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1. Introduction. Let M be a continuous local martingale with M, =
0, and let us denote by (M) the continuous increasing process such that
M* — (M} is also a local martingale. Then the solution Z of the stochastic
integral equation:

Z,=1+ StZ,,dMs

is given by the formula Z, = exp(M, — {M),/2), so that it is a positive
local martingale with Z, = 1. However, it is not always a martingale.
The problem of finding sufficient conditions for the process Z to be a
martingale, which is proposed by I. V. Girsanov, is important in certain
questions concerning the absolute continuity of probability measures of
diffusion processes. In Section 3, we shall give a new sufficient condition
for the problem of Girsanov. Namely, it will be proved that if M is a
BMO-martingale, then Z is an L*-bounded martingale for some p > 1.
The theory of H? and BMO martingales was developed in [3] and [4],
and it is well-known nowadays that (H')* = BMO, that is, the dual space
of H' is isomorphic to BMO. In Section 4, Z is assumed to be a uniformly
integrable martingale. Then we can define a change of the underlying
probability measure dP by the formula dP = Z._dP. If 57 is a class of
continuous local martingales, with respect to dP we denote by 57 the
class corresponding to 27 Our interest here lies in investigating the
relations between 5#” and 57, In the section we shall prove that if M
is a BMO-martingale, then BMO = BMO" and H'= H'. In addition, it
is shown that H? = H*® holds in general. In Section 5 we shall give a
generalization of the classical inequalities of J. L. Doob.

Let us denote by C a positive constant and by C, a positive constant
depending only on the indicated parameter x. Both letters are not
necessarily the same in each occurrence.

2. Preliminaries.
1) Definitions and notations. Let (2, F', P) be a complete probability
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space, and let (F,),<:<w) be a non-decreasing right continuous family of
sub-o-fields of F' with F = V,s, F, such that F| contains all null sets.
Throughout the paper we shall deal only with continuous local martingales.
The reader is assumed to be familiar with the martingale theory as given
in [3] and [10]. See Getoor and Sharpe [4] for the theory of conformal
martingales.

For any process X = (X,, F,), we denote by X* the quantity sup, | X,/|.
If T is a stopping time, X7 is the process (X,.,) stopped at T. Let &
be the class of all continuous local martingales X over (F),) with X, = 0.
For X and Y in &, wedefine (X, Y) = (X +Y)—<(X)—(Y))/2. Then,
as is well-known, XY — (X, Y) belongs to &¥. For Xe & and a locally
bounded previsible process H, Ho X is the unique element of & such that
for all Ye <&, (H-X, Y), = S:Hsd<X, Y),. The process HoX is called the

stochastic integral of H relative to X. We also write (HoX), = StHsts.
0

DEFINITION 1. For any Xec & and 0 < p < <o, let
| Xl = (B[R .

We denote by H? the class of all Xe & such that || X||;p < 0. Ifl1=
p < oo, H? is a real Banach space with norm || ||z».

Recall now the inequality of B. Davis:
(1/4V 2 )E[X*] £ E[(X)'*] < 2E[X*], Xez.
For the proof, see [4]. This implies that if Xe H', X is uniformly
integrable. This inequality of Davis is of fundamental importance in
the martingale theory.
DEFINITION 2. For any Xe &, let

1 X lsx0 = sup [[(B{X)w — (XD Dl -

Let BMO consist of those X e & which satisfy || X||smo < oo. The energy
inequalities (see [10]) give

E[(X)n] = n! || X||Ho , n=12 .
Therefore, BMO c H” for every p. The space BMO, which can be identified
with the dual space of H', is complete with norm || ||smo. The following

is an example of BMO-martingales.

ExampLE 1. Let B= (B, F,, P,),.r be a one dimensional Brownian
motion and let T, = inf (¢; |B,| = a), (a > 0). It is easy to see that T,
is a stopping time. Then the BMO-norm of the martingale B”s with
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respect to the measure P, is equal to a. In fact, if |z| <a, E,|T.] =
a* — a* because |B;,| = a and E,[B; — T,] =2*. Now let 0, be the shift
operators of the process B= (B,). Then T, —t = T,00, on (¢t < T, by
the definition of T,. It is also clear that (B%), =t A T,, P,a.s., so
that using the Markovian character, we have

EO[T,, —t N TaIFt] = Eo[Ta°0z|Ft]I(t<Ta)
= EBt[Ta]I(t<Ta) = (a* — B?)I(t<Ta) .

Therefore we have ||B"¢||zwo = a.
Now for Me .Z, let us consider the process Z defined by the formula
Zt = @M=y , t=>0.

It is a positive supermartingale such that Z —1e¢ <~ As Z,=1, E[Z,]=1
for every t. Thus Z is a martingale if and only if E[Z,] = 1 for every
t. Let Z_,=1lim Z,. The existence of this limit is guaranteed by the
martingale convergence theorem due to Doob. Fatou’s lemma shows that
it is finite with probability 1. Similarly, for each real number a, the
process Z'@ defined by Z{® = exp (aM, — a*(M),/2) is also a positive local
martingale. As Z,Z{™ = exp (—{(M>,), Z. =0 implies (M) = . Con-
versely, if (M), = «, then Z_, =0, for Z, = (Z{"?)*exp (—{M),/[4). We
now remark that Z‘ is not necessarily a martingale even if Z is bounded.
Here is an example.

ExamMpPLE 2. Let B = (B,, F,) be a one dimensional Brownian motion
starting at 0, defined on a probability space (2, F, P). We set T =
inf (¢; B,=1), which is a stopping time such that 0 < T < «. Now let
9:]0, 1]— [0, e[ be an increasing homeomorphism, and set

gOONT if 05t<1
e= T if 1<t< oo.
Then these 7, are stopping times with z, =0 and 7z, = T such that for
a.e. we 2 the sample functions z.(w) are non-decreasing and continuous.
Thus, the process M defined by M, = B,, is a continuous local martingale
over (F.). As 7, =T, we have M, <1, so that Z, is bounded by e. On
the other hand, as M, = B, =1, we have E[Z{™V] < E[exp (—M)] < 1.
This implies that Z™* is not a martingale.

In what follows, given M e &, Z denotes the process (exp(M, — {(M),/2)),
unless otherwise stated.

DEFINITION 3. Let 1 <p < . We say that Z satisfies the (4,)
condition if
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sup || B[(Z,/Z.)" " | Pl < < .

If Z satisfies (4,), then Z, > 0 a.s., so that (M), < = a.s.. If1<
p <7, (4,) implies (4,) by Holder’s inequality. For simplicity, let us
say that (4.) holds, if Z satisfies (4,) for some p > 1. By Lemma 5, if
Z satisfies (A.), then the process Z‘“, defined as before, also satisfies
the condition. The (A4,) condition has already appeared many times in
the literature in connection with several different questions (for example,
see [12]).

2) Preliminary lemmas. Here we collect several lemmas which are
of use in subsequent sections. The following inequality is called Feffer-
man’s inequality.

LemMmA 1. If Xe H' and Y € BMO, then
B[ 146, ¥, | 2 VEI X1t 1V oo

ProoF. It is proved in [4], but for the reader’s convenience we shall
recall briefly the proof.

By using the usual stopping argument, we may assume X in H?2
Then we have

B |14, .1 = B[ | o, 8] | ..

The first term on the right hand side is smaller that 2|/ X||;:. On the
other hand, by integration by parts, the second term is

B GO — | (O] = Bl | (0. — 0y
= B[ | B — (0. FIa0r ]

which is dominated by ||Y|[&wo|| X||;:. Thus the lemma is proved.

Fefferman’s inequality implies that BMO c (H")*. The following
result is also proved in [4].

LEMMA 2. Let Xe &2 Then we have
| Xl = sup {E[{X, Y).];YeBMO, || Y|lpmo = 1} .

ProoF. Let (T,) be a non-decreasing sequence of stopping times
with lim, T, = <o a.s., such that X?»e¢ H* for each %. In addition, it
is easy to see that (X, Y) = (X,'Y"), |Y"*||lsmo =< || Y]|lewo and

lim, || X%*||z = || X||lm. Therefore we may assume that Xe H'. Let now
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t
¢ be an arbitrary positive real number, and define Y, = SDs_dXs, where
0

D, = E[(e + {X).)""*|F,]. Then, by an elementary calculation, we get
[ Y]lgxo < 1. Furthermore, (X) being continuous, we have

X, V.1 = B | D, a<x).] = EU?D@(X)B]
= El(e + (X)) "X X).] ,
which increases to || X||;: as € > 0. This completes the proof.
P. A. Meyer proved in [11] the following inequality.
LEMMA 3. Let Xe 2 Then
| X|lsxo < sup{E[X, X).]; Ye H, || Y||n = 1} .

Proor. We prove it, following the idea of Meyer. Let us denote
by d its right hand side, and T be any stopping time. It is sufficient
to show that

E[(X)., — (X)r; A] < d*P(A) for AcF,.

For simplicity, set U = (X)., — (X),. The stopping argument enables
us to assume that X e BMO, and so E[UI,] < . The process H given
by H, = I,r<, is a previsible process such that H> = H. Then we have
(He X, X>,={(H-X),=UI,, so that

E[UL] < d||HoX||;n = dE[LV'UL] .
By Schwarz’ inequality the right hand side is smaller than
dP(A)E[UIL)"” .
Consequently we get E[UI,] < d*P(A).

The next inequality, which was established by A. M. Garsia for
discrete martingales in [3], plays an important role in our investigation.

LEMMA 4. If || X||swo < 1, then
Ele®=>®t|F] = (1 — || X|[5mo) "«

Proor. For simplicity, let us denote by d the right hand side of
this inequality. It suffices to show that for every Ae F,

E[e®==®;, A] < dP(A) .

We may assume that P(A) > 0. To show this, let us set dP’ = (I,/P(A))dP
and F,=F,,,. Then it is not difficult to see that for X ¢ BMO the process
X’ defined by X, = X,,, — X, is also a BMO-martingale over (F:) with
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respect to dP’ and that (X'), = (X)), — (X),. Therefore we have
E[e(X)oo—(.Y)t; A] — El[e(.Y’>oo]P(A) ,

where E’[ | denotes the expectation over 2 with respect to dP’. An
elementary calculation shows that the BMO-norm of X' is smaller than
|| X|lewo- Then, by the energy inequalities, we have

o] = 3BT = 51X o = 31Xl = d

completing the proof.
This estimate is the best possible, as the following example shows.

ExAamMPLE 3. Firstly, let G° be the class of all topological Borel sets
in R, =[0, o[, and S be the identity mapping of R, onto R.. We
define a probability measure dyt on R, such that p#(S>t)=e*. Let G be
the completion of G° with respect to dy, and similarly G, the completion
of the Borel field generated by S A t. It is clear that S is a stopping
time over (G,). We now construct in the usual way a probability system
(2, F, P; (F,) by taking the product of the system (R., G, dy; (G,)) with
another system (2, F’, P’; (F)) which carries a one dimensional Brownian
motion B = (B,) starting at 0. Then S is also a stopping time over (F,)
so that X = B’ is a continuous martingale. As (X), =S A t, we get

E[(X). — (O Fl = ¢ | @ = Oedal e = Lucs

from which || X|/zgmo = 1. Let now 0 <e <1. Then by Lemma 4
Ele" 9] =1 — 1 — &) || X|[two) " = €.
But the left hand side is

o

S ey = S e dx = ¢!
Ry

0
Thus the inequality given in Lemma 4 cannot be improved.
We finish this section with the following result obtained by Kazamaki
[6]. Quite recently, the extension to right continuous local martingales
was given by C. Doléans-Dade and P. A. Meyer [1] and by Kazamaki [8].
LEMMA 5. Let Me <. Then M is a BMO-martingale if and only
if Z satisties (A.).

ProOF. Suppose firstly that || M|/zmo < o, and choose p > 1 such
that || M|jiwo < 2(V'» — 1)®.. Now we are going to show that Z satisfies
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(4,). Indeed, set p, = 1/_17+ 1. The exponent conjugate ¢, is
V2 + 1)/V'p, so that 1/¢,(V'p — 1! — p/(p —1)* = 1/(p —1). By Holder’s
inequality

E((Z./Z.)""" | F\] = Elexp(— (M, — M)/(p—1) — DKM .. — (M) )[2(p — 1))
X exp(((M)o — (M>)[2¢,(V'P — 1)) | F]
< Elexp(—p(M., — M)/(p — 1) — piKM)e — (M))/2(p — 1)) | F ]
X Elexp(({(M)., — {M))/2(V'p — 1) | ]/ .

By the supermartingale inequality, the first term on the right hand side
is smaller than 1. In addition, according to Lemma 4, the second term
is dominated by (I — || M|[zw0/2(V D — 1))

Conversely, let us assume that Z satisfies the (A4,_,) condition for
some » > 2. Let (T,) be a non-decreasing sequence of stopping times
with lim, T, = « such that each process M”» is a uniformly integrable
martingale. We now claim that each Z7» satisfies (4,). To see this,
we apply Holder’s inequality with exponents (p — 1)/(p — 2) and p — 1:

E[(Zt/\T,,/ZTn)l/(p—” | Ft/\Tn] = E[(Zt/\Tn/Zm)l/(p—l)(Zw/ZTn)l/(p_l) | Ft/\T,l]
é E’[(ZMT”/ZOO>1/(1>—2) ] FMTﬂ](p—m/(p——l)
X E[Zw/ZT% | Fynr, ]V70 .

The first term on the right hand side is dominated by some constant C,
because Z satisfies (4,_,). In addition, as Z is a positive supermartingale,
the second term is smaller than 1. Consequently, for every n, Z7» satisfies
the (4,) condition. Then by Jensen’s inequality

E[(Zinr, Zr,)" " | Fypr,]
= exp (B[—M;, + Mypr, + M)z, — {M)ipr,)/2| Fypr,)/(0 — 1))
= eXp(E[<M>Tn - <M>U\T,,,|Ft/\7‘n]/2(p - 1)),

from which ||M"|kwo < 2(p — 1)log C, for every n. Letting n — «, we

get Me BMO. Thus the lemma is completely established.

By this lemma it is immediate to see that even if Z is bounded, it
does not always satisfy (A.). See Example 2.

3. On the problem of Girsanov. If Me _ <&, when can one assert
that Z, = exp (M, — {M),/2) is a martingale? In 1960 this problem was
posed by I. V. Girsanov. A. A. Novikov [13] gave an answer to the
effect that if exp(KM),/2)e L' for every t, then the process Z is a mar-
tingale. Recently, by making a partial modification of Novikov’s proof,
Kazamaki [7] showed that if (exp(M,/2)) is a submartingale, then Z is a
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martingale. Note that Kazamaki’s condition is weaker than Novikov’s,
because E[exp(M,/2)] < E[exp({M),/2)]"* by Schwarz’ inequality. Further-
more, there exists a BMO-martingale M, which does not satisfy Novikov’s
condition, although exp(,/2) is a submartingale, as the following
example shows.

ExAMPLE 4. Let S, B = (B,, F,) and (2, F, P) be as in Example 3.
Then X, =1V 2By,, is a BMO-martingale over (F,. By the result of
Novikov

Sm exp(BJV 2 — w/4)dP = 1
for every u = 0, and so by Fubini’s theorem we have
Elexp(X../2)] = E[exp(Bs/V2)] = S:exp (u/4)d Sgl exp(B./V 2 —u/4)d P’
= S:o exp (—3u/d)du < oo .

Let now (z,) be a continuous change of time such that 7, = 0 and z, = S,
and consider the martingale M, = X,,. It is a BMO-martingale over (F%,),
and the process exp(M,/2) is a submartingale. But, exp({M),/2) is not
integrable because (M), = 28S.

We now give a new sufficient condition for the problem of Girsanov
as follows.

LEMMA 6. If M s a BMO-martingale, then Z is a uniformly
integrable martingale.

PrROOF. We may assume that 0 < || M||puo < . Firstly we show
that if || M||sxo < V2, then Z is uniformly integrable. Let ¢ be a positive
number. Then applying Schwarz’ inequality we have E[exp(cM,)] =
Elexp2c®{M)>,)]"*. Now let 0 <8 <1/V 2||M||sxwo — 1/2 and ¢ = 1/2 + 6.
As ||V 2¢M||sno < 1, it follows from Lemma 4 that

Elexp ((1/2 + 0)M,)] = Elexp(2¢*(M»,)]"* = (L — 2¢*|| M||5m0) ™ .
Namely, sup, Elexp((1/2 + 0)M,)] < . Set now p =1 4 46 > 1. So the
exponent conjugate to p is ¢ = (1 + 46)/46. Then by Holder’s inequality
we get

E[Z;) = Elexp(V'r[pM, — r{M),/2) exp((r — V'7r[p)M))]
< Elexp(V/prM, — priM),/2)]"*E[exp((r — V'r[p)dM)]"*, »>0.
The first term on right hand side is bounded by 1, because the process
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exp (V' prM,—pr{M>,/2) is nothing but the positive local martingale Z*7".
If » = (1 + 28)%/(1 + 49) > 1, by a simple calculation we have (r — V7/p)g =
1/2 + 0, so that sup, E[Z]] < . Therefore Z is a uniformly integrable
martingale if || M|lzwo <1V 2. Now we are going to deal with the general
case. Let us choose a number ¢ such that 0<a<Min(1, 2/|| M||ix0). Then,
as ||aM||sxo <12, the process Z'* is a uniformly integrable martingale.

Therefore, for any stopping time T
1 = E[Z9/Z8| F,]
= Elexp(a(M.,— My)—a({M).—{M)r)/2 exp(a(l—a)((MDo—{M)1)[2)| Fr] .
Applying Holder’s inequality with exponents 1/a and 1/(1 — a) to the
right hand side we can obtain:
1 < E[Z.|Z;| FylE[exp(a({M).. — {M)r)[2)| Fr]' ™7 .
By Lemma 4 the second term on the right hand side is smaller than
(L — all Mfno/2)™ " = {(L — al| Ml[huo/2) /1" ihuoj =Ml iguore
which converges to exp(|| M||kv0/2) as @ — 0. Consequently, we have
Zy < E[Z,,| Fr] exp(|| M|[5x0/2) .
This implies that Z is a uniformly integrable martingale.
Our aim in this section is to prove the following:
THEOREM 1. If M s a BMO-martingale, then the “reverse Holder
inequality”
E[Z:|\F,) < CZ+
holds for every t, with positive constants C, and e.

REMARK. Quite recently, C. Doléans-Dade and P. A. Meyer [2] proved,
assuming the uniform integrability of the process Z, that the reverse
Holder inequality holds if Z satisfies (4.). In [2] they make a systematic
study of the subject about the (4,) condition from a more general point
of view.

ProOF. Our proof is an adaptation of the proof given in [2]. Now
let Me BMO. Then, by Lemmas 5 and 6, Z is a uniformly integrable
martingale which satisfies (4,) for some p > 1. We denote by dP the
weighted probability measure Z_dP and by E‘[ ] the expectation over
2 with respect to dP. Clearly, if Ae F,, P(A) =S ZdP so that for

A

every P-integrable random variable V we have
E[V|F) = E[Z.V|F]/Z, as., under dP and dP.
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We shall use this formula many times in the sequel. Let K be a constant
>1 depending only on » such that

ZE[Z/ V| FP < K,

which follows from the definition of (4,). Now we set o = 1/2°K and
b. = 2¢/(1 + e)a'** and let us choose ¢ > 0 such that 5. < 1. Then we
claim that E[ZY*|F,] £ C.Z}** where C, = (3 — b,)/1 — b.).

Firstly, we show that the basic inequality

ElZ.; Z, >\ £ 2\P(Z, > a\)

is valid for every A >0. Indeed, let T = inf(¢; Z, > \), which is a stopping
time with Z, < »a.s.. In addition, Z, =X on (T < ) because Z is
continuous. Let us consider the martingale X defined by X, = P(Z, <
aZ,\F,). As X; = ZTE‘[XOG/Z&[FT], we apply Holder’s inequality with
exponents p and ¢ = p/(p — 1) to the right hand side:

? < Z2E[Z2 | Fy" B[ X2 | Fy
= Z B[ Z:% ™ | F P E[X2| Fy) < KE[Z. X2\ Fol/ Zr .
But Z_ X2 < aZ; by the definition of X. Thus X, < (¢ K)"? = 1/2 and so
P(Z,>aN) = P(T < «)/2 because 12=<1— X, = P(Z,> aZ;|F,;) and
(T < )€ Fy;. Consequently we get
ElZ,;Z, >N S E[Z,; T< |=E[Z;; T< o] =\NP(T < )
< 2MP(Z. > a)\) .

Now let U, = Min(Z_, ) for n = 1. It is clear that U, — Z_, as n — co.
It is also immediate to see that for each n» the inequality

E[U,;U, > \] = 20P(U, > a\)

is valid. Then, multiplying both sides of this inequality by ex‘* and
integrating on the interval [1, [, we find that

S (U3 — n>dPgb5§ Ui+dP < be§ UdP + b, .
{Up>1

(Up>a) (T p>1)

As E[U,] £ E[Z,] =1 and E[U,*] < «, we have
-0

That is, E[U] =1 + 2/(1 —b.) = C,. From Fatou’s lemma it follows
that F[ZL+] < C..

Secondly, let S be a stopping time, and let A be an arbitrary element
of Fs such that P(A) > 0. As in the proof of Lemma 4, we set dP’ =

U,“dP=<b. +1<2.
}

Up>1
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I1,dP/P(A) and F, = Fg,,. E’| ] denotes the expectation over 2 with
respect to dP’. Consider now the process Z’' defined by Z; = Zs..,/Zs.
Clearly 0< Z; and E’[Z.]=1. Furthermore, it is a uniformly integrable
martingale over (F}) relative to dP’ such that for the same constant K
as before

ZE'[(Z) | )P = K, P-as. .

Therefore, by the same argument as above we obtain E'[(Z.)'**]<C,, that
is, B[(Z.]Zs)'*e; A] < C.P(A). This is valid for any A€ F, so that we
have the desired inequality. Hence the theorem is established.

In the proof of Proposition 3, we shall show that, if Z is a uniformly
integrable martingale satisfying the reverse Holder inequality, then M
is a BMO-martingale.

COROLLARY. Let a be a real number. If M is a BMO-martingale,
then Z'“ is an LP-bounded martingale for some p > 1.

ProoF. If M is a BMO-martingale, so is aM. Then the conclusion
follows immediately from Theorem 1.

Let Me <~ Obviously, if it is bounded from above, then the process
exp(M,/2) is a submartingale. But there exists a continuous martingale
M, bounded from above, which is not a BMO-martingale. See Example
2. We now remark that, even if M is a BMO-martingale, exp(M,/2) is
not necessarily a submartingale. We end this section with such examples.

ExAMPLE 5. Let S, B= (B, F,), (2, F, P) be as in Example 3, and
let (z,) be a continuous change of time such that z, = 0 and z, = S. Then
21/2Bs,, is a BMO-martingale over (F,), and so M, = 21/2Bs,., is a BMO-
martingale over (F,). But it follows from Fubini’s theorem that
exp(M,/2) = exp(1/2B;) is not integrable. Namely, exp(M,/2) is not a
submartingale.

ExampLE 6. Let B = (B, F,) be a complex Brownian motion starting
at 0 and let T = inf(¢; | B,| = 1). Then log(1 — B”) is a conformal mar-
tingale on [0, T[, because log(l — #z) is analytic in the unit dise |z]| < 1.
Its imaginary part is bounded, so that by the main theorem of R. K.
Getoor and M. J. Sharpe [4] the real part log|1— B?| is a BMO-martingale.
Now let X = —log |1 — B”|. As is well-known, B, is uniformly distributed
on the unit circle [z| = 1. Therefore we get

Elexp(X../2)] = Elexp(—log|1 — B;|)]
0

= (271')_18 {2(1 — cos 0)}2df = oo .
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Let us define a change of time (z,) with z, = 0 and z, = T as in Example
2. Then M, = X,, is a desired BMO-martingale.

4. Transformation of the spaces BMO and H®' by a change of law.
Let M e <~ and consider the process Z,=exp(M,—{M),/2) as usual. In this
section, Z is assumed to be a uniformly integrable martingale with Z_ > 0.
dP denotes always the weighted probability measure Z.dP. It is obvious
that the measures dP and dP are mutually absolutely continuous. We
shall consider the process W defined by W, = 1/Z,. It is a uniformly inte-
grable martingale with respect to dP, for E’[ W F\=E[Z W,|F]/Z,=W,.
Clearly, 0 <W,, W,=1 and W.dP = dP. If 57 is a subeclass of &, 7
denotes the class of continuous local martingales relative to dﬁ, which
corresponds to 5~ So & is the class of all P-continuous local martingales
X’ over (F,) with X;=0. Our interest here lies in investigating the
relations between 57 and 57, The following lemma plays a very im-
portant role in our discussion.

LEMMA 7. For any Xe &, X = X — (X, M) belongs to < and (Xy =
(X) wunder either probability measure. Furthermore, the mapping
i: X - X is linear and bijective.

PROOF. To see X ecg% it is enough to check that ZX e < X is
t
a semi-martingale with respect to dP, and (X, M), = S Z7d(X, Z),
t 0
because M, = S Z7*dZ,. Then, by Ito’s formula we have

ZX, = 7,%, + StXT,dZ, + StZ,dX's +<Z, XD,
0 0

= S‘Xsdzs + S’z,dX,, ,
0 0

which belongs to .2 Similarly, we can check the equality (X) = (X).
From these facts follows the linearity and the 1n_]ect1v1ty of the mappmg
i. So it remains to show the surjectivity. As M = M — (M) and (M) =
(M), we have

W, = exp(—M, — (M),/2) ,
so that for any X'e &, X=X’ + (X, M> belongs to <2, On the other
hand, X = X — (X, M) is in & Therefore X’ — X = (X, M) — (X', M)
is also a P-continuous local martingakle with finite variation on each finite
interval. This implies that X’ = X. Thus the lemma is proved.

J. H. Van Schuppen and E. Wong [14] tried to extend this trans-
formation to right continuous local martingales, and the generalization
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was completely established ]Aoy E. Lenglart [9]. Note that “the stochastic
integral H-X relative to dP” coincides with “the stochastic integral of
H with respect to the semi-martingale X relative to dP”.

ProrosITION 1. If Z*e L', then for any Xe . &~
1 X 132 < @E[Z*1)"{| X /oo -

Proor. Let X e BMO and choose a non-decreasing sequence (T,) of
stopping times with lim, T, = « such that X7»e¢ H? for every n = 1.
Then for each n we have

BUR)e] = E[Zy(X)n] = E[S:"Z,,d<X>s] — EKZ-X, X)n.]

=v2E (| 2a0.)" |1 Xlsso ,

which follows from Lemma 1. The expectation on the right hand side
is smaller than

g 2| 2.ax.)" | = B1zE| | 2,400, |
= B[Z*1"E[(X)r,]" .

Therefore, as E[(X),,] < =, we have E[(X); ]"* <1V 2E[Z*]"*|| X||syos
for n = 1. Letting »— « and using Fatou’s lemma, we are done.

Proposition 1 shows that if Z*e L', then the mapping i: BMO — H®
is continuous.

PROPOSITION 2. Z*e L' if and only if Me H®.

Proor. We define log*x, as usual, as 0 if x <1 and logx if 2 = 1.
We begin with the proof of the “if” part. From the definition of dP
it follows that

E[Z_log" Z.] = Ellog* Z.] = E[M,, — (M>./2; Z.. =1] .
By Lemma 7 the right hand side is
E[M., + (M2 Z., = 1] < E[(MY. " + B2 .

Therefore, if Me H?, we have Z*e L' by the classical inequality of Doob.
To see the “only if” part, we need the inequality:

E[Z.log Z.] < 4/ 2x(E[Z*] + 1),

which follows from a result given by S. Watanabe [15]. Following his
idea, we show this inequality. Firstly, let us choose Y in & in such
a way that U, = Z, + 1Y, is a conformal martingale; that is, (Z) = (Y)

1/2
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and (Z, Y) =0. Then V,=U,logU, is also a conformal martingale, for
f(z) =zlog z is analytic in D ={z; Re2>0}. Therefore, ReV,= Z,log|U,|—
Y, argU, is a continuous local martingale. By using the stopping argument
we may assume that Z,log|U,| and Y, are in H>.. Then E[Z_log|U.|] =
E[Y_.argU.,]. In addition, U,e D, hence |argU.| < 7/2. We now apply
Davis’ inequality:
E[Z,log Z,] = E[Z,log |U,|] = (x/2)E[|Y..]]
< 2V 2nE[{Z) < 4V 2xE[(Z — 1)*] =< 4V 2r(E[Z*]+ 1) .

Therefore, if Z* e L', then E[Z_log Z.] < <.

Now we are going to show that Me H?. The stopping arAguAment
enables us to assume that M is P-uniformly integrable. Then, as E[M.] =
0, we have

E[(IT).) = 2E[M,, + {M)../2] = 2E[Z.(M., — {M)..]2)] = 2E[Z..log Z.] ,
and we are done.

Now let .+~ = N,>s H?. As is well-known, if 1 < p < o, H? coin-
cides with the class of all L*-bounded continuous martingales.

PROPOSITION 3. Assume that M e BMO. Then Xe_+" if and only
if Xe 1

PrOOF. By the corollary to Theorem 1, Z is an L*-bounded martingale
for some p, > 1. It follows from Holder’s inequality that for each X

E[(X)2] = BIZ.AX)2) < || Zallo KX gy »
where 1/p, + 1/g, = 1. This implies that if Xe._#; then Xe_s:

To see the converse, it is enough to show that M e BMO. As Me
BMO, according to Theorem 1, it satisfies the reverse Holder inequality,
that is, E[ZY¢|F,] < C.Zi* for some ¢ > 0. This can be rewritten as
follows:

E[(W/W.)|F] =C..

Namely, W satisfies the (A4,) condition relative to dP for each p>1
with 1/(p — 1) < e. Consequently, using again Lemma 5, we obtain the
fact that M € BMO~. This completes the proof.

It should be noted that Proposition 3 does not hold without the
condition “Me BMO”. In the following we give such an example.

ExAMPLE 7. Consider a one dimensional Brownian motion B=(B,, F,)
starting at 0 and defined on a probability space (2, F,dy). Let T =
inf(¢; B,=1). Then the process B’ stopped at T is a continuous martingale,
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which is not uniformly integrable with respect to dy. Clearly, the process
Y given by Y, =exp(B;ar — (¢t A T)/2) is a bounded martingale. So
dP =Y_dy is a probability measure on 2. Now let M = —B" + (B")
and Z, = exp(M, — {M),/2). The process Z is a P-uniformly integrable
martingale with Z, = 1/Y,, and the weighted probability measure dpP =
Z AP equals dy¢. By Lemma 7, M is a P-local martingale with <{M) =
(B"y. Let us consider the P-local martingale X = M/1v/2. Then from
the fact B, = 1 follows

Blexp((X).)] = | exp((M)./2) exp(B; — (Byr/Dix

= SOGXP(BT)dﬂ =e.

That is, Xe._#. However, X = M)/ 2= —B’A//2 is not uniformly
integrable with respect to dyp. It follows from Proposition 3 that M is
not a BMO-martingale.

P}}OPOSITION 4. ¢:X— Z2o X is an isometric isomorphism of H*
onto H*.

Proor. Let Xe H?>. Lemma 7 says that X is in .2 Let T, 1 oo
be stopping times such that X"»ec H? for every m. Since W,=1/Z, is
a uniformly integrable martingale with respect to dP, we have

E[(Z7"0 R)r,) = B | " Wd(X), | = BIW:,(Dr,] = BKX),],
for n=1.

Letting » — <« and using the monotone convergence theorem, we obtain
E[(ZX> ] = E[{X).] < o, so that Z72o X e H*. This implies that
the mapping ¢: H* — H? given by ¢(X) = Z720 X is well-defined. Clearly
it is linear and injective. From the above calculation it follows that
|6(X) |72 = || X||g2>. Thus, it remains to prove the surgectivity. To see
this, let X’ e A*. By Lemma 7, U = X’ and (U) = (X’) for some Ue &
We now set X = Z'2oU and choose stopping times T, 7 - such that
U™ e H* for every n. Then we have

Tn
EI(XOr,] = B| | 2,40, | = BlZ:, U]
= E[(X"),,] < BE[KX").].
From Fatou’s lemma it follows that X e H®. Moreover, we have
$(X) = ZVo(ZoU)=U=X".

Consequently, the mapping ¢ is surjective.
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Let 1 < p < . In particular, if Z_ is bounded, then i: X X isa
continuous linear mapping of H? into H?. Therefore, it is evident thAat
if 0 <c< Z,_ <C, then the mapping ¢ is an isomorphism of H? onto H”.

THEOREM 2. If Me BMO, then i: X — X is an isomorphism of BMO
onto BMO™.

Proor. Let MeBMO. By Lemma 5, Z satisfies (4,) for some p > 1.
We now need the following inequality due to Kazamaki [8]:

HXHBMO—<—CpHXHBM0A ’ for Xe &~.

To show this, let us assume that 0<||X ||syor < e, and set a =(2p||X||axo~) "
As |1V ap X ||5xor = 1/2, Lemma 4 yields

Elexp (ap((X). — (X)) F]<2.
By using a simple inequality z < e¢°*/a and Holder’s inequality, we have

E(X) o — (Xu|F] = El(Z:] Z..)""(Z.| Z)"" exp(a({ X Do — (X)) | F']/a
= El(Z/Z.)/" " | F.]"
X E[(Z./Z,) exp(ap({X)e — (XD )| F.]"[a ,

with 1/p + 1/g = 1. Clearly, 1/a = 2p||X|wo~. Since Z satisfies (4,),
the first expectation on the right hand side is smaller than some constant
K,. The second one can be written as Elexp(ap({X)., — (X>))| F,], which
is bounded by 2. Thus, || X||5x0 = C, || X ||3mox.

As mentioned in the proof of Proposition 8, if MeBMO, then Me
BMO". Therefore we get ¢|| Xm0 =< || X |lsror = Cl| X|lgwo for Xe &~
Here, the positive constants ¢ and C do not depend on X. Then, com-
bining this inequality with Lemma 7, we see that the spaces BMO and

BMO™ are isomorphic via the mapping i.

We remark that, without the condition “M < BMO”, the conclusion
of Theorem 2 no longer follows. In the next theorem, let 1< p <
and H” = BMO. We denote by ¢ the exponent conjugate to »; namely,
g=co if p=1land ¢g=1if p = .

THEOREM 3. j: X — X 45 a continuwous mapping of H? into H? if
and only if 4: X — Z7'X is a continuous mapping of H? into Ho.

ProOF. We deal only with the case p = c; the proof for the other
cases is similar. Firstly,A let us assume that the mapping j is continuous,
that is, || Yllsxo = [|J1] || Y ||sxo~ for every Y e BMO~. Let Xe H'and Ye
BMO™. Since W, = 1/Z, is a uniformly integrable martingale with respect
to dﬁ, we have
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BZ X, Dl = B[ W&, D3, | = BIWAX, Yyl = BUX, V.1

By Lemma 1 this is smaller than /2| X||s:||Y|/swo. Therefore, from
Lemma 2 follows the inequality

NZ7 o X <V 2NF I 1 Xl

for every Xe H'.

Conversely, suppose that : X — Z'oX is a continuous mapping of
H' into A'. Let Xe H'and YeBMO". By using the stopping argument
we may assume that Ye BMO. Then, by the same calculation as above,
we have

E(X, Y).)=EKZ "X, V.1 = V21 Z7 o X ||| ¥ ]laxo-~
= V29l 1 Xzl ¥ [lsxon -
In addition, by Lemma 3,
1Y |lswo < SUp{E[Y, X).]; Xe H', || X | < 1}

= 1/—2—”"/’“ ”?”BMOA .
Thus our claim is established.

The mapping j defined above is nothing else but the inverse of the
mapping i. Combining Theorems 2 and 3, we get:

COROLLARY. If Me BMO, then the spaces H' and H* are isomorphic
via the mapping .

We remark that it is impossible to remove the condition “M ¢ BMO”.
In other words, Z7'o X ¢ H' for some X e H'. Here is an example.

ExaMPLE 8. Let S, B=(B,, F,) and (2, F, P) be as in Example 3, except
that we use here the distribution dy = I, .,(w)u*du of S instead. Let
M = BS. Then it is immediate to see that Z, = exp(M, — (M),/2) is a
uniformly integrable martingale. As E[{(M)!}] = ru“”idu = 2, we have
Me H*. But it does not belong to H?, for E[(M).] = S u'du = . By

Proposition 38, M¢ H*? if and onlyAif W* is notAintegralble with respect
to dP. In addition, W =1 — WoM, and so WolM = Z o M¢& H*.

Finally, we point out the fact thati: X — X is not always a continuous
mapping of H? onto H?, even if M is a BMO-martingale. Indeed, if the
mapping i were continuous, then by Theorem 8 H?s X —» ZoXe H? must
be continuous. This would imply that if X € H? then Z-X e H?. However,
for the BMO-martingale M = BS considered in Example 8, Z- M¢ H>.
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5. A generalization of Doob’s inequalities. In this section, let us
assume that M e BMO. Then by Theorem 1 the process Z satisfies the
reverse Holder inequality: E[ZL*|F,] < C.Zi* for some &> 0. By
combining this result with Lemma 7, we can give a generalization of
the classical inequalities due to J. L. Doob. The inequality (1) given in
the following theorem was essentially proved by M. Izumisawa and N.
Kazamaki [5].

THEOREM 4. (1) Let p > 1 + 1/e. Then the inequality
B[ sup | X, — (X, ¥),[? | < C,.. sup B[ X, — <X, M).J"]

18 valid for all Xe &
(2) In particular, if Z. /Z, < C, then there exists a constant ¢ > 0
such that the tnequality

B[ sup| X, — (X, M| |
< ef(e = 1)+ (ef(e — 1)) sup B| X, — (X, M, [log" | X, — <X, M),

18 valid for all Xe &

PROOF. We begin with the proof of (1). Let Xe ¢ and 0 <4 <
P — (@1 +1/e). Thenl<p,=(®—0)/(p—0—1)<1l-+eandqg,=n/(D—1)=
p—6&>1. It follows from the assumption that E[Z%»|F,] < C,.Z.
Lemma 7 says that X=X - Q(, M e;?.A ByAu§ing the stoppAing argu-
ment we may assume that X ¢ H?. Then X ,=K[X.|F,|=F[Z .X./Z,|F,],
and so by Holder’s inequality with exponents p, and ¢, we obtain:

| X" < B[(Z./Z)| F " E[| X" F)]
< C,.E[| X " |F].

We now apply the classical theorem of Doob to the martingale
E[|X.|"°| F,] to obtain

E[SUPlXtI"] = C,,,EE|:sup E[l)fw;rqpt]p/m—m:l
= G,.Bl| X.I"] .

Finally, we show (2). For simplicity, we may assume that X is a
uniformly integrable martingale relative to dP. Then from the assump-
tion it follows that | X,| = |E[X.|F\]| < E[Z..|X.|/Z,|F]1<CE[| X..| | F),
and so by applying the theorem of Doob to the martingale E[wal | F),
we obtain (2).

If Z./Z, < C, then the inequality (1) is valid for any » >1 and M
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belongs to the class BMO. The classical inequalities of Doob correspond
to the case M = 0.
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