}\cap\partial\Sigma_{2}^{n}$ , provided that one also assumes that $\partial\Sigma_{1}^{n}$ and $\partial\Sigma_{2}^{n}$ are tangent
at $p$ .

REMARK 2 (Mean curvature comparison). If the two hypersurfaces $\Sigma_{1}^{n}$ and $\Sigma_{2}^{n}$ are
not supposed to have the same mean curvature and we represent by $H_{1}$ and $H_{2}$ their
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mean curvature functions, we have that, when $\Sigma_{1}^{n}$ lies above $\Sigma_{2}^{n}$ near a common point
where they are tangent, then $H_{1}\leq H_{2}$ at that point (notice that in the Euclidean case we
have the reverse inequality). This follows easily by comparing the Hessians of both
height functions with respect to the $e_{n+1}$ direction and taking into account that, in our
case, height functions are the opposite of the true heights.

We shall use this tangency principle to see that a compact spacelike hypersurface
with constant mean curvature whose non-empty boundary is contained in a time slice
$L^{n}(t)$ must lie in either of the two domains of $\mathscr{H}^{n+1}$ determined by $L^{n}(t)$ .

PROPOSITION 3. Let $\Sigma^{n}$ be a compact spacelike hypersu face of the steady state
space $\mathscr{H}^{n+1}$ with constant mean curvature $H$ (upward orientation) and with boundary
contained in the time slice $L^{n}(t)$ for some $ t\in$ ] $O,$ $+\infty$ [. Then we have

a) $H\geq 1$ if and only if the hypersurface $\Sigma^{n}$ is contained in $L^{n}(t)_{+}=$

$\{(x, x_{n+1})\in \mathscr{H}^{n+1}|x_{n+1}\geq t\}$ .
b) $H\leq 1$ if and only if the hypersurface $\Sigma^{n}$ is contained in $L^{n}(t)_{-}=$

$\{(x, x_{n+1})\in \mathscr{H}^{n+1}|x_{n+1}\leq t\}$ .

PROOF. We first see that $\Sigma^{n}$ cannot have interior points in the two sides of $L^{n}(t)$ ,
except when $\Sigma^{n}\subset L^{n}(t)$ and so $H=1$ . Otherwise, we would have that both the
highest and the lowest points in $\Sigma^{n}$ could be taken to be interior. Now take a time
slice $L^{n}(s)$ with $s>t$ big enough to have $ L^{n}(s)\cap\Sigma^{n}=\emptyset$ and decrease $s$ until $L^{n}(s)$

touches $\Sigma^{n}$ for the first time. So we obtain an interior tangency point. Since each
time slice has constant mean curvature one (with respect to the upward orientation),
the mean curvature comparison (Remark 2) implies $1\leq H$ . Analogously, if we would
have started with time slices $L^{n}(s)$ with $s<t$ small enough to have $ L^{n}(s)\cap\Sigma^{n}=\emptyset$ ,
we would have proved that $H\leq 1$ . As a consequence, we would have that $H=1$ and
so $\Sigma^{n}\subset L^{n}(t)$ by using the tangency principle of Theorem 2.

Thus either $\Sigma^{n}\subset L^{n}(t)_{+}$ or $\Sigma^{n}\subset L^{n}(t)_{-}$ . In the first case, if $\Sigma^{n}$ is not a domain
in $L^{n}(t)$ , using again the tangency principle at the highest point of $\Sigma^{n}$ , we conclude
that $1<H$ . Analogously, if $\Sigma^{n}\subset L^{n}(t)_{-}$ and $\Sigma^{n}$ is not contained in $L^{n}(t)$ , we have
$1>H.$ $\square $

Another consequence of the tangency principle in Theorem 2 is the following result
which generalizes the uniqueness for the Dirichlet problem corresponding to the mean
curvature equation (7), with boundary condition in a time slice of $\mathscr{H}^{n+1}$ .

PROPOSITION 4 (Graphs monotonicity). Let $\Omega_{1}$ and $\Omega_{2}$ be two compact domains
in the time slice $L^{n}(t)$ of $\mathscr{H}^{n+1}$ such that $\Omega_{1}\subset\Omega_{2}$ . Consider two spacelike graphs $\Sigma_{1}^{n}$

and $\Sigma_{2}^{n}$ , corresponding to functions $f_{1}$ and $f_{2}$ , with constant mean curvatures $H_{1}$ and
$H_{2}$ (with respect to the upward orientation) such that $1\leq H_{1}\leq H_{2}$ and whose boundaries
are $\partial\Sigma_{1}^{n}=\partial\Omega_{1}$ and $\partial\Sigma_{2}^{n}=\partial\Omega_{2}$ . Then $fi\leq f_{2}$ on $\Omega_{1}$ . In particular, if $\Omega_{1}=\Omega_{2}$ , then
$f_{1}\leq f_{2}$ .

PROOF. Using if necessary Euclidean horizontal translations, which are isometries
of $\mathscr{H}^{n+1}$ , we may suppose that $(0, t)\in\Omega_{1}-\partial\Omega_{1}$ . Consider the 1-parameter subgroup
$\{h_{s}\}_{s\in R}$ of isometries of $\mathscr{H}^{n+1}$ consisting of the following Euclidean homotheties

$h_{s}(x, x_{n+1})=e^{s}(x, x_{n+1} )$ .
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Choose $s_{0}>0$ big enough so that $ h_{s_{0}}(\Sigma_{2}^{n})\cap\Sigma_{1}^{n}=\emptyset$ and $h_{s_{0}}(\Sigma_{2}^{n})$ is over $\Sigma_{1}^{n}$ . Now
decrease $s$ from $s_{0}$ until a certain $s_{1}$ for which a point $p$ of contact between $h_{s_{1}}(\Sigma_{2}^{n})$ and
$\Sigma_{1}^{n}$ is reached for the first time. Let us see that $s_{1}\leq 0$ . If $s_{1}$ was positive, $p$ would not
belong to $\partial h_{s_{1}}(\Sigma_{2}^{n})=h_{s_{1}}(\partial\Sigma_{2}^{n})$ because $p\in\Sigma_{1}^{n}$ which is a graph over $\Omega_{1}\subset\Omega_{2}$ . Also we
would have that $p\not\in\partial\Sigma_{1}^{n}$ because $h_{s_{1}}(\Sigma_{2}^{n})$ is over $L^{n}(t)$ . Hence, if $s_{1}$ was positive, then
the point $p$ would be interior to both $h_{s_{1}}(\Sigma_{2}^{n})$ and $\Sigma_{1}^{n}$ . But then, the mean curvature
comparison in Remark 2 would imply $H_{2}\leq H_{1}$ because $h_{s_{1}}(\Sigma_{2}^{n})$ is above $\Sigma_{1}^{n}$ . From
that and under our hypothesis, we deduce that $H_{1}=H_{2}$ and the tangency principle in
Theorem 2 would imply that $h_{s_{1}}(\Sigma_{2}^{n})=\Sigma_{1}^{n}$ , which is not possible because the boundaries
of these two hypersurfaces are at different heights.

As a consequence we have that $s_{1}\leq 0$ , as claimed. But, in this case, it is clear that
$\Sigma_{2}^{n}$ is over $\Sigma_{1}^{n}$ and so $fi\leq f_{2}$ on the smaller domain $\Omega_{1}$ . The case $\Omega_{1}=\Omega_{2}$ follows
immediately. $\square $

5. Height estimates.

The principal aim of this paper is to construct complete non-compact spacelike
hypersurfaces in a de Sitter $S_{1}^{n+1}$ with constant mean curvature $H>1$ and prescribed
asymptotic future boundary. These hypersurfaces will belong, by construction, in
$\mathscr{H}^{n+1}\subset S_{1}^{n+1}$ and will be obtained as a limit of constant mean curvature graphs over
compact domains contained in time slices of $\mathscr{H}^{n+1}$ . First we shall prove the existence
of such graphs by using the continuity method. So we shall look for height and
gradient estimates. Then higher order estimates will be obtained by using Schauder
theory and the particular features of the equation (7).

THEOREM 5 (Height estimates). Let $\Sigma^{n}$ be a compact spacelike hypersu face of
$\mathscr{H}^{n+1}$ with constant mean curvature $H>1$ and whose boundary is contained in a ball of
radius $R>0$ of the time slice $L^{n}(t),$ $t>0$ . Then

$t\leq x_{n+1|\Sigma^{n}}\leq\frac{Ht+\sqrt{(H^{2}-1)R^{2}+t^{2}}}{H+1}$ .

PROOF. The inequality on the left side follows from a) in Proposition 3. In order
to prove the inequality on the right side, suppose that $(0, t)$ is the center of the ball $B_{R}$

of radius $R$ containing $\partial\Sigma^{n}$ (see the beginning of the proof of Proposition 4). Now, let
us check that there is an umbilical two-sheeted hyperboloid with the same (constant)
mean curvature $H$ of $\Sigma^{n}$ and whose lower sheet intersects the horizontal hyperplane
$L^{n}(t)$ just in the sphere $\partial B_{R}$ . In fact, it suffices to take a hyperboloid

$|x|^{2}-(x_{n+1}-a)^{2}=-r^{2}$

with center $(O, a),$ $a>t$ , and radius $r>0$ , chosen so that

$H=\frac{a}{r}$ and $(t-a)^{2}-r^{2}=R^{2}$ .

If one writes $r$ and $a$ in terms of the data $H$ and $R$ , one has

$r=\frac{Ht+\sqrt{(H^{2}-1)R^{2}+t^{2}}}{H^{2}-1}$ $a=H\frac{Ht+\sqrt{(H^{2}-1)R^{2}+t^{2}}}{H^{2}-1}$ .
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Notice that those choices are possible since we are assuming that $H>1$ . Let us
denote by $S$ the lower sheet of this hyperboloid. Consider again the family $\{h_{s}\}_{s\in R}$ of
isometries of $\mathscr{H}^{n+1}$ consisting of the Euclidean homotheties

$h_{s}(x, x_{n+1})=e^{s}(x, x_{n+1})$ $(x\in R^{n}, x_{n+1}>0)$ .

Pick $s_{0}>0$ big enough so that $h_{s_{0}}(S)$ does not touch $\Sigma^{n}$ . Now we decrease $s$ from
$s_{0}$ until a certain value $s_{1}\in R$ such that $h_{s}(S)$ and $\Sigma^{n}$ meet for the first time at some
point $p$ . We claim that $s_{1}\leq 0$ . In fact, if $s_{1}>0,$ $p$ cannot be a boundary point of $\Sigma^{n}$

because $\partial\Sigma^{n}\subset B_{R}$ and $h_{s_{1}}(S)\cap L^{n}(t)$ is a sphere with radius bigger than $R$ . Then the
tangency principle in Theorem 2 can be applied to $\Sigma^{n}$ and $h_{s_{1}}(S)$ to conclude that $\Sigma^{n}$ is
the piece of $h_{s_{1}}(S)$ above $L^{n}(t)$ . But this contradicts the fact that the boundaries of
these two hypersurfaces are different. Hence $s_{1}\leq 0$ as we had claimed. Then it is not
difficult to see that $\Sigma^{n}$ is under the sheet $S$ of our hyperboloid. As the Euclidean height
of $S$ is $a-r$ , we deduce that

$x_{n+1|\Sigma^{n}}\leq a-r=(H-1)r=\frac{Ht+\sqrt{(H^{2}-1)R^{2}+t^{2}}}{H+1}$ ,

which was the required upper bound. $\square $

REMARK 3. If we represent by $K=K(t, R, H)$ the upper bound provided by
Theorem 5 above, it is straightforward to show that the derivatives

$\frac{dK}{dt}$ and $\frac{dK}{dH}$

are positive. That is, the bound $K$ is increasing with respect to the variables $t$ and $H$ .
In particular, $K(t, R, H)\leq t+R$ .

As a consequence of this height estimate for compact spacelike hypersurfaces of
$\mathscr{H}^{n+1}$ with constant mean curvature $H>1$ , we obtain $C^{0}$ -estimates for spacelike graphs
of this type.

COROLLARY 6. Let $\Omega$ be a compact domain in $R^{n}$ and $t$ a positive real number.
Then, each smooth positive function $f$ defined on $\Omega$ whose graph is a spacelike hy-
persu face in (the upper half-space model for) the steady state space $\mathscr{H}^{n+1}$ with constant
mean curvature $H>1$ and whose boundary is contained in the time slice $L^{n}(t),$ $0<t$ ,
satisftes

$t\leq f\leq t+diam42$ ,

where diam $\Omega$ is the diameter of $\Omega$ in $R^{n}$ .

6. Gradient estimates.

In order to find a priori estimates for the gradient of a solution to the mean
curvature equation (7), we come back to the hyperquadric model for our space
$\mathscr{H}^{n+1}$ . That is, we set

$\mathscr{H}^{n+1}=\{p\in S_{1}^{n+1}|\langle p, a\rangle>0\}$

for a certain $a\in R_{1}^{n+2}-\{0\}$ with $|a|^{2}=0$ and $\langle a, e_{n+1}\rangle>0$ .
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In this setting a spacelike immersion $\psi$ from a compact hypersurface $\Sigma^{n}$ into the
steady state space $\mathscr{H}^{n+1}$ can be thought of as an immersion

$\psi$ : $\Sigma^{n}\rightarrow S_{1}^{n+1}\subset R_{1}^{n+2}$ with $\langle\psi, a\rangle>0$ .

Then any (timelike) unit vector field $N$ normal to the immersion $\psi$ can be viewed as a
map

$N$ : $\Sigma^{n}\rightarrow\{p\in R_{1}^{n+2}|\langle p, p\rangle=-1\}$ ,

where each one of the two sheets of the hyperboloid on the right side are isometric, with
the induced metric, to the hyperbolic space $H^{n+1}$ with constant sectional curvature -1.
A direct computation leads to obtain the following two formulae (see, for example,
[Mol] for details), when the mean curvature $H$ of the immersion $\psi$ is constant,

(8) $\Delta\psi=$ -tuft $-nHN$ $\Delta N=|\sigma|^{2}N+nH\psi$ ,

where $\Delta$ is the Laplacian operator of the metric induced on the hypersurface $\Sigma^{n}$ and $\sigma$ is
the second fundamental form of the immersion $\psi$ .

We had chosen before the orientation of our hypersurfaces so that $N$ was past
directed (or upward in the half-space model). So, $N$ must be in the same half of the
null cone of $R_{1}^{n+2}$ as $a$ is. That is,

$\langle N, a\rangle<0$ .

With this choice of orientation, the umbilical hypersurfaces $L^{n}(\tau)$ which foliate $\mathscr{H}^{n+1}$

have constant mean curvature one, as we saw in Section 2, and the unit normal field $N$

takes values in the lower sheet of the corresponding hyperboloid, which will be denoted
by $H^{n+1}$ (hyperbolic space). Further, since

$\{x\in R_{1}^{n+2}|\langle x, x\rangle=-1, \langle x, a\rangle=\rho\}$ $(\rho\in]-\infty, 0[)$

is a foliation of $H^{n+1}$ by means of parallel horospheres, the negative function $\langle N, a\rangle$ is
a good estimate for the slope of the hypersurface because it measures the hyperbolic
distance to the common infinity point of that family of horospheres. That is, to obtain
a lower bound for $\langle N, a\rangle$ is equivalent to show that the image of $N$ is contained in
the domain of the hyperbolic space $H^{n+1}$ determined by a horosphere for which the
(constant) mean curvature of the horosphere is positive.

THEOREM 7 (Gradient estimates). Let $\psi$ : $\Sigma^{n}\rightarrow \mathscr{H}^{n+1}$ be a spacelike immersion
from a compact manifold $\Sigma^{n}$ with non-empty boundary in the steady state space. Suppose
that $\psi$ has constant mean curvature $H>1$ with respect to the past directed unit normal $N$

and that $\psi$ maps $\partial\Sigma^{n}$ into a time slice $L^{n}(\tau)$ , for a certain $\tau>0$ . Then we can choose the
unit normal field $n$ for the immersion $\psi_{|\partial\Sigma^{n}}$ : $\partial\Sigma^{n}\rightarrow L^{n}(\tau)$ such that $\langle N, n\rangle>0$ . Assume
that, with respect to this orientation $n$ the mean curvature of $\psi_{|\partial\Sigma^{n}}$ : $\partial\Sigma^{n}\rightarrow L^{n}(\tau)$ is non-
negative. Then

$H\langle\psi, a\rangle+\langle N, a\rangle\geq 0$

and so $\langle N, a\rangle\geq-H\tau$ on $\Sigma^{n}$ .

PROOF. As the mean curvature $H$ is constant, we have from (8) that

$\Delta(H\langle\psi, a\rangle+\langle N, a\rangle)=(|\sigma|^{2}-nH^{2})\langle N, a\rangle$ .
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But the Schwarz inequality implies that $|\sigma|^{2}-nH^{2}\geq 0$ , with equality at the umbilical
points, and our choice of orientation was $\langle N, a\rangle<0$ . Hence, the function $H\langle\psi, a\rangle+$

$\langle N, a\rangle$ is superharmonic on $\Sigma^{n}$ and so it attains its minimum at a boundary point, say
$q\in\partial\Sigma^{n}$ . Denote by $v$ the unit inner conormal field along $\partial\Sigma^{n}$ . Then

$0\leq H\langle v_{q}, a\rangle+\langle(dN)_{q}(v_{q}), a\rangle=\langle v_{q}, a\rangle(H+\langle(dN)_{q}(v_{q}), v_{q}\rangle)$ .

On the other hand, since $H>1$ we know from Proposition 3 and (4) that $\langle\psi, a\rangle\leq\tau$

on $\Sigma^{n}$ . Then, as we suppose that $\langle\psi, a\rangle=\tau$ along $\partial\Sigma^{n}$ , we have

$\langle v, a\rangle\leq 0$

along the boundary $\partial\Sigma^{n}$ . But, if the equality $\langle v, a\rangle=0$ was attained at some point of
$\partial\Sigma^{n}$ , we could use the boundary versions of the mean curvature comparison and the
tangency principle (Remarks 1 and 2) for $\psi(\Sigma^{n})$ and $L^{n}(\tau)$ to conclude that $H=1$ .
This is a contradiction. So we have

$\langle v, a\rangle<0$

along $\partial\Sigma^{n}$ . Now, if $n$ is any unit normal vector for the restriction $\psi_{|\partial\Sigma^{n}}$ and we had
$\langle N, n\rangle=0$ , then $n$ would be a non-null multiple of $v$ and so $\langle n, a\rangle\neq 0$ , which is not
possible because $\psi(\partial\Sigma^{n})\subset L^{n}(\tau)$ . So we can choose a unit normal field $n$ so that
$\langle N, n\rangle>0$ . Using again that $\langle v, a\rangle<0$ and the previous inequality we obtain

$H+\langle(dN)_{q}(v_{q}), v_{q}\rangle\leq 0$ .

Then, as $nH=-trace(dN)$ , we have

$(n-1)H\geq-\sum_{i=1}^{n-1}\langle(dN)_{q}(e_{i}), e_{i}\rangle$ ,

where $\{e_{1}, \ldots, e_{n-1}\}$ is an orthonormal basis of $T_{q}\partial\Sigma^{n}$ . Now, we may decompose the
second fundamental form $\sigma$ of the immersion $\psi$ at any point of $\partial\Sigma^{n}$ as the sum of the
second fundamental form $\sigma^{\partial}$ of $\psi_{|\partial\Sigma^{n}}$ : $\partial\Sigma^{n}\rightarrow L^{n}(\tau)$ and the second fundamental form
of the umbilical hypersurface $L^{n}(\tau)$ in de Sitter space. Thus

$-\langle(dN)_{q}(e_{i}), e_{i}\rangle=\langle\sigma_{q}(e_{i}, e_{i}), N(q)\rangle=\langle\sigma_{q}^{\partial}(e_{i}, e_{i}), N(q)\rangle-\frac{1}{\tau}\langle N(q), a\rangle$ .

Summing from $i=1$ to $i=n-1$ and using the inequality above, we have

$ H\geq H^{\partial}(q)\langle n(q), N(q)\rangle-\frac{1}{\tau}\langle N(q), a\rangle$ ,

where $H^{\partial}$ represents the mean curvature function of the immersion $\psi_{|\partial\Sigma^{n}}$ : $\partial\Sigma^{n}\rightarrow L^{n}(\tau)$

with respect to the chosen orientation $n$ . As we have that $H^{\partial}\langle n, N\rangle\geq 0$ , then

$H\langle\psi(q), a\rangle+\langle N(q), a\rangle=H\tau+\langle N(q), a\rangle\geq 0$ .

This finishes the proof because $q$ was the point of $\Sigma^{n}$ where the function
$ H\langle\psi, a\rangle+\langle N, a\rangle$ attained its minimum. $\square $
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REMARK 4. We are going to translate the statement of this Theorem 7 into the
language of the upper half-space model for $\mathscr{H}^{n+1}$ . In fact, let us call $\xi$ : $\Sigma^{n}\rightarrow R_{+}^{n+1}$ to
the immersion $\phi\circ\psi$ , where $\emptyset$ is the isometry between the two models for the steady
state space that we defined in (1). It is clear from the definition of $\emptyset$ that

$\langle\psi, a\rangle=\frac{1}{\xi_{n+1}}$ .

Moreover, if we denote by $a^{T}$ the field tangent to $S_{1}^{n+1}$ defined as the tangent part of the
null vector $a$ , we have

$\langle N, a\rangle(p)=\langle N(p), a_{\psi(p)}^{T}\rangle=\xi_{n+1}^{-2}\langle$ $(d\phi)_{\psi(p)}(N(p)),$ $(d\phi)_{\psi(p)}$ (a $(\psi(p)))\rangle$ ,

for all $p\in\Sigma^{n}$ . But $N^{\prime}(p)=\xi_{n+1}^{-1}(d\phi)_{\psi(p)}(N(p))$ is a vector normal to the immersion $\xi$

which is unit with respect to the Minkowski metric in $R_{1}^{n+1}$ and, from (2), it can be
shown that

$(d\phi)_{X}(a^{T}(x))=(0,1)=e_{n+1}$ for all $x\in S_{1}^{n+1}$ .

Then the last inequality of Theorem 7 above becomes

$H+\langle N^{\prime}, e_{n+1}\rangle=H-N_{n+1}^{\prime}\geq 0$ .

When the considered hypersurface is a graph, this Theorem 7 yields a sharp $C^{1}-$

estimate which will be important in the sequel to prove some existence results. In order
to write the corresponding statement we need the following definition: an embedded
closed hypersurface of a Euclidean space is said to be mean convex when its mean
curvature with respect to the interior normal field is non-negative.

COROLLARY 8. Let $\Omega$ be a compact domain in $R^{n}$ whose boundary $\partial\Omega$ is mean
convex. Suppose that $f$ is a smooth positive function defined on $\Omega$ whose graph is $a$

spacelike hypersu face in the steady state space $\mathscr{H}^{n+1}$ with constant mean curvature $H>1$

and boundary contained in some time slice (horizontal hyperplane). Then

$|\nabla f|^{2}\leq\frac{H^{2}-1}{H^{2}}<1$ .

PROOF. As in Remark 4 above, we will denote by $\xi=\phi\circ\psi$ : $\Omega\rightarrow R_{+}^{n+1}$ the
immersion

$\xi(x)=(x, f(x))$ $ x\in\Omega$ .

Let $n^{\prime}(x)=\xi_{n+1}^{-1}(d\phi)_{\psi(x)}(n(x)),$ $ x\in\partial\Omega$ , where $n$ is the unit field normal to $\psi_{|\partial\Omega}$ deter-
mined in Theorem 7, which will be a vector normal to the restricted immersion $\xi_{|\partial\Omega}$ .
We have

$0<\langle N, n\rangle(x)=\langle N^{\prime}, n^{\prime}\rangle(x)$

and hence the function $\langle N^{\prime}, n^{\prime}\rangle$ is also positive. But

$ 0=\langle n, a\rangle(x)=\xi_{n+1}^{-1}\langle n^{\prime}, e_{n+1}\rangle$

and so the $(n+1)$ -component of $n^{\prime}$ vanishes. Taking into account that, in our case,

$N^{\prime}=\frac{1}{\sqrt{1-|\nabla f|^{2}}}(\nabla f, 1)$
,
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we deduce that $\langle n_{H}^{\prime}, \nabla f\rangle>0$ along $\partial\Omega$ , where we have put $n^{\prime}=$
$(n_{H}^{\prime} , 0)$ . But Cor-

ollary 6 asserts that $f$ attains its minimum value at all the points of the boundary
$\partial\Omega$ . As a consequence the unit normal field $n_{H}^{\prime}$ is the inner unit normal field along
$\partial\Omega\subset R^{n}$ and so, from our assumptions, the mean curvature of $\psi$ associated to $n$ is non-
negative. Then we can apply Theorem 7 and Remark 4 to get

$H-N_{n+1}^{\prime}=H-\frac{1}{\sqrt{1-|\nabla f|^{2}}}\geq 0$

and the proof is completed. $\square $

7. Existence results.

In Sections 5 and 6 we have obtained a priori height and gradient estimates for
spacelike constant mean curvature graphs over compact domains in horizontal time
slices, whose boundary is mean convex. These results will allow us to use the standard
theory of existence for quasilinear elliptic equations. In fact, we want to solve the
following Dirichlet problem corresponding to the mean curvature equation (7):

(9) $\{$

$div(\frac{\nabla f}{\sqrt{1-|\nabla f|^{2}}})+\frac{n}{f}(H-\frac{1}{\sqrt{1-|\nabla f|^{2}}})=0$ and $|\nabla f|^{2}<1$ on int $\Omega$ ,

$f=t$ on $\partial\Omega$ ,

where $H\geq 1,$ $\Omega$ is a compact domain in $R^{n}$ with mean convex boundary and where $t$ is
a positive number. From Proposition 1 we deduce that to find a smooth solution to
(9) is equivalent to construct a spacelike graph over the domain $\Omega_{t}=\Omega\times\{t\}\subset L^{n}(t)$

in the steady state space $\mathscr{H}^{n+1}$ , with constant mean curvature $H$ and whose boundary
is $\partial\Omega_{t}$ .

Let us apply the continuity method in the following way. Define a set

$J_{t}=$ { $H\in[1$ $,$

$+\infty$ [ $|$ there exists an $H$-graph over $\Omega_{t}$ whose boundary is $\partial\Omega_{t}$ }.

We want to show that each $J_{t}$ is a non-empty, open and closed subset of [ $1,$ $+\infty$ [. We
shall do it in three steps:

1) $1\in J_{t}$ because the domain $\Omega_{t}$ , being a domain in the umbilical hypersurface
$L^{n}(t)$ , is a graph of constant mean curvature 1. Hence $ J_{t}\neq\emptyset$ for each $t>0$ .

2) Closedness of $J_{t}$ follows from Corollaries 6 and 8. In fact, let $\{H_{k}\}_{k\in N}$ be
a sequence in $J_{t}$ which converges to a number $H\geq 1$ and $\{f_{k}\}_{k\in N}$ the sequence of
corresponding solutions to (9). Corollary 6 gives us an uniform $C^{0}$ -bound for the $f_{k}$ .
Corollary 8 implies that

$|\nabla f_{k}|^{2}\leq\frac{H_{k}^{2}-1}{H_{k}^{2}}\leq\frac{M^{2}-1}{M^{2}}$ ,

where $M$ is any upper bound of the convergent sequence $\{H_{k}\}_{k\in N}$ . Thus, we have got
$C^{0}$ and $C^{1}$ bounds for the sequence of the $f_{k}$ . Then the properties of quasilinear
elliptic equations of divergence type and Schauder’s theory (see [GT]) provide us $C^{2,\alpha}$
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bounds for our sequence. Hence there is a subsequence of $\{f_{k}\}_{k\in N}$ converging to a
solution $f$ for the $H$-problem (9). Then $H\in J_{t}$ and $J_{t}$ is closed.

3) We shall see that $J_{t}$ is an open set by using the implicit function theorem.
Take $H_{0}\in J_{t}$ and let us see that the Dirichlet problem (9) can be solved for each $H$ in a
certain interval around $H_{0}$ . Denote by $\Sigma^{n}$ the graph associated to the solution $f$ for
$H_{0}$ and define a map

$h$ : $C_{0}^{2,\alpha}(\Sigma^{n})\rightarrow C_{0}^{\alpha}(\Sigma^{n})$

mapping each $u\in C_{0}^{2}$” $(\Sigma^{n})$ onto the mean curvature function of the normal graph on
$\Sigma^{n}$ corresponding to the function $u$ . The differential of this map $h$ at the point 0 is
the linear Jacobi operator $L$ of the hypersurface $\Sigma^{n}$ , that is,

$L=(dh)_{0}=\Delta-|\sigma|^{2}+n$ .

But this is a non-negative operator because, from the Schwarz inequality, we have
$|\sigma|^{2}\geq nH_{0}^{2}\geq n$ and we suppose that $H_{0}\geq 1$ . Hence, $L$ has a trivial kernel and it is a
Fredholm operator of index zero and so an isomorphism. Thus the implicit function
theorem assures that (9) can be solved for values of $H$ near $H_{0}$ .

As a consequence $J_{t}=[1,$ $+\infty$ [ for any $t>0$ and we have a solution to (9) for any
$H\geq 1$ and $t>0$ . Moreover these solutions are unique from Proposition 4. We gather
the results that we have just proved in the following theorem.

THEOREM 9. Let $\Omega$ be a compact domain in $R^{n}$ with mean convex boundary. There
exists a unique solution $f_{H,t}\in C^{\infty}(\Omega)$ to the Dirichlet problem (9) satisfying

$ t\leq f_{H,t}\leq t+diam\Omega$ , $|\nabla f_{H,t}|^{2}\leq\frac{H^{2}-1}{H^{2}}$

for each $H\geq 1$ and $t>0$ . In particular, given a compact domain $\Gamma$ on a time slice of the
steady state space $\mathscr{H}^{n+1}$ with mean convex boundary and a real number $H\geq 1$ , there
exists a spacelike graph over $\Gamma$ with constant mean curvature $H$ and boundary $\partial\Gamma$ .

The mere existence of these $H$-graphs, that is, the existence of the $f_{H}$ , $t$ , could have
been deduced from [Ge], Theorem 5.1, where Gerhardt got a priori estimates under very
much general conditions than ours. But, in our particular situation, we have obtained a
sharp upper bound for the length of the gradient $\nabla f_{H,t}$ which is independent of $t$ and
which will allow us to consider the limit situation when $t$ goes to zero.

LEMMA 10. Suppose that $\Omega\subset R^{n}$ is a compact domain with mean convex boundary
and fix a real number $H>1$ . For each point $ x\in$ int $\Omega$ there exists a positive constant
$C(x, H)$ depending only on $x$ and $H$ such that

$f_{H,t}(x)\geq C(x, H)>0$ for any $t>0$ ,

where $f_{H,t}$ is the solution to the Dirichlet problem (9) obtained in Theorem 9 above.

PROOF. In fact, take a point $x_{0}$ in the interior of the compact domain $\Omega$ and fix
$R>0$ so that the open ball $B_{R}(x_{0})$ with radius $R$ centered at $x_{0}$ is contained in $\Omega$ .
Then, if $H>1$ and $t>0$ , we can consider, as in the proof of Theorem 5 a two-sheeted
hyperboloid whose lower sheet $S$ intersects the horizontal hyperplane $x_{n+1}=t$ just in
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$\partial(B_{R}(x_{0})\times\{t\})$ and whose (constant) mean curvature is $H$ . Then $S$ has the same
constant mean curvature as the graph $G$ corresponding to the function $f_{H,t}$ and both
hypersurfaces have their respective boundaries contained in $L^{n}(t)$ . Moreover, since
$B_{R}(x_{0})\times\{t\}\subset\Omega\times\{t\}$ , we may apply the graph monotonocity proved in Proposition 4
and deduce that the sheet $S$ is under the graph $G$ . In particular the point $(x_{0}, f_{H,t}(x_{0}))$

of $G$ is higher than the highest point of $S$ . So, if we recall the computations in
Theorem 5, we have

$f_{H,t}(x_{0})\geq\frac{Ht+\sqrt{(H^{2}-1)R^{2}+t^{2}}}{H+1}$ .

Remark 3 assures that the fraction on the right side is increasing in the variable
$t>0$ . Thus

$f_{H,t}(x_{0})\geq\sqrt{\frac{H-1}{H+1}}R$

for each $t>0$ , as we had asserted. $\square $

Now, given a compact domain in $R^{n}$ with mean convex boundary and a number
$H>1$ , we choose a sequence $\{t_{k}\}k\in N$ of positive numbers with

$\lim_{k\rightarrow\infty}t_{k}=0$ .

Using Theorem 9 we have a solution $f_{k}=f_{H,t_{k}}$ to the corresponding Dirichlet problem
(9), for each $k\in N$ . This same Theorem 9 implies that

$ t_{k}\leq f_{k}\leq M+diam\Omega$ $|\nabla f_{k}|^{2}\leq\frac{H^{2}-1}{H^{2}}$ ,

where $M$ is any upper bound of the sequence $\{t_{k}\}k\in N$ . Then, using Schauder’s theory,
we have that there is a subsequence which converges to a smooth function $f$ defined on
$\Omega$ with

$ 0\leq f\leq M+diam\Omega$ $|\nabla f|^{2}\leq\frac{H^{2}-1}{H^{2}}$ .

Since $f_{k}=t_{k}$ on $\partial\Omega$ , one has $f=0$ along that boundary. From Lemma 10, it is clear
that $f$ must be positive on the interior of $\Omega$ . Now, taking limits in (9), we see that the
limit function $f$ is a positive solution of the Dirichlet problem (9) with zero boundary
condition. Hence we have the following result.

THEOREM 11. Consider a compact domain $\Omega\subset R^{n}$ with mean convex boundary and
a real number $H>1$ . There exists a positive solution to the Dirichlet problem

$\{$

$div(\frac{\nabla f}{\sqrt{1-|\nabla f|^{2}}})+\frac{n}{f}(H-\frac{1}{\sqrt{1-|\nabla f|^{2}}})=0$ on int $\Omega$ ,

$f=0$ on $\partial\Omega$ ,

which satisftes $|\nabla f|^{2}\leq(H^{2}-1)/H^{2}$ .
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As a consequence, we obtain an existence result for complete non-compact space-
like hypersurfaces in the de Sitter space with constant mean curvature $H>1$ and whose
asymptotic future boundary is a prescribed mean convex embedded hypersurface of the
future infinity $\ovalbox{\tt\small REJECT}^{+}$ of the open set $\mathscr{H}^{n+1}\subset S_{1}^{n+1}$ . We shall say that $\Gamma$ is the asymptotic
future boundary of a hypersurface $\Sigma^{n}$ of $\mathscr{H}^{n+1}$ when $\Gamma=\overline{\Sigma^{n}}\cap\ovalbox{\tt\small REJECT}^{+}$ and the closure is
taken in $R_{+}^{n+1}$ . We shall denote it by $\partial_{\infty}\Sigma^{n}$ . On the other hand, we shall say, fol-
lowing [NS], that $\Gamma$ is its asymptotic future homological boundary if, for each $t>0$

sufficiently small, $\Sigma^{n}\cap L^{n}(t)=\Gamma(t)$ , where

$\Gamma(t)\rightarrow\Gamma$ as $t\rightarrow O$ and $\Gamma(t)$ is null-homologous in $\Sigma^{n}$ .

COROLLARY 12. Let $\ovalbox{\tt\small REJECT}^{+}$ be the spacelike future infinity of the steady state space
$\mathscr{H}^{n+1},$ $\Omega\subset\ovalbox{\tt\small REJECT}^{+}$ a compact domain with mean convex boundary and a real number $H>1$ .
There exists a complete spacelike hypersu face $\Sigma^{n}$ embedded in $\mathscr{H}^{n+1}$ (in fact, a graph
over $\Omega$ ) with constant mean curvature $H$ and with $\partial_{\infty}\Sigma^{n}=\partial\Omega$ . Moreover, if $\Omega$ is star-
shaped (with respect to an interior point), then $\Sigma^{n}$ is the only one having constant mean
curvature $H$ and asymptotic future homological boundary $\partial\Omega$ .

PROOF. All our assertions are immediate consequences from Theorem 11 above
except the uniqueness and the fact that the hypersurface $\Sigma^{n}$ graph of the solution $f$ is
complete. With respect to the completeness, notice that $\Sigma^{n}$ is isometric to $\Omega$ endowed
with the metric $\psi^{*}g$ induced from the metric $g$ on $\mathscr{H}^{n+1}$ , defined in (3), through the
immersion given by $\psi(x)=(x, f(x))$ for each $ x\in\Omega$ . Then, using the gradient estimate
in Theorem 11 and the Schwarz inequality, one has

$(\psi^{*}g)_{X}=\frac{1}{f(x)^{2}}(|dx|^{2}-\langle(\nabla f)_{X}, dx\rangle^{2})\geq\frac{1}{H^{2}-1}\frac{\langle(\nabla f)_{X},dx\rangle^{2}}{f(x)^{2}}$ .

Finally, we obtain

$\psi^{*}g\geq\frac{1}{H^{2}-1}|d\log f|^{2}$ .

This inequality implies that the length of any curve in $\Sigma^{n}$ reaching its asymptotic future
boundary must be infinity because $f$ vanishes along $\partial\Sigma^{n}$ .

With respect to the uniqueness when $\Omega$ is star-shaped, let $M^{n}$ be another spacelike
hypersurface of $\mathscr{H}^{n+1}$ with the same constant mean curvature and such that $\partial\Omega$ is
its asymptotic homological future boundary. Represent by $x_{0}$ the point of int $\Omega$ with
respect to which $\Omega$ is star-shaped and consider the 1-parameter subgroup $\{h_{s}\}_{s\in R}$ of
isometries of $\mathscr{H}^{n+1}$ given by

$h_{s}(x, x_{n+1})=(e^{s}(x-x_{0}), e^{s}x_{n+1})$ .

For $s$ big enough, we have that $ h_{s}(\Sigma^{n})\cap M^{n}=\emptyset$ and that $h_{s}(\Sigma^{n})$ is over $M^{n}$ . So, if
we decrease $s$ until finding a first contact point, then, from the tangency principle, that
contact point must be on $\partial\Omega$ . Since we have $ h_{s}(\partial\Omega)\cap\partial\Omega=\emptyset$ if $s\neq 0$ because $\Omega$ is
star-shaped, that contact point must happen for $s=0$ . Thus $\Sigma^{n}$ is above $M^{n}$ .
Analogously, if we start with an $s$ small enough so that $ h_{s}(\Sigma^{n})\cap M^{n}=\emptyset$ and we
deduce that $\Sigma^{n}$ was below $M^{n}$ . Then $M^{n}=\Sigma^{n}$ . $[$
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8. Geometric properties and Gauss maps of the solutions.

We already pointed out in Section 6 that the Gauss map of a spacelike hypersurface
of the de Sitter space $S_{1}^{n+1}$ can be thought of as a map

$N$ : I $n\rightarrow H^{n+1}$

taking values in the hyperbolic space

$H^{n+1}=\{x\in R_{1}^{n+2}|\langle x, x\rangle=-1, \langle x, a\rangle<0\}$ ,

where $a$ is any non-zero null vector in $R_{1}^{n+2}$ , for example that one that we chose in
Section 2. When the hypersurface has constant mean curvature $H\geq 1$ we have certain
restrictions on the image of the Gauss map. In fact, the following result gives for the
de Sitter space a weaker analogue to a result already known when the ambient space is a
Minkowski space (see [A2], [P]).

PROPOSITION 13. Let $\Sigma^{n}$ be a complete spacelike hypersu face of the de Sitter space
$S_{1}^{n+1}$ with constant mean curvature $H\geq 1$ . Suppose that the image $N(\Sigma^{n})$ of the Gauss
map of $\Sigma^{n}$ is contained in the closure of the interior domain enclosed by a horosphere.
Then we have that $H=1$ . (When $n=2$ , this implies that $\Sigma^{2}$ is also an umbilical $su$ face
and the image of its Gauss map is exactly a horosphere.)

PROOF. All the horospheres of $H^{n+1}$ can be realized in the Minkowski model in
the following way

$\{x\in H^{n+1}|\langle x, c\rangle=\rho\}$ ,

where $c\in R_{1}^{n+2}$ is a non-zero null vector (which can be taken in the same half of the null
cone as $a$) and $\rho$ is a negative number. Then our hypothesis about the image of the
Gauss map $N$ can be expressed in this way

$ 0>\langle N(p), c\rangle\geq\rho$ $(p\in\Sigma^{n})$ ,

for a certain non-zero null vector $c$ and a negative number $\rho$ . Hence we have that the
infimum

$\inf_{p\in\Sigma^{n}}\langle N(p), c\rangle$

exists and is a negative number. On the other hand, from (8), we obtain

$\Delta\langle N, c\rangle=|\sigma|^{2}\langle N, c\rangle+nH\langle\psi, c\rangle$ ,

where $\psi$ is the position vector of the hypersurface. As $\psi+N$ is a null vector at each
point of $\Sigma^{n}$ and $\langle\psi+N, N\rangle=-1<0$ , we have that $\psi+N$ belongs to the same half of
the null cone as $N$ and, so, to the same one as $c$ . Then

$\langle\psi+N, c\rangle\leq 0$ on $\Sigma^{n}$ .

Thus, we have the inequality

$\Delta\langle N, c\rangle\leq nH(H- 1)\langle N, c\rangle$ .
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Now, we may apply the generalized maximum principle for complete Riemannian
manifolds due to Omori [Om] and Yau [Y] to the function $\langle N, c\rangle$ . In fact, the Ricci
tensor of $\Sigma^{n}$ is given by (see, for example, [Mo2])

(10) $Ric=(n-1)I-nHA+A^{2}$ ,

where $A$ is the Weingarten map of $\Sigma^{n}$ and, so, we have that $Ric\geq n-1-(n^{2}H^{2}/4)$ ,
that is, $Ric$ is bounded from below. Since the infimum of $\langle N, c\rangle$ was negative we
have that $H=1$ . In the case $n=2$ we can obtain the remaining assertions in [Ak]
or [R]. lm

Proposition 13 implies that $\overline{N(\Sigma^{n})}\subset H^{n+1}$ has more than one point at the infinity
of the hyperbolic space, for each hypersurface $\Sigma^{n}$ with constant mean curvature $H>1$

constructed in Corollary 12 above. In fact, we can determine what the asymptotic
behaviour of its Gauss map is.

Such $\Sigma^{n}$ was constructed as the graph

$\{(x,f(x))\in R_{1}^{n+1}=R^{n}\times R_{+}|x\in\Omega\}$

of a function $f\in C^{\infty}(\Omega)$ defined on a compact domain $\Omega\subset R^{n}$ with mean convex
boundary. We know that its Gauss map

$N$ : I $n\rightarrow H^{n+1}$

takes values in the hyperbolic space. The same map $\emptyset$ defined in (1) that we used to
identify the de Sitter and the upper half-space models for the steady state space $\mathscr{H}^{n+1}$

can be used again to identify the two usual models for hyperbolic space $H^{n+1}$ . In fact,
the map $\emptyset$ : $H^{n+1}\rightarrow R^{n+1}=R^{n}\times R$ given by

$\phi(x)=\frac{1}{\langle x,a\rangle}(x-\langle x, a\rangle b-\langle x, b\rangle a, 1)$

is an isometry from $H^{n+1}$ , viewed as a hyperquadric in the Minkowski space $R_{1}^{n+2}$ , to
the lower half-space $R_{-}^{n+1}=R^{n}\times R$-endowed with the Riemannian metric

$ds_{(x,x_{n+1})}^{2}=\frac{1}{x_{n+1}^{2}}(|dx|^{2}+(dx_{n+1})^{2})$ .

Now, we are going to look at the Gauss map $N$ of the hypersurface $\Sigma^{n}$ when we
use the (lower) half-space model for $H^{n+1}$ . That is, we want to know what the map
$\phi\circ N$ : I $n\rightarrow R_{-}^{n+1}$ looks like. To do that, notice that, if we represent by

$\psi$ : I $n\rightarrow \mathscr{H}^{n+1}$

the immersion

$\psi(x, f(x))=\phi^{-1}(x, f(x))\in \mathscr{H}^{n+1}\subset S_{1}^{n+1}$ $(x\in\Omega)$ ,

then we have that

$\frac{f(x)}{\sqrt{1-|(\nabla f)_{X}|^{2}}}((\nabla f)_{X}, 1)=(d\phi)_{\psi(p)}(N_{p})$
$(p=(x, f(x))x\in\Omega)$ .
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From (2), we deduce that

$-\frac{\langle N,a\rangle}{\langle\psi,a\rangle^{2}}(p)=\frac{f}{\sqrt{1-|\nabla f|^{2}}}(x)$
,

$N^{\prime}(p)=\frac{1}{\sqrt{1-|(\nabla f)_{X}|^{2}}}((\nabla f)_{X}-\frac{x}{f(x)})$
,

where $N^{\prime}=N-\langle N, a\rangle b-\langle N, b\rangle a$ . Hence, we obtain

$(\phi\circ N)(x,f(x))=(x-f(x)(\nabla f)_{X}, -f(x)\sqrt{1-|(\nabla f)_{X}|^{2}})$ ,

for each $ x\in\Omega$ . As a consequence, we can state the following result.

PROPOSITION 14. Let $\Sigma^{n}$ be one of the complete spacelike hypersurfaces of the
steady state space $\mathscr{H}^{n+1}$ constructed in Corollary 12, with constant mean curvature $H>1$

and whose prescribed asymptotic future boundary $\partial_{\infty}\Sigma^{n}=\partial\Omega$ is the boundary of $a$

compact domain $\Omega$ of $\ovalbox{\tt\small REJECT}^{+}$ with mean convex boundary. Then, the Gauss map $N$ :
$\Sigma^{n}\rightarrow H^{n+1}$ of $\Sigma^{n}$ extends smoothly to $\partial_{\infty}\Sigma^{n}$ as the identity map (if we consider the half-
space model for hyperbolic space). In particular, $ N(\partial_{\infty}\Sigma^{n})=\partial\Omega$ .

REMARK 5. Finally, we shall point out (without detailed proofs) that the geometry
of complete non-compact spacelike hypersurfaces $\Sigma^{n}$ of $S_{1}^{n+1}$ with constant mean cur-
vature is bounded. This fact was shown by Cheng and Yau [CY] and by Treibergs [Tr]
when the corresponding ambient space was a Minkowski space. In our case, a suitable
use of the formula for the Laplacian of the length of the second fundamental form of
the hypersurface, such as it was computed in [Mo2] or in any of the references therein,
and of the generalized maximum principle due to Omori and Yau ([Om], [Y]) leads to
prove that $|\sigma|^{2}$ is bounded from above and that $\Sigma^{n}$ has no umbilical points when $H>1$ ,
provided that it is not totally umbilical, and that the principal curvatures $k_{1},$

$\ldots,$
$k_{n}$ of

$\Sigma^{n}$ satisfy

$\frac{nH-\sqrt{n^{2}H^{2}-4(n-1)}}{2(n-1)}\leq k_{i}\leq\frac{nH+\sqrt{n^{2}H^{2}-4(n-1)}}{2}$

for $i=1,$
$\ldots,$

$n$ . These inequalities make sense because the mean curvature $H$ is bigger
than or equal to the value $2\sqrt{n-1}/n$ . If not, from (10), the Ricci curvature of the
hypersurface would be bounded from below by a positive constant. Then, using the
Bonnet-Myers theorem, the hypersurface would be compact and, in that case, we proved
in [Mol] that it would be umbilical. As a consequence, making use of (10), the Ricci
curvature of $\Sigma^{n}$ is bounded. Moreover, in the case $n=2$ , we have that the Gauss
curvature $K$ of $\Sigma^{2}$ satisfies

1 $-H^{2}\leq K\leq 0$ ,

the value $1-H^{2}$ being attained only when $\Sigma^{2}$ is umbilical and the value 0 only if $\Sigma^{2}$ is
a hyperbolic cylinder.

Of course, all these considerations are applicable to the hypersurfaces that we
constructed in Corollary 12 with $H>1$ and prescribed asymptotic future boundary $\partial\Omega$ .
They have no umbilical points when the domain $\Omega$ is not a disc. All their principal
curvature are positive and bounded and their Ricci curvatures are bounded. Thus, when
$n=2$ the $su$ faces that we have constructed have negative Gauss curvature. Notice that
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the corresponding conformal structure must be hyperbolic. In fact, if it was parabolic,
then, since

$\Delta\langle H\psi+N, a\rangle=$ $(|\sigma|^{2}-2H^{2})\langle N, a\rangle\leq 0$ ,

from (8), and the function $\langle H\psi+N, a\rangle$ is non-negative, from Theorem 7 we would
have that that function is constant and, so, $|\sigma|^{2}-2H^{2}=0$ and $\Sigma^{2}$ would be umbilical.
But, in that case, $\Sigma^{2}$ would be isometric to a hyperbolic plane, which is a contradiction.
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