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1. Introduction. As is well known, Nehari [5] proved the following
theorem.

If f is a univalent meromorphic function defined in the unit disc,
then

(1)
| z | < i

where [/] is the Schwarzian derivative of f.

In this note, we are concerned with the case where the equality in
(1) holds.

It is also well known that the Schwarzian derivatives of conformal
mappings of the unit disc onto circular polygons are certain rational
functions (see, for example, Goluzin [2]). First, by using such conformal
mappings, we show that there exists a univalent meromorphic function
for which the equality in (1) holds and whose Schwarzian derivative lies
on the boundary of the Teichmiiller space for a cyclic Fuchsian group.
We also give a necessary condition in order that the equality in (1) holds
and give an application of it.

The author is indebted to the referee for pointing out some errors
in the original version of this note.

2. Notations and definitions. Let D be a simply connected domain
in the extended complex plane C with more than one boundary point
and let pD be the Poincare density of D, for example, pD(z) = (1 — | z I2)"1

if D is the unit disc. For a function φ holomorphic in D we introduce
the norm

We denote by B2{D, 1) the Banach space consisting of all the holomorphic
functions φ in D which satisfy \\φ\\D < <*>.

For a locally univalent meromorphic function / in D, let [/] be the
Schwarzian derivative of /, that is,
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It is well known that ||[/]|U ^ 12 for functions / univalent meromorphic
in D and, in particular, | |[/]|L ^ 6 for functions / univalent meromorphic
in the unit disc Δ (Lehto [4] and Nehari [5]).

Let A be an open disc in C. We define the subset T(A, 1) of B2(A, 1)
as the set of functions φeB2(A,ϊ), each of which is the Schwarzian
derivative of some univalent meromorphic function f in A with the
image domain f(A) bordered by a quasi-circle. It is well known that
T(A, 1) is a bounded domain in B2(A, 1).

Let Γ be a Fuchsian group keeping a disc A invariant. We denote
by Bι(A, Γ) the closed subspace of B2(A, 1) consisting of those <j> e B2(A, 1)
which satisfy φ(y(z))(y'(z))* — φ(z) for every yeΓ and every zeA. We
define the subset T(Af Γ) of B2(A, Γ) as the connected component of
T(A, 1) Π B2(A, Γ) containing the origin of B2(A, Γ). For a Fuchsian
group Γ with dim T(A, Γ) > 0, we set

o(A,Γ)= sup \\φ\\A
ψeT(A,Γ)

and call it the outradius of T(A, Γ).
Let fir be a Mδbius transformation. The mapping X which takes φe

B2(g{A), gΓg"1) into (φ o g)(g')2 e B2(A9 Γ) is a norm-preserving linear iso-
morphism and the image X(T(g(A), gΓg'1)) of T(g(A), gΓg'1) under X
coincides with T(A, Γ). In particular, we have o(g(A), gΓg'1) = o(A, Γ).

In the special case where A is the unit disc Δ, we write briefly p,
|| ||, 5,(1), Γ(l), J52(Γ), T{Γ) and o{Γ) without indicating the disc A and
we call T(l), T(Γ) and o(Γ) the universal Teichmiiller space, the Teichmϋller
space for Γ and the outradius of T(Γ), respectively.

3. Domains bounded by circular polygons.

3.1. Let P be a simply connected polygonal domain in C with its
boundary consisting of n circular arcs or straight line segments. Straight
line segments are regarded as arcs on circles with infinite radius. We
denote by Alf , An the endpoints of these n arcs which are the vertices
of the polygonal domain P, and we denote by πaβ the interior angle
(with respect to P) at the vertex Aό (j = 1, , n).

There exists a function / which maps the unit disc Δ onto P con-
formally and maps Δ onto P homeomorphically. We denote by a5 the
point on the unit circle dΔ corresponding to the vertex A5 (j = 1, , n).

As is seen in Goluzin [2], it is known that
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( 2 )
i=i V2(2 — ĉ -)

where (7,- ( i = 1, •••,») are constants satisfying

( 3 )

It should be noted that three of the points a5 (j — 1, , w) can be
chosen arbitrarily on dΔ. In the case of a circular triangle, all the
constants Cs (j = 1, 2, 3) are determined by (3) for arbitrarily given points
dj (j = 1, 2, 3). Furthermore, if Pn>q is the interior of an w-sided circular
polygon with vertices at As = eί2πj/n (j = 1, ••-,%) and with the interior
angles Ô TΓ = qπ (j = 1, , ̂  0 ^ g ^ 2 ) , then the mapping function /nιff

of J onto Pw,g with fn>q(0) = 0 and /n'fff(0) > 0 satisfies

( 4 ) [Λ, J(s) = ̂ 2(1 - g2)^^-2/2(^ - I) 2

(see Goluzin [2], p. 83).
Using (2), (3) and (4), we obtain the following proposition easily.

PROPOSITION. Under the above notations, the following hold:
(i) ||[/]||^2max1^Jl-α?|.
(ii) If as = 2 for some j , then | | [ / ] | | = 6.
(iii) If P is a circular triangle with aβ = 0 or 2 for some j (j =

1, 2, 3), then [/] lies on 3Γ(1).
(iv) l | [ Λ , J | | = 2 | l - ί |.
(v) [Λ,g] Zΐes o^ 3Γ(1) if q = 0 or 2.

From (iv) we have || [/«,<,] | |^2 for O^g^i/T. We also see that Pn>q

is not convex for 0 <S g < 1 — 2/w or q > 1. This shows that the converse
to the following theorem of Lehto [4] is not true: If / is a conformal
mapping of Δ onto a convex domain, then | | [ / ] | | ̂ 2 .

3.2. Well known results of Nehari, Earle and Hille yield that 2 <
o(Γ) ^ 6 for an arbitrary Fuchsian group Γ and o(l) = 6, where 1 denotes
the group consisting of only the identity transformation. We also see
o(Γ) < 6 for a finitely generated Fuchsian group Γ of the first kind (see
[6]). Here we prove the following theorem.

THEOREM 1. If Γ is a cyclic Fuchsian group acting on the unit disc
Δ, then o(Γ) = 6.
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PROOF. Assume that Γ is a hyperbolic cyclic group. Let U be the
upper half plane. Since o(Γ) = o{Δ, Γ) = o(U, gΓg'1) for a Mδbius trans-
formation g which maps Δ onto U, we have only to show that o(U, Γf) =
6, where Γf is the hyperbolic cyclic group generated by 7(2) — Xz (λ >
0, λ Φ 1). We set gm{z) = 2m (0 < m < 2). The function #w is univalent
holomorphic in U and the boundary of gJJJ) is a quasi-circle. Hence [gm]
is in T(U, 1). On the other hand, [gm] is in £2(C7, Γ) and || [#m2] - [flrmj\\v =
2\m\ — m\\ for mx, m2e(0, 2). Hence we see that the mapping mh->[#TO]
is continuous so that [gm] is in T(U, Γr), the connected component of
Γ( C7, 1) Π Ba( C/, Γ') containing the origin of B2( U, Γ). Therefore we obtain,
by letting mι = 1 and m2 -> 2, o(Z7, Γ') = 6.

Next assume that Γ is an elliptic cyclic group of order n. We have
only to show o(Γ') = 6 for the elliptic cyclic group Γr generated by 7(2) =
zei2π/n. Let fn,q (0 < q < 2) be as same as §3.1. Since the boundary of
fn>q(Δ) is a quasi-circle, we see [/», J 6 Γ(l). On the other hand, [/„, J is
in B2{Γ) and || [/M,J - [fn,qJ \\ - 21q\ - q\\ for ^ g2 6 (0, 2). Hence we see
[fnj e T(Γ). Therefore we obtain, by letting q, = 1 and <?2 -> 2, o(Γ') = 6.

Finally assume that Γ is a parabolic cyclic group. We have only to
show o( Z7, Γ') = 6 for the parabolic cyclic group Γ' generated by yo(z) =
2 + 2. Let P be the set {z e C; 0 < Re z < 1 and Im 2 > 0} and let Qα be
the circular triangle with vertices at 0, 1 and 00 and with the interior
angles aπ (0 < a < 1) at 0 and 1 and the interior angle 0 at ^ , We
set

and

The function / maps P conformally onto U and the function g maps U
onto Δ. Let ha (0 < a < 1) be the conformal mapping of Δ onto Qα with
ha(0) = oo, feα(i) = 0 and Λα( —i) = 1. Then ψa = ha°gof maps P conformally
onto Qa keeping 0, 1 and 00 fixed. According to the symmetry principle,
the function ψa can be extended to the conformal mapping ψa defined
in U such that

( 5 ) ψaoj = γ o | α for every 7 e Γf .

By the construction of ψa and the geometric characterization of quasi-
circles (Ahlfors [1]), it follows that the boundary of ψa{U) is a quasi-
circle. Hence we see [ψa] e T(U, 1). By (5) we also have [ψa] e B2(U, Γf).
On the other hand, (2) and (3) give

(6) [ha](z) = 1/2(2 - I)2 + CJ{z - 1) + (1 - a*)/2(z - if

+ C2/(z - i) + (1 - a*)/2(z + if + CJ(z + ΐ) ,
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where

( 7 ) CL = -1/2, C2 = 1/4 + i(l - α2)/2 and C3 = 1/4 - i ( l - α2)/2 .

By (6) and (7) we have

[fa2] — [fai] = (α? — Oίf)(rogof)((gof)fγ ,

where

Since | |[^α 2] — [^βjllσ- ^ 12 for all ax and α 2 e (0, 1), we have

zeP 2 ί

for all ̂ i and a2e (0,1), where M is a constant (determined by / and g).
Hence it follows from the construction of ψa that \\[ψa2] — [ψvjlltf ^
M\a\ - all Therefore we have [fa] e T(U, Γ). On the other hand, since

and

lim (1 — eiπz)jy = — iπ (z = x + iy) ,
P3Z->0,(z/2/)-*l

we have

lim Pu(z)~2(r°gof)

Hence it holds

8\a2

2 — at\ ̂  sup/OffO

Therefore we obtain, by letting a, = 1/2 and α 2-> 1, o(J7, Γ') = 6. Thus
the theorem is proved.

REMARK. The proof of Theorem 2 shows the fact that there does
exist a point φ on the boundary of T{Γ) with | | ^ | | = 6.

4. A necessary condition for | | [ / ] | | = 6.

4.1. First we prove the following.

THEOREM 2. Let A be an open disc in C and let f be a univalent
meromorphic function defined in A. Let d(z, df(A)) be the distance
between the point zeC and the boundary df(A) of f{A). Assume that
IIL/Ί1L — 6 Then there exists a sequence of points {βn} in f{A) converging
to a point of df(A) and such that
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( 8 ) lim d(βn, df(A)Y \ \ τ-^-y— = 0 .
*->°° iic-f(A)\z — βn\

To prove this theorem, we use two lemmas. The following Lemma
1 is well known. (For example, see Kra [3].)

LEMMA 1. Let D be a simply connected domain in C.
( i ) If h is univalent meromorphic in D, then Phω)(h(z))\h'(z)\ —

pD{z) at every ze D with z Φ oo and h{z) Φ oo.
(ii) pD{z)d(z, 3D) <̂  1 for every zeD with z Φ co.

LEMMA 2. Let f be a univalent meromorphic function defined in
A* = {zeC; 1 < \z\ ̂  co} and let ae A* - {oo} with f(a) Φ oo. Set

. ( ) , U )

z + a z -

and Fa = ηa

ofoVa. Then Fa has the expansion

( 9 ) Fa{z) = z + bo(a) + b^z-1 + 62(α)2;-2 + • •

in A* and

(10) PAa)-%\[fK<*)\ = *\Ua)\ .
PROOF. The function Fa is univalent meromorphic in z/* and keeps

oo fixed. We also see limz_>oo F'a(z) = 1. Hence we have the expansion
(9) in A\ Noting [/] = [ηaof] = [FaoV~^ and lim z_ z\Fa]{z) = - 6 6 ^ ) ,
we have (10).

Now we give a proof of Theorem 2. We may assume A = Δ*. Assume
α e J * - { o o } and /(α) ^ oo and set E = C — f(A*). Consider Vaf ηa and
Fa in Lemma 2 and set w — τja(z) and w = u + iv. Then the Bieberbach
area theorem shows

(11) τr(Ί - f > 16 (α) I2) = (( dudv .

On the other hand, using Lemmas 1 and 2, we have

(12) (ί dudv = {( ^ ^ n r W

^ d(f(a),

Hence it follows from (11) and (12) that
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(13) π(l - Ib,(a)|2) ^ π(l - J > |bn(a)|2)

dxd/^ d{f{a), df(A*)Y \\ d

If pAaQ)~2\[f](a0)\ = 6 for some aoed* (where we may assume aoe
A* — {co} and f(a0) Φ °°), then (10) and the Bieberbach area theorem
imply that [/] = [kog], where k(z) = z/(l — z)2 is the Koebe extremal
function and g is a Mδbius transformation keeping Δ* invariant. Hence
the 2-dimensional Lebesgue measure of E equals 0. Therefore, (8) holds
for an arbitrary sequence of points {βn} in f(Δ*) converging to a point
on df(Δ*).

If pAa')~2\[f](a')\ < 6 for every a' eΔ*, then there exists a sequence
of points {an} in Δ* converging to a boundary point of J* and satisfying

(14) lim pAan)-* | [/](αJ | = lim 61 bt(aJ | = 6
ίt-+oo n—>oo

(see (10)). On the other hand, the sequence of points {/(αn)} contains a
subsequence {/3j which converges to a boundary point of f(Δ*). Therefore,
by (13) and (14) we have (8).

4.2. LEMMA 3. Let Ω aC be a convex domain and Ωr cz C a domain.
Let φ be a C^dίffeomorphism of Ω onto Ω\ Then, for any convex sub-
domain Ω[ whose closure is contained in Ωf and is compact, there exists
a constant M = M(Ω'O) > 0 such that

(15) ikΓ11 z2 - z, I ̂  I φ(z2) - φfa) I ̂  M\ z2 - zx I

for all zlf z2eφ~\Ω',).

PROOF. Set z — x + iy and φ{z) = t6(«) + iv(«). We write as zλ =
Xi + iy if z2 = x2 + iy2y xQ = x2 — Xι and 2/0 = 2/2 — 2/1- Then there exist two
points d and ζ2 lying on the open line segment joining zt and z2 so
that

(16) \(φ(z2) - φizM** - zJ\

= (α + 2/9(2/oK) + 7(2/oMo)2)/(l + (2/oMo)2) , if 0̂ Φ 0 ,

= (a(Xo/Vo)2 + 2β(XolVo) + T)/((a:o/2/o)2 + 1) , if 2/0 ^ 0 ,

where α = (^(ζ,))2 + (^,(ζ2))
2, /5 = uxpuy^) + v.CCÔ CC.) and 7 = K O 2 +

(vy(ζ2))2. Here α and 7 do not vanish simultaneously, for φ is a diffeo-
morphism. Hence max (α, 7) > 0. On the other hand, we have an
inequality

(17) (a + 2bt + ctβ)/(l + ί2) ^ c + ((α - c)2 + 462)1/2 ,
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where α, 6, c and t are real numbers with c > 0. Let K be a compact
subset of Ω and K (cfi) the convex hull of K. Then it follows from
(16) and (17) that

\ψ{z2) - <p(z,)\ ̂ M\z2 - zx\

for all zlf z2 e K, where M is a positive constant satisfying

M2 ^ max (max(α, 7) + {{a - τ)2 + 4/32)1/2) .

Since the closure of φ~\ΩΌ) is contained in 42 and is compact, we obtain
(15) by considering the inverse mapping φ~\

Now we prove one more lemma.

L E M M A 4. Let ω e (0, 2π) and r 0 e ( 0 , 1 ) . Set Aω>ro = {zeC; \z\ ^r0

and 0 <: a r g z ^ ω} and A2KtTQ = {z e C; \z\ <^ r0} f] {z e C; \z + i\ ^ 1 or

Iz - iI ^ 1 or Rez ^ 0} α^d A;,ro = A2ffft.o Π ^ e C I m ^ 0}. ΓΛe^

(18) lim inf d(a, dA)2 [ \ , d x d y

 u > 0

where A = Aω,rQ (α> e (0, 2ττ]) or A = A^,ro.

PROOF. Set A, = Aω,ro, Ai = it*,ro, ώω(α) = d(α, 9Aω) and d(a) = dπ/2(α).
First we prove (18) for A = A x / 2 . Let δ 6 (0,1) be sufficiently small and set
Vδ = {z 6 C; IzI < δ and ττ/2 < a r g z <2π}. For α e F 5 and r 6 (2d(α), r 0 - δ),
we define θ^a, r) and Θ2{a,r) (—π/2<θs(a,r)<π,j = l,2) by the
condition

A,/,, n {̂  e C; |^ - α | = r} = {α + r e w ; θ,{a, r)^θ ^ Θ2(a, r)} .

We also write θ(a, r) = Θ2{a, r) — θ^a, r ) . It is not difficult to verify the
existence of a positive constant β0 such that θ(a, r) > θ0 for all a and r.
Hence

f f dxdy > fro"δ p ( r ) drd
Jj^< τ/2 |2; — # | 4 ~ j2£Z(α) J^(r) r 3

- l/2(r0 -

for α e Fδ. Therefore we have (18).
Next we prove (18) for A = Aω (ω e (0, π)). Consider an affine trans-

formation Fa (from the z-plane to the w-plane) given by

/ x\ lu\ (1 CΌsω\ίx

\y I \v) \0 smωj\y

where z = a 4- ΐ# and w = u + iv. Then Fα(Aff/2) c Aω for a sufficiently
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small α. By Lemma 3 there exist an open set V in C with VZD Aπ/2 and
a constant M = M(V) > 0 such that

for zlf z2e V and

dω(Fa(a)) ^

for α: e F. Hence we have

Iz - a\4

for ae V — Aπ/2. By the conclusion of the case ω = ττ/2 we obtain (18).
Next we prove (18) for A = Aω (ωe [π, 2π)). Because of the symmetry

of A with respect to the line y cos(<w/2) = x sin(α>/2) (with z = x + iy),
we obtain (18) by the conclusion for A = Aω (ωe (0, π)).

Next we prove (18) for A = A'π. Since there exists a Mobius trans-
formation g which maps {z e C; | z — i | < 1} onto the upper half plane U
with g(0) = 0 and g(oo) = oo, we obtain (18), by using the conclusion
for A = Aπ (and the conclusion for A — Aτ/2), in a manner similar to that
for A = Aω ( α ) e ( 0 , 4

Finally we prove (18) for A = A2π. Since A2π is symmetric with
respect to the real axis, we obtain (18) by the conclusion for A = A'π.
The proof of Lemma 4 is hereby complete.

Now we prove the following as a corollary of Theorem 2.

THEOREM 3. Let P be a polygonal domain defined in §3.1. Assume
0 ^ as < 2 (j" = 1, , n) for the interior angle πa3- at the vertex A3 of
P. Let V be a neighborhood of dP and let φ be a C^diffeomorphism of
V into C. If Ω is the connected component of C — φ(dP) with φ(P f)V)d Ω,
then conformal mappings f of A onto Ω satisfy | | [ / ] | | < 6.

PROOF. We may assume that P and Ω are bounded domains in C.
We set V(p, ε) = {z e C; \z - p\ <ε} for pe Cand ε > 0 and also set C(E) =
C - E for a subset £/ of C. Let ί90 e 3P, q0 = ?>(p0) and 7 = <p(5P). Let
r e (0, 1) and ω (6 (0, 2τr]) be the exterior angle of P at p0 with respect
to P. Then there exists a Mobius transformation g with #(0) = p0,
9(V(0, r)) c F, g(Ar) c C(P) and sr(3Ar) c 3P, where Ar = Aω,r iίωΦπ and
Ar = Aπ,r or A ,̂r if α> = π (see Lemma 4). We take V0 = V(q0, ε) so that
V, =V(g0, 2ε)cf(F(0, r)) (<z<p(V)), where ψ = <pog. Then ^(A 8)c
φ~\Gψ) Π y0) for some s 6 (0, r).

For any point q e Vo, there exists a point g' e 7 Ω VΊ with d(q, 7) =
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\q — q'\. Hence, by Lemma 3, there exists a constant M — M(V^) > 0
such that

\ψ(z) - f{a)\ £ M\z - a

for z, aeψ~\V^ and such that

d(q, 7) ^ M~ιd{a, dAr)

for q 6 VQ and a = ^~1(gί).

Let g' 6 Vo, Q = ψ(a), w — <f{z), z = x + iy and w = u + iv. Then we
have

— q\
z)\ dxdy

«|)4

M'd(a,dArγ\\ ^ - ,
Ϊ)AS\Z — a 4

where Jψ is the Jacobian of ψ and M' is a positive constant. Hence by
Lemma 4 we have

\immίd{q,dΩ)Λ[ dxdy > 0 .
q-*qO,qeΩ JJC(Ω) \% — q | 4

Therefore, Theorem 2 implies | | [ / ] | | < 6.
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