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1. Introduction and results. Let (β, F, P) be a complete probability
space with an increasing family (Ft)t^0 of sub-σ-fields of F which satisfies
the habitual conditions. Let M be a local martingale with Mo = 0 and
denote by M° the continuous part of M. Let (Mc) be the continuous
increasing process such that (Mc)2 — (Mc) is a continuous local martin-
gale and put AM. = M. - M._ and [M]. = <MC). + Σ o ^ . (AM8)\ As is
well-known, the process

(1) Z a) = exp ( XM. - — (Mc).) Π (1 +

where λ is real, is a local martingale. If 1 + XΔM. > 0, then Z{X) is a
strictly positive supermartingale and the limit Z{J} = lim^^ Z[λ) exists
almost surely (cf. [6]).

The following theorem was proved by C. Doleans-Dade and P. A.
Meyer [2] and by N. Kazamaki [4]. We write simply Z instead of Z{1).

THEOREM 1. Suppose that Z has the following three properties:
( i ) Z satisfies the condition (S), that is, there exists a positive

constant ε such that

(2) ε<ZJZ._<l/ε,

(ii) Z o o > 0 a.s.
and

(iii) Z satisfies the condition ( 4 J , that is, there exist positive con-
stants a and K such that

(3) E[(Zτ/ZJ)a\Fτ] ^K a.s.

for any stopping time T.

Then 1 + AM. > ε and M is a BMO-martingale, that is, ||Λf||BMo =

(suPί H^IPfL - [M]t.\Ft]\U1/2 < °o.

The converse of Theorem 1 was proved in the above literature [2]
and [4] in the case the BMO-norm or the jumps of M is sufficiently
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small. In this note, our object is to show that the converse is true
even if the "sufficient smallness" is removed.

THEOREM 2. If M is a BMO-martingale and there exists a positive
constant ε such that 1 + AM. > ε, then Z satisfies the conditions (i),
(ii) and (iii) in Theorem 1. Furthermore,

(iv) Z is a uniformly integrable martingale.

Theorem 1, Theorem 2 and Gehring's lemma in [1] imply the following
corollary.

COROLLARY. Z satisfies the conditions (S) and (ATO) if and only if
M is a BMO-martingale with 1 + AM. > ε for some ε > 0; in this case,
Z is a Lv-bounded martingale for some p > 1.

This corollary was proved in [3] in the case M is continuous. We
remark ajso that the continuity condition of local martingales treated
in [5] would be supressed. We shall return to this point elsewhere.

2. Proof of Theorem 2. Properties (i) and (ii) are easily checked
by using the facts 1 + AM. > ε and ||Λf||BMo <°°. We may assume with-
out loss of generality that ε is sufficiently small. By an elementary
calculation we have the inequality

exp(# - x2/2ε2) ̂  1 + x ^ ex

for 1/(1 — ε) > a > 0 and —l + ε<^x<.(l — ε)/2α, from which we obtain
easily

(4) (1 + x)~a ^ (1 - 2ax)1/2 exp(α£2/2ε2)

and
( 5) 1 + ax ^ (1 + #)αexp(αar72ε2) .

Now we shall show the property (iii). We can choose a > 0 such
that ka — (4α2 + α)/ε2 < 1/||AΓ||BMO. Then we get for any stopping time
T, by applying (4) and Schwarz's inequality,

E[(ZT/ZJ«\FT]

= #[exp{-α(ikL - Mτ) + (α/2)«M% - (Mc)τ)}

x Π (1 + AMt)-aexv(aAMt) | Fτ]
t>τ

^ E[exp{-a(Mx - Mτ) + (α/2)«Af% - <AΓ%)}

x Π (1 - 2aJMtY'2exv{aΛMt + a(ΛMtγ/2ε2}\Fτ]
t>T

= #[[exp{-α(ΛL - Mτ) - at«Af>0o

X Π (1 - 2aJMt)
1/2exv(aΛMt)]
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xexp{(l/2)(2α2 + α ) « M % - (M°)τ) + (α/2ε2) Σ VMtf)\FT]
t>T

^ E[ZL-2a)/Zt2a)\FTf
/2E[exp{ka([M]^ - [M]τ_)}\Fτ]

ί/2 .

The first factor of the last expression is smaller than 1, while, from an
inequality of John-Nirenberg's type (see Lemma 2 in [4]), the second
factor is dominated by 1/(1 — ka ||il4Ί||Mo)1/2. Therefore we obtain the
property (iii).

Finally we shall show the property (iv). By choosing a > 0 small
enough, we can assume that Z{a) is a uniformly integrable martingale
(see [2], p. 386) and Ka = (4α2 + α)/(l - α)ε2 ^ l/||ikf|||Mo. Then for any
stopping time Γ,

1 = E[Z^/Z{

τ

a)\Fτ]

ikL - Mτ) - (a2/2)((Mc}^ - (Mc)τ)}

x Π (1 + aJMt)exv(-a/IMt)\Fτ]
t>τ

^ E[exp{a(Mm - Mτ) - (α72)«ilί%

x Π (1 + ΛMt)
aexv(-aJMt + a(JMtγ/2ε2)\Fτ]

t>T

= ^[[expfαC^ - Mτ) - (o/2)«Λf•>„ - <M°)T)}

x Π (1 + JAft)*exp(-oJΛf«)]
t>T

xexp{(l/2)(α - α2)«ilf«>oo - (M°)τ) + (α/2ε2) Σ (ΔMtγ}\Fτ] ,
t>T

where we have made use of (5). Applying Holder's inequality with ex-
ponents I/a and 1/(1 — a) to the last expression we can obtain:

1 ^ ElZJZrlFrlElexviK^lM]^ - [M]T_)}\FT]™'Λ

^ E[ZJZT\FT]{1/(1 - Ka

Therefore

Zτ £ E[ZJFT]{1/(X - Ka

from which it is seen that Z is uniformly integrable. Thus the proof
is completed.
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