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Abstract. In the local dynamics of Newton’s method of a holomorphic function of

two variables, a multiple root of rank 1 has a Cantor family of holomorphic superstable

manifolds which consists of quadratically convergent initial values.

1. Introduction.

The aim of this paper is to give a geometric description on the local convergence of

Newton’s method toward a multiple root, in the case of a holomorphic mapping of two

variables.

First recall that the local dynamics of Newton’s method is well known in the case

of one variable. If z ¼ z0 A C is a simple root of the function f ðzÞ ¼ a1ðz� z0Þþ

a2ðz� z0Þ
2 þ � � � ; then z0 is a superattracting fixed point of Newton’s method Nf ðzÞ

¼ z� f ðzÞ= f 0ðzÞ ¼ z0 þ a�1
1 a2ðz� z0Þ

2 þ � � � : If z0 is a multiple root of f ðzÞ ¼

aðz� z0Þ
m þ � � � ; mb 2, then it is an attracting fixed point of Nf ðzÞ ¼ z0 þ

ððm� 1Þ=mÞðz� z0Þ þ � � � :

Let F : C
2 ! C

2 be a holomorphic map. Newton’s method of F is the mapping

NF ðzÞ ¼ z� ðDF Þ�1
z FðzÞ where z ¼ ðx; yÞ A C

2. A multiple root of F is a point z0 such

that Fðz0Þ ¼ ð0; 0Þ and detðDF Þz0 ¼ 0. It can give rise to an indeterminate point. That

is, the intersection of the closures NF ðUnfz0gÞ, where U HC
2 runs through a neigh-

borhood base of z0, is not a single point. So no definition of the image NF ðz0Þ makes

the mapping NF continuous.

Suppose that the origin z0 ¼ ð0; 0Þ is a multiple root of F. Since F is a mapping

of two variables, rankðDF Þz0 is equal to 1 or 0. In this paper we consider the case

rankðDF Þz0 ¼ 1. As a general property of Newton’s method, it is easy to see that

NðL � FÞ ¼ NF if L : C
2 ! C

2 is a linear automorphism, and NðF � AÞ ¼ A�1 �NF � A

if A : C
2 ! C

2 is an a‰ne automorphism. This implies that we can give linear coor-

dinate changes in the domain of definition C
2 as well as in the range C

2. So we may

suppose that

ðDF Þz0 ¼
1 0

0 0

� �

without loss of generality. Denote by FðzÞ ¼ ðxþ � � � ; pðx; yÞ þ � � �Þ where pðx; yÞ is a
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homogeneous polynomial of degree b2. In this paper we consider the simplest case of

a multiple root, so suppose that pðx; yÞ is a quadratic homogeneous polynomial with no

multiple factor, and that pðx; yÞ is not divisible by x. By linear coordinate changes we

may suppose that pðx; yÞ ¼ y2 � x2, and F is written by

FðzÞ ¼ ðxþ a2x
2 þ a1xyþ a0y

2 þOðkzk3Þ; y2 � x2 þOðkzk3ÞÞ ð1Þ

as z ¼ ðx; yÞ ! ð0; 0Þ, where kzk ¼ maxðjxj; jyjÞ is the box norm. Suppose furthermore

that
a2 þ a0 0Ga1; ð2Þ

which gives a transversality condition that will be used later.

The main result of this paper is the following. There exists a neighborhood U C z0
that is divided into three subsets

Unfz0g ¼ AUBUC ð3Þ

where
. A is called an attracting set. NF ðAÞHA. For each z A A, we have xn=yn ! 0

and ynþ1=yn ! 1=2 as n ! y, where ðNF ÞnðzÞ ¼ ðxn; ynÞ.
. B is called a bursting set. B ¼ 6y

n¼0
Bn where B0 ¼ UnNF�1ðUÞ, and Bnþ1 ¼

U VNF�1ðBnÞ, nb 0. Each Bn consists of 2n components and the image

NF nþ1ðBnÞ is unbounded.
. C is called a chaotic set, or a Cantor family of holomorphic superstable

manifolds. There exist constants 0 < c 01 < c 02 such that c 01kzk
2
a kNF ðzÞka

c 02kzk
2 for each z A C.

By definition, the local stable set W s
locðz0Þ of z0 is the set of points z A U such that

NF nðz0Þ stays in U for any nb 0, and NF nðzÞ ! z0 as n ! y. In our case the local

stable set of the multiple root W s
locðz0Þ is equal to AUC.

Under an appropriate local coordinate change, we find a blow-up operation that is

defined on a pair of polydiscs and is mapped to an unbounded region transversing the

polydiscs. First in Section 2 we study such a dynamics, which is called a ‘kebab’ (or

‘dango’) operation that was first given in [4]. Later in Section 3 we give the decom-

position (3).

By the C r center manifold theorem (see [3]), we see that there exists a C r invariant

manifold of z0 in the subset A, but its analyticity is not known. In section 4 we

consider this problem in a general situation.

A global approach to Newton’s method of several variables is given by [1], which

also includes many references.

Acknowledgements. The author would like to express his gratitude to Toshikazu

Ito, Hiroshi Kokubu, Shigehiro Ushiki, Izumi Takeuchi, and Takeo Ohsawa for their

helpful comments. The comments of the refree helped to refine the paper and to correct

some errors in proofs.

2. Cantor family of superstable manifolds in the kebab operation.

Here we give a model of a local dynamics that gives a Cantor family of holomor-

phic superstable manifolds for a pair of indeterminate points. Let i; j ¼ 1; 2 through-

out this section.
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Let pðu; vÞ ¼ ðu; uvÞ and sqðu; vÞ ¼ ðu2; vÞ be mappings of C
2. Let V0 be a neigh-

borhood of the origin in C
2, and let V ¼ p�1ðV0Þ. Consider two points qi ¼ ð0; aiÞ and

their neighborhoods Vi C qi. Let gi : V0 ! Vi , with gið0; 0Þ ¼ qi, be a biholomorphic

map giðu; vÞ ¼ Siðu; vÞ þ � � � where Siðu; vÞ ¼ ðaiuþ biv; ai þ ciuþ divÞ is the linear part.

Suppose that

jai þ biajj0 0; i; j ¼ 1; 2: ð4Þ

We consider the local dynamics

f : V1 UV2 ! V ð5Þ

defined by

f jVi ¼ sq � p�1 � g�1
i : Vi ! V :

It has two indeterminate points qi, i ¼ 1; 2, since the origin is an indeterminate point of

p�1. Denote by fi ¼ f jVi . The mapping f has two inverse branches

f �1
i ¼ gi � p � sq�1

: V ! Vi

which are contracting in the vertical v-direction by the contribution of the blow-down

map p, and expanding in the horizontal u-direction by sq�1. (In [4], we have studied

the dynamics like p�1 � g�1
i : Vi ! V without sq.)

Let r; r0; r > 0 be small and M > 0 large. Let B0 ¼ Dð0; rÞ �Dð0; r0ÞHDð0; ffiffiffi

r
p Þ�

Dð0; r0ÞHV0 be closed polydiscs centered at the origin. Let Bi ¼ Dð0; rÞ �Dðai; rÞHVi .

Let Li ¼ LipMðDð0; rÞ;Dðai; rÞÞ be the set of Lipschitz functions of Dð0; rÞ to Dðai; rÞ
with Lipschitz constantaM. Let H i HLi be the set of ti A Li such that the restriction

to the open disk tijDð0;rÞ is holomorphic. Let Sð2Þ ¼ f1; 2gN C w ¼ w0w1 � � � be a Cantor

set. Let s : Sð2Þ ! Sð2Þ, sðw0w1w2 � � �Þ ¼ w1w2 � � � , be the shift operator.

For each tj A Lj, denote by t�j : Dð0; ffiffiffi

r
p Þ ! Dð0; ffiffiffi

r
p Þ �Dðaj; rÞ the mapping such

that imageðt�j Þ ¼ sq�1ðgraph tjÞ. It is defined by t�j ðuÞ ¼ ðu; tjðu2ÞÞ. Let p1ðu; vÞ ¼ u,

p2ðu; vÞ ¼ v be the projections. We are going to define the graph transform

Ggi : L1 UL2 ! L1 UL2

by

GgiðtjÞ ¼ p2gipt
�
j ½ p1gipt�j �

�1j
Dð0;rÞ;

so that

f ðgraphðGgiðtjÞÞÞH graph tj; ð6Þ

graphðGgiðtjÞÞ ¼ Bi V f �1ðgraph tjÞ; ð7Þ

and GgiðL1 UL2ÞHLi hold.

In order to show that Ggi is well defined, let l :¼ Lipðgi � SiÞ be the Lipschitz

constant as a mapping of Dð0; ffiffiffi

r
p Þ �Dð0; r0Þ. Note that l ! 0 as r; r0 ! 0. Let

b ¼ maxðjb1j; jb2j; jd1j; jd2jÞ. Choose small r; r0; r > 0 and d > 0 appropriately so that

ffiffiffi

r
p ðjaij þ rÞa r0 ð8Þ
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and

lmaxð1; jajj þ rþ 2rMÞ þ bðrþ 2rMÞ < d < jai þ biajj �
ffiffiffi

r
p

: ð9Þ

Lemma 1. For each tj A Lj, GgiðtjÞ ¼ p2gipt
�
j ½ p1gipt�j �

�1j
Dð0;rÞ is well defined as

a mapping of Dð0; rÞ to C . That is, p1gipt
�
j : Dð0; ffiffiffi

r
p Þ ! C is an injective map that

overflows Dð0; rÞ, i.e., p1gipt
�
j ðDð0; ffiffiffi

r
p ÞÞIDð0; rÞ.

Proof. By (8) we see that pðDð0; ffiffiffi

r
p Þ �Dða; rÞÞHDð0; ffiffiffi

r
p Þ �Dð0; r0ÞHV0 and

the mapping gipt
�
j of Dð0; ffiffiffi

r
p Þ is well defined.

Let tj0 A Lj be the constant function tj0ðuÞ1 aj. Compare p1gipt
�
j with the linear

mapping p1Sipt
�
j0ðuÞ ¼ ðai þ biajÞu as follows.

Lipðp1gipt�j � p1Sipt
�
j0Þ

aLipðp1gipt�j � p1Sipt
�
j Þ þ Lipðp1Sipt

�
j � p1Sipt

�
j0Þ

aLipðp1ÞLipðgi � SiÞLipðpt�j Þ þ Lipðp1Sipt
�
j � p1Sipt

�
j0Þ:

The second term is the Lipschitz constant of the mapping u 7! ðaiuþ biutjðu2ÞÞ�
ðaiuþ biuajÞ ¼ biuðtjðu2Þ � ajÞ, u A Dð0; ffiffiffi

r
p Þ. So

Lipðp1Sipt
�
j � p1Sipt

�
j0Þ

a jbijLipðuÞ supjtjðu2Þ � ajj þ jbij supjujLipðtjðu2Þ � ajÞ

a brþ b
ffiffiffi

r
p � 2 ffiffiffi

r
p

M ¼ bðrþ 2rMÞ:

By pt�j ðuÞ ¼ ðu; utjðu2ÞÞ ¼ ðu; ajuþ uðtjðu2Þ � ajÞÞ, we have

Lipðpt�j Þamaxð1; jajj þ rþ 2rMÞ:

Hence

Lipðp1gipt�j � p1Sipt
�
j0Þa lmaxð1; jajj þ rþ 2rMÞ þ bðrþ 2rMÞ

< d:

Since jp1gipt�j ðuÞ � p1gipt
�
j ðu 0Þ � p1Sipt

�
j ðu� u 0Þja dju� u 0j, we have

jai þ biajj � da
jp1gipt�j ðuÞ � p1gipt

�
j ðu 0Þj

ju� u 0j a jai þ biaj j þ d: ð10Þ

By the Lipschitz Inverse Function Theorem (Appendix I of [3]), the mapping p1gipt
�
j is

a homeomorphism of Dð0; ffiffiffi

r
p Þ onto its image, with Lipschitz inverse

Lipð½p1gipt�j �
�1Þa ðjai þ biajj � dÞ�1

;

and the image of p1gipt
�
j contains Dð0; ffiffiffi

r
p ðjai þ biajj � dÞÞIDð0; rÞ. r

Next suppose furthermore that M > 0 is so large that

M > jai þ biaj j�1jci þ diaj j
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and d; r > 0 are so small that

jci þ diajj þ d

jai þ biajj � d
aM and rMa r: ð11Þ

Lemma 2. The graph transform Ggi : L1 UL2 ! Li HL1 UL2 is well-defined. That

is, LipðGgiðtjÞÞaM and imageðGgiðtjÞÞHDðai; rÞ.

Proof. Compare GgiðtjÞ with the linear function

GSi
ðtj0Þ ¼ p2Sipt

�
j0½ p1Sipt

�
j0�

�1
: u 7! aj þ

ci þ diaj

ai þ biaj
u

as follows.

LipðGgiðtjÞÞaLipðGSi
ðtj0ÞÞ þ LipðGgiðtjÞ � GSi

ðtj0ÞÞ

aLipðGSi
ðtj0ÞÞ þ Lipðp2gipt

�
j � p2Sipt

�
j0ÞLipð½p1gipt

�
j �

�1Þ

þ Lipðp2Sipt
�
j0ÞLipð½ p1gipt

�
j �

�1 � ½ p1Sipt
�
j0�

�1Þ

a
ci þ diaj

ai þ biaj

�

�

�

�

�

�

�

�

þ d � ðjai þ biajj � dÞ�1

þ jci þ diajjLipð½ p1gipt
�
j �

�1 � ½ p1Sipt
�
j0�

�1Þ

and

Lipð½ p1gipt
�
j �

�1 � ½ p1Sipt
�
j0�

�1Þ

aLipð½p1gipt
�
j �

�1ÞLipðp1gipt
�
j � p1Sipt

�
j0ÞLipð½ p1Sipt

�
j0�

�1Þ

a ðjai þ biajj � dÞ�1 � d � jai þ biaj j
�1
:

Thus

LipðGgiðtjÞÞa
jci þ diajj þ d

jai þ biajj � d
aM:

Since GgiðtjÞð0Þ ¼ ai and rMa r, we have GgiðtjÞðDð0; rÞÞHDðai; rÞ. r

Note that the restriction to the set of holomorphic functions Ggi : H1 UH2 !

H i HH1 UH2 is also well defined because gi is holomorphic.

By the definition of Ggi , it is clear that (6) and (7) hold. This implies that Ggi
is ‘injective’ as an operation of germs of functions. That is, if GgiðtjÞ ¼ Ggiðt

0
j Þ for

tj ; t
0
j A Lj, there exists a small neighborhood 0 A U 0 HDð0; rÞ such that the restrictions

to U 0 coincide: tjjU 0 ¼ t 0j jU 0 . Hence the restriction to the set of holomorphic functions

Ggi jH1UH2
is injective.

Note also that

ðB1 UB2ÞV f �1ðB1 UB2Þ ¼ 6
2

i; j¼1

ð fijBi
Þ�1ðBjÞ
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where ð fijBi
Þ�1ðBjÞ ¼ Bi V f �1

i ðBjÞ, and furthermore that

7
n

k¼0

f �kðB1 UB2Þ ¼ 6
2

w0;...;wn¼1

ð fw0
j
Bw0

Þ�1 � � � ð fwn�1
j
Bwn�1

Þ�1ðBwn
Þ:

For each w0; . . . ;wn�1 A f1; 2g, there exist open subsets V1;V2 of Bw0
V fu0 0g such that

ð fw0
j
Bw0

Þ�1 � � � ð fwn�1
j
Bwn�1

Þ�1ðBiÞnfqw0
gHVi ; i ¼ 1; 2; ð12Þ

and V1 VV2 ¼ q, since the blow-down operations f �1
i are homeomorphisms when

restricted to the outside of the v-axis. This implies that

graphðGw0���wn�1
ðt1ÞÞV graphðGw0���wn�1

ðt2ÞÞ ¼ fqw0
g ð13Þ

where Gw0���wn�1
:¼ Ggw0 � � � � � Ggwn�1

since

graphðGw0���wn�1
ðtiÞÞH f �1

w0
� � � f �1

wn
ðBiÞ; ti A Li:

As the limit n ! y, we are going to show that for each w ¼ w0w1 � � � A Sð2Þ, there
exists a unique function sðwÞ A Hw0

HLw0
such that

7
y

n¼1

ð fw0
j
Bw0

Þ�1 � � � ð fwn�1
j
Bwn�1

Þ�1ðBwn
Þ ¼ graphðsðwÞÞHBw0

ð14Þ

is the graph of sðwÞ. Here we suppose r > 0 is small enough that

l :¼ ðlþ bÞ ffiffiffi

r
p ð1þMÞ < 1: ð15Þ

Lemma 3. The graph transform Ggi : L1 UL2 ! Li is a contraction with respect to

the sup norm k � k of a function on Dð0; rÞ. That is,

kGgiðt 0j Þ � GgiðtjÞka lkt 0j � tjk; tj; t
0
j A Lj: ð16Þ

Proof. Let ðu; vÞ A Dð0; ffiffiffi

r
p Þ �Dðaj; rÞ. Since

p2gipðu; tjðu2ÞÞ ¼ GgiðtjÞðp1gipðu; tjðu2ÞÞÞ

we have

jp2gipðu; vÞ � GgiðtjÞðp1gipðu; vÞÞj

a jp2gipðu; vÞ � p2gipðu; tjðu2ÞÞj

þ LipðGgiðtjÞÞjp1gipðu; tjðu2ÞÞ � p1gipðu; vÞj
where

jpkgipðu; vÞ � pkgipðu; tjðu2ÞÞj

aLipðpkÞLipðgi � SiÞjpðu; vÞ � pðu; tjðu2ÞÞj

þ jpkSipðu; vÞ � pkSipðu; tjðu2ÞÞj

a ljuðv� tjðu2ÞÞj þ bjuðv� tjðu2ÞÞj

a ðlþ bÞ ffiffiffi

r
p jv� tjðu2Þj; k ¼ 1; 2:
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Thus

jp2gipðu; vÞ � GgiðtjÞðp1gipðu; vÞÞja ljv� tjðu
2Þj: ð17Þ

Given t 0, let v ¼ t 0j ðu
2Þ and u 0 ¼ p1gipðu; t

0
j ðu

2ÞÞ to obtain

jGgiðt
0
j Þðu

0Þ � GgiðtjÞðu
0Þja ljt 0j ðu

2Þ � tjðu
2Þj:

If u2 runs through in Dð0; rÞ, u 0 runs through in a region that contains Dð0; rÞ. By

taking the supremum over Dð0; rÞ, we obtain the lemma. r

So far we have constructed two contraction mappings Ggi : L1 UL2 ! Li HL1 UL2,

i ¼ 1; 2. Note that the restriction to the set of holomorphic functions Ggi jH1UH2
:

H1 UH2 ! H i HH1 UH2 is also a contraction. For each w ¼ w0w1 � � � A Sð2Þ, con-

sider the sequence of the mappings Gw0
;Gw0w1

; . . . ;Gw0���wn�1
; . . . where Gw0���wn�1

:¼

Ggw0 � � �Ggwn�1
. By the contraction mapping principle there exists a unique sðwÞ A L1 UL2

such that

fsðwÞg ¼ 7
y

n¼1

Gw0���wn�1
ðLwn

Þ: ð18Þ

Since H1 UH2 is a closed subset of L1 UL2, we have sðwÞ A H1 UH2. Note also that

sðwÞ ¼ Ggw0 7
y

n¼2

Gw1���wn�1
ðLwn

Þ

 !

¼ Ggw0 ðsðsðwÞÞÞ: ð19Þ

Repeated application of (19) implies that

sðwÞ ¼ Gw0���wn�1
ðsðsnðwÞÞÞ; n > 0: ð20Þ

Here let us show (14). By (17), we have

jp2 f
�1
i ðu 0

; vÞ � GgiðtjÞðp1 f
�1
i ðu 0

; vÞÞja ljv� tjðu
0Þj ð21Þ

for any ðu 0; vÞ A Dð0; rÞ �Dðaj; rÞ and any tj A Lj, where u ¼ sq�1ðu 0Þ is in any fixed

branch. Given w ¼ w0w1 � � � A Sð2Þ, we apply (21) repeatedly to see that

jp2 f
�1
w0

� � � f �1
wn�1

ðu 0
; vÞ � Gw0���wn�1

ðtjÞðp1 f
�1
w0

� � � f �1
wn�1

ðu 0
; vÞÞj

a lnjv� tjðu
0Þj ð22Þ

for n > 0, whenever p1 f
�1
w0

� � � f �1
wn�1

ðu 0; vÞ A Dð0; rÞ. Now let us consider a point

ðu 00; v 00Þ A 7y

n¼1
f �1
w0

� � � f �1
wn�1

ðBwn
Þ. Let ðu 00; v 00Þ ¼ f �1

w0
� � � f �1

wn�1
ðu 0; vÞ in (22) and apply (20)

to see that

jv 00 � sðwÞðu 00Þja 2rln
:

Taking n ! y, we have ðu 00; v 00Þ A graphðsðwÞÞ because 0 < l < 1. The other inclusion

7y

n¼1
f �1
w0

� � � f �1
wn�1

ðBwn
ÞI graphðsðwÞÞ is obvious from (18), so (14) is proved.

As a consequence we have the following theorem.
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Theorem 4. Consider the dynamics (5) and suppose that jai þ biajj0 0, i; j ¼ 1; 2.

There exist r; r0; r > 0, M > 0, and an embedding (homeomorphism onto its image)

s : Sð2Þ ! H1 UH2 such that the followings hold.

1. For w;w 0 A Sð2Þ with w0w 0, we have

graphðsðwÞÞV graphðsðw 0ÞÞ ¼
fqw0

g if w0 ¼ w 0
0

q if w0 0w 0
0:

�

ð23Þ

The shift operator s acts on s, the Cantor family of curves. That is,

sðwÞ ¼ Ggw0 ðsðsðwÞÞÞ ð24Þ

and

graphðsðwÞÞ ¼ Bw0
V f �1ðgraphðsðsðwÞÞÞÞ ð25Þ

for each w A Sð2Þ.

2. The graph GðsÞ :¼ 6
w ASð2Þ graphðsðwÞÞ is the maximal local invariant set in

B1 UB2, that is

GðsÞ ¼ 7
y

n¼0

f �nðB1 UB2Þ: ð26Þ

3. The local stable set of fq1; q2g, written by W s
locðfq1; q2gÞ, is equal to GðsÞ. That

is, f nðzÞ ! fq1; q2g as n ! y for each z A GðsÞnfq1; q2g.

4. The local superstable set of fq1; q2g is GðsÞ. That is, there exist constants

0 < c 01 < c 02 such that

c 01juj
2
a jp1 f ðu; vÞja c 02juj

2
; ðu; vÞ A GðsÞnfq1; q2g: ð27Þ

Proof. Choose small r; r0; r > 0 and a large M > 0 such that (8), (9), (11) and (15)

hold. The mapping s : Sð2Þ ! H1 UH2 is well defined by (18), and is injective because

Ggi jH1UH2
is injective.

Suppose that w ¼ w0w1 � � � and w 0 ¼ w 0
0w

0
1 � � � A Sð2Þ are w0w 0. There exists

nb 0 such that w0 ¼ w 0
0; . . . ;wn�1 ¼ w 0

n�1 and wn 0w 0
n. From (16) and (20) we see that

ksðwÞ � sðw 0Þk ¼ kGw0���wn�1
ðsðsnðwÞÞÞ � Gw0���wn�1

ðsðsnðw 0ÞÞÞk

a lnksðsnðwÞÞ � sðsnðw 0ÞÞk

a 2rln

which implies that s is continuous since l < 1. By (12) we see that s is a homeo-

morphism. By (13) and (20), we have (23).

We have already seen (24) and (25) in (19) and (7).

Let ðu; vÞ A 7y

n¼0
f �nðB1 UB2Þ. For each nb 0 there exists wn A f1; 2g such that

f nðu; vÞ A Bwn
. Thus ðu; vÞ A 7y

n¼1
f �1
w0

� � � f �1
wn�1

ðBwn
Þ ¼ graphðsðwÞÞ by (14), where w :¼

w0w1 � � � : It is obvious that graphðsðwÞÞH7y

n¼0
f �nðB1 UB2Þ and we have (26).

Let c 01 ¼ ðjai þ biajj þ dÞ�1 and c 02 ¼ ðjai þ biajj � dÞ�1. By (10), we have (27) for

ðu; vÞ A GðsÞnfq1; q2g. This also implies that f nðu; vÞ ! fq1; q2g as n ! y, since

jv� aijaMjuj. r
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The graph transform Ggi determines the power series expansions of holomorphic

functions sðwÞ inductively as follows.

Proposition 5. Let w 0 ¼ w 0
0w

0
1 � � � ; w 00 ¼ w 00

0w
00
1 � � � A Sð2Þ. Let sðw 0ÞðuÞ ¼

Py

k¼0 a
0
ku

k, sðw 00ÞðuÞ ¼
Py

k¼0 a
00
ku

k be power series expansions. If w 0
k ¼ w 00

k for k ¼

0; . . . ; n, then we have a 0
k ¼ a 00

k for k ¼ 0; . . . ; 2n � 1.

Proof. Induction on nb 0. It is easy to see that the case n ¼ 0 holds. Suppose

that the case n holds, and let w 0 ¼ w 0
0w

0
1 � � � ; w 00 ¼ w 00

0w
00
1 � � � A Sð2Þ with w 0

k ¼ w 00
k for

k ¼ 0; . . . ; nþ 1. We are going to show that a 0
k ¼ a 00

k for k ¼ 0; . . . ; 2nþ1 � 1.

Let sðsðw 0ÞÞðuÞ ¼
Py

k¼0 b
0
ku

k. By the induction hypothesis, b 0
k coincides with

the coe‰cient of uk in the power series expansion of sðsðw 00ÞÞðuÞ for k ¼ 0; . . . ;N

where N ¼ 2n � 1. The power series expansion of pðu; sðw 0Þðu2ÞÞ is ðu; b 0
0uþ b 0

1u
3

þ � � � þ b 0
Nu

2Nþ1 þ � � �Þ. Thus gipðu; sðw
0Þðu2ÞÞ ¼ ðaiu þ biðsðw

0Þðu2ÞÞ þ � � � ; ai þ ciu þ

diðsðw
0Þðu2ÞÞ þ � � �Þ and gipðu; sðw

00Þðu2ÞÞ have the same power series expansion with

respect to the variable u up to higher order terms of degree >2N þ 1. This implies

that the coe‰cients a 0
k of the expansion of sðw 0Þ ¼ Ggw 0

0

ðsðsðw 0ÞÞÞ coincides with a 00
k of

sðw 00Þ ¼ Ggw 0
0

ðsðsðw 00ÞÞÞ for k ¼ 0; . . . ; 2N þ 1 where 2N þ 1 ¼ 2nþ1 � 1. r

3. Local dynamics of Newton’s method around a multiple root.

If F is defined as in (1), Newton’s method of F is written by

NF ðzÞ ¼
h1ðzÞ

2yþ h0ðzÞ
;
y2 � x2 þ h2ðzÞ

2yþ h0ðzÞ

� �

where jh0j < ckzk2, jh1j < ckzk3, and jh2j < ckzk3 in a neighborhood of the origin

z ¼ ð0; 0Þ A C
2 for some constant c > 0.

Suppose that a small e > 0 is fixed. Let

A0 ¼ fðx; yÞ A C
2
�

� jxj < ejyjg;

B 0
0 ¼ fðx; yÞ A C

2
�

� jyj < ejxjg; and

C0 ¼ Cþ
0 UC�

0

¼ fðx; yÞ A C
2
�

� jy� xj < ejxjgU fðx; yÞ A C
2
�

� jyþ xj < ejxjg:

Let A ¼6y

n¼0
An where Anþ1 ¼ U VNF�1ðAnÞ, nb 0; B ¼6y

n¼0
Bn where B0 ¼

UnNF�1ðUÞ and Bnþ1 ¼ U VNF�1ðBnÞ, nb 0; C ¼7y

n¼0
Cn where Cnþ1 ¼ U V

NF�1ðCnÞ, nb 0.

Let d; r > 0 are small. Let

U ¼ fðx; yÞ A C
2
�

� jxj < dr; jyj < rg

and

B 00
0 ¼ fðx; yÞ A U

�

� j2yþ c20x
2j < ejxj2g

where c20 is the coe‰cient of x2 in h0. Suppose that r is small enough that

jy2 þ h2j < ð1=2Þjxj2 and j�c20x
2 þ h0j < ejxj2 in B 00

0 .
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Lemma 6. B 00
0 HB0 HB 0

0.

Proof. Suppose that d; r > 0 are su‰ciently small. If ðx; yÞ A UnB 0
0 we have

jyjb emaxðjxj; jyjÞ ¼ ekzk and

jp1NF ðx; yÞj ¼
h1

2yþ h0

�

�

�

�

�

�

�

�

<
ckzk

2e� ckzk
kzk <

cr

2e� cr
r < dr;

jp2NF ðx; yÞj ¼
y2 � x2 þ h2

2yþ h0

�

�

�

�

�

�

�

�

<
jyj2 þ jxj2 þ ckzk3

2jyj � ckzk2
: ð28Þ

Denote by m ¼ jy=xj. In the case that ejxja jyja jxj ¼ kzk, we have eama 1 and

ð28Þ ¼
m2 þ 1þ cjxj

2m� cjxj
jxja

m2 þ 1þ cdr

2m� cdr
dra

e2 þ 1þ cdr

2e� cdr
dr < r:

If djyja jxja jyj ¼ kzk, we have 1ama d�1, jyj ¼ mjxjamdra r, and

ð28Þ ¼
1þm�2 þ cjyj

2� cjyj
jyja

1þm�2 þ cr

2� cr
mdra

ðmþm�1Þdþ cr

2� cr
r < r:

If jxja djyja jyj ¼ kzk,

ð28Þa
1þ d2 þ cjyj

2� cjyj
jyja

1þ d2 þ cr

2� cr
r < r:

Thus NF ðx; yÞ A U . For ðx; yÞ A B 00
0 , we have

jp2NF ðx; yÞj >
jxj2 � ð1=2Þjxj2

ejxj2 þ ejxj2
b r

and NF ðx; yÞ B U . r

The image NF ðB 00
0 ÞHNF ðB0Þ is unbounded since the locus of the denominator of

NF , 2yþ h0ðx; yÞ ¼ 0, is a local curve that lies in B 00
0 .

Under the coordinate systems ðx; hÞ ¼ ðx; y=x2Þ and

ðX;HÞ ¼
p1NF ðx; yÞ

p2NF ðx; yÞ
;

1

p2NF ðx; yÞ

� �

;

the point on the h-axis ðx; hÞ ¼ ð0; hÞ is mapped to ðX;HÞ ¼ ð0;�2h� c20Þ. It is a local

di¤eomorphism around each ðx; hÞ ¼ ð0; hÞ if a1 0 0.

Lemma 7. If ðx; yÞ B C0, then jy2 � x2jb ðe=ð1þ eÞÞkzk2.

Proof. Let z ¼ y=x. By the minimum modulus principle,

min
ðx;yÞ BC0

jz2 � 1j ¼ min
z¼G1þee iy

jz2 � 1j

where jz2 � 1j ¼ j2ee iy þ e2e2iyj ¼ ej2þ ee iyjb e. Thus jy2 � x2jb ejxj2, and ejxj2b

ðe=ð1þ eÞÞmaxðjxj2; jyj2Þ if jyj2a ð1þ eÞjxj2. If jyj2b ð1þ eÞjxj2, jy2 � x2jb jyj2 �

jxj2b ð1� 1=ð1þ eÞÞjyj2 ¼ ðe=ð1þ eÞÞkzk2. r
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Lemma 8. NF ðUnC0ÞHA0.

Proof. If ðx; yÞ A UnC0,

p1NF ðx; yÞ

p2NF ðx; yÞ

�

�

�

�

�

�

�

�

¼
h1

y2 � x2 þ h2

�

�

�

�

�

�

�

�

a
cr

ðe=ð1þ eÞÞ � cr
< e

since r > 0 is small. r

The lemma above implies that Bn HC0 for n � 1, A0 HA1 H � � � is an increasing

sequence of sets, and that C0 IC1 I � � � is a decreasing sequence. It is also clear that

Bn, nb 0, are pairwise disjoint and the decomposition (3) holds.

To describe the structure of the set C, let us choose the coordinate system ðu; vÞ ¼

fðx; yÞ :¼ ðx; y=xÞ. Let V0;V1 and V2 be neighborhoods of the origin ðu; vÞ ¼ ð0; 0Þ,

ðu; vÞ ¼ q1 ¼ ð0; 1Þ and q2 ¼ ð0;�1Þ respectively. Let V ¼ p�1ðV0Þ be a neighborhood

of the v-axis u ¼ 0. By the assumption (2), there exist local di¤eomorphisms

gi : V0 ! Vi , i ¼ 1; 2, such that ðf �NF � f�1ÞjVi ¼ sq � p�1 � g�1
i , gið0; 0Þ ¼ qi and

ðDgiÞðu; vÞ¼ð0;0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2ða2 þ a0 G a1Þ
�1

q

0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2�1ða2 þ a0 G a1Þ
p

0

@

1

A:

This gives the local dynamics

f : V1 UV2 ! V ; f jVi ¼ fi

that satisfies the condition (4), under which Theorem 4 can be applied. Thus the set

fðCÞ ¼ fð7y

n¼0
CnÞ is equal to the graph GðsÞ of the Cantor family of holomorphic

curves s : Sð2Þ ! H1 UH2, by re-choosing su‰ciently small neighborhoods if necessary.

Let B11 :¼ fðB1 VCþ
0 Þ, B12 :¼ fðB1 VC�

0 Þ. It is clear that

fðBnÞ ¼ 6
2

w1;...;wn¼1

f �1
w1

� � � f �1
wn�1

ðB1wn
Þ

is a disjoint union and each f �1
w1

� � � f �1
wn�1

ðB1wn
Þ is nonempty. Thus Bn consists of 2n

components.

Finally let us consider the dynamics in A0 under the coordinate system

ðu; vÞ ¼ jðx; yÞ :¼ ðx=y; yÞ. Let p1ðu; vÞ ¼ u, p2ðu; vÞ ¼ v be projections. Both

piðj �NF � j�1Þðu; vÞ, i ¼ 1; 2, are divisible by v and

Dðj �NF � j�1Þjðu; vÞ¼ð0;0Þ ¼
0 0

0 1=2

� �

:

By an argument similar to Schröder’s equation (see [2], Theorem 6.2.3 and its Remark),

cðu; vÞ :¼ lim
n!y

2np2ðj �NF n � j�1Þ ¼ vþ � � �

is uniformly convergent in a neighborhood of the origin ðu; vÞ ¼ ð0; 0Þ. As a local

function around the origin, c ¼ v � unit. Thus p1ðj �NF � j�1Þ is divisible by c. By

the new coordinate system ðx; hÞ ¼ ðu;cðu; vÞÞ, we obtain the dynamics
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ðx; hÞ 7! hwðx; hÞ;
1

2
h

� �

ð29Þ

where w ¼ p1ðj �NF � j�1Þ=c.

By the C r center manifold theorem (see [3], Appendix III), there exists a C r

function x ¼ mðhÞ ¼ mðReðhÞ; ImðhÞÞ around the origin ðx; hÞ ¼ ð0; 0Þ, whose graph is

invariant under the dynamics (29). In the next section we will show that it need not be

holomorphic.

4. Invariant curve in the attracting set.

Consider the local dynamics

ðx; yÞ 7! Fðx; yÞ ¼ ðyf ðx; yÞ; lyÞ;

defined in a neighborhood of the origin, where f ð0; 0Þ ¼ 0 and 0 < jlj < 1. It is the

composition of the mapping ðx; yÞ 7! ðl�1f ðx; yÞ; lyÞ with the blow-down map ðx; yÞ 7!

ðxy; yÞ. If there exists a local holomorphic curve x ¼ mðyÞ ¼
P

y

n¼1 cn y
n that passes

through the origin and is forward invariant under F, its coe‰cients cn are uniquely

determined by the functional equation

yf ðmðyÞ; yÞ ¼ mðlyÞ: ð30Þ

Proposition 9. If f ðzÞ ¼ axþ by is a linear function with ab0 0, there exists no

invariant holomorphic curve x ¼ mðyÞ that passes through the origin.

Proof. From (30), we obtain c1l ¼ 0, c2l
2 ¼ b and cnþ1l

nþ1 ¼ acn, nb 2. Thus

cn ¼ an�2bl1�nðnþ1Þ=2, nb 2, and the radius of convergence of the power series m is equal

to 0. r

On the other hand, for any holomorphic function mðyÞ ¼
P

y

n¼2 cn y
n there exists

an f such that the curve x ¼ mðyÞ is invariant under F. For instance, f ðx; yÞ ¼

x� mðyÞ þ mðlyÞ=y.
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