THE DUAL SPACE OF THE SPACE BMO FOR A STOCHASTIC POINT PROCESS

HIROAKI MORIMOTO

(Received October 23, 1978, revised March 13, 1979)

1. Introduction. Let (Ω, F, P) be a complete probability space endowed with a non-decreasing right continuous family $(F_t)_{t\geq 0}$ of sub σ -fields of F with $F = \bigvee_{t\geq 0} F_t$ such that F_0 contains all null sets. Let λ be a non-negative predictable process such that $P(\int_0^t \lambda_s ds < \infty) = 1$ for all t. An F_t -adapted process $N = (N_t)$ is called a stochastic point process with the intensity λ if N has right continuous paths taking values in $Z_+ = \{0, 1, 2, \cdots\}$ with $N_0 = 0$, $\Delta N_t = N_t - N_{t-} = 0$ or 1, and if $\hat{N}_t = N_t - \int_0^t \lambda_s ds$ is a local martingale. Throughout, we assume that the stochastic point process N with the intensity λ satisfies the following conditions:

(S) $F_t = \sigma(N_s, s \leq t)$, i.e., F_t is the completion of the σ -field generated by $(N_s, s \leq t)$,

(B) \hat{N} belongs to the space BMO.

Then we can define the finite measure μ on the σ -field Ξ of all predictable subsets A of $[0, \infty) \times \Omega$ by

$$(\ 1 \) \qquad \qquad \mu(A) = E iggl[\int_0^\infty I_A \lambda_s ds iggr] \, .$$

We shall adopt the following notations and definitions:

(2) $L^{1}(\mu)$ denotes the set of all predictable processes f with $||f||_{L^{1}(\mu)} < \infty;$

(3)
$$L^{\infty}(\mu) = \{f \in L^{1}(\mu); ||f||_{L^{\infty}(\mu)} < \infty\};$$

(5)
$$U(f)(t) = \int_0^t f_s d\hat{N}_s \quad \text{for} \quad f \in L^1(\mu) ;$$

H. MORIMOTO

(6)
$$V(f)(t) = \int_0^t f_s d\hat{N}_s \text{ for } f \in L^\infty(\mu)$$
;

where the integrals in (5) and (6) are to be interpreted as Stieltjes-Lebesgue integrals.

Our aim is to prove the following theorems.

THEOREM 1. U is an isomorphism of $L^{1}(\mu)$ onto H^{1} such that $(\sqrt{2} || \hat{N} ||_{BMO})^{-1} \leq || U || \leq 1$. Furthermore, V is an isomorphism of $L^{\infty}(\mu)$ onto BMO such that $1/\sqrt{2} \leq || V || \leq \sqrt{10} || \hat{N} ||_{BMO}$.

Now, let $\nu \in \Phi$ and define W by

(7)
$$W(\nu)(Y) = \int_{[0,\infty]\times \mathcal{Q}} V^{-1}(Y) d\nu , \qquad Y \in BMO ,$$

where V^{-1} is the inverse of V and the integral is a Radon integral.

THEOREM 2. The dual space BMO^{*} of BMO is Φ . More precisely, the mapping $W: \Phi \to BMO^*$ given by the formula (7) is isomorphic and we have $(\sqrt{10} || \hat{N} ||_{BMO})^{-1} \leq || W || \leq \sqrt{2}$.

The martingale representation theorem obtained in [1] plays an important role in our discussion. The reader is assumed to be familiar with the martingale theory as is given in [1] and [5].

2. Preliminaries. (a) The spaces H^1 and BMO. Let L denote the class of all right continuous local martingales X over (F_t) with $X_0 = 0$. Every $X \in L$ has a unique decomposition $X_t = X_t^\circ + X_t^d$, where X° is the continuous part of X and X^d is the purely discontinuous part of X, orthogonal to all continuous local martingales. Let $\langle X^\circ, X^\circ \rangle$ denote the continuous increasing process such that $(X^\circ)^2 - \langle X^\circ, X^\circ \rangle \in L$. For every $X \in L$, [X, X] denotes the process defined by $[X, X]_t = \langle X^\circ, X^\circ \rangle_t + \sum_{s \leq t} (\Delta X_s)^2$, where the summation is taken over all points of discontinuity of X and $\Delta X_t = X_t - X_{t-}$. For $X, Y \in L$, we set $[X, Y] = \{[X + Y, X + Y] - [X - Y, X - Y]\}/4$. Let H^1 denote the Banach space of all $X \in L$ such that $||X||_{H^1} = E[[X, X]_{\infty}^{1/2}] < \infty$. Let us denote by $||X||_{BMO}$ the smallest positive constant c such that c^2 dominates a.s., $E[[X, X]_{\infty} - [X, X]_{T-}|F_T]$ for every stopping time T. The space BMO is the Banach space of all $X \in L$ with $||X||_{BMO} < \infty$.

LEMMA 1. Let Y be a square integrable martingale. Then

$$||Y||_{\text{BMO}} \leq \sqrt{5} \sup \{E[[X, Y]_{\infty}]; ||X||_{H^1} \leq 1\}.$$

The proof is given in [4].

520

(b) The stochastic point process. Let N be a stochastic point process with the intensity λ . Then we have the following.

LEMMA 2. Let f be a predictable process.

(i) If $P\left(\int_0^t |f_s|\lambda_s ds < \infty\right) = 1$ for all t, then the process $\left(\int_0^t f_s d\hat{N}_s\right)$ belongs to L.

(ii) If $E\left[\int_{0}^{\infty} |f_s| \lambda_s ds\right] < \infty$, then the process $\left(\int_{0}^{t} f_s d\hat{N}_s\right)$ is a uniformly integrable martingale.

For the proof of (i), see [3, Proposition 2] or [2], and (ii) follows from (i).

We note that $[\hat{N}, \hat{N}]_T = N_T$ and $0 \leq \Delta \hat{N}_T = \Delta N_T \leq 1$ for any stopping time T. If \hat{N} is a uniformly integrable martingale, we have

$$egin{aligned} &E[[\hat{N},\,\hat{N}\,]_{\infty}-[\hat{N},\,\hat{N}\,]_{T-}|\,F_T]=E[N_{\infty}-N_{T_-}|\,F_T]\ &=E[\hat{N}_{\infty}-\hat{N}_{T-}|\,F_T]+Eiggl[\int_T^{\infty}\lambda_s ds\,|\,F_Tiggr]\ &= arDelta\hat{N}_T+Eiggl[\int_T^{\infty}\lambda_s ds\,|\,F_Tiggr]\,. \end{aligned}$$

Therefore, the stochastic point process N with the intensity λ satisfies the condition (B) if and only if there exists a positive constant d such that for any stopping time T,

$$(8) E\left[\int_{T}^{\infty}\lambda_{s}ds|F_{T}\right] \leq d^{2}.$$

This implies that μ of (1) is a finite measure.

3. Example. Here we give an example of a stochastic point process N with the intensity λ , which satisfies the conditions (S) and (B).

Let *M* be a Poisson process, i.e., a stochastic point process with the intensity 1, and let $G_t = \sigma(M_s, s \leq t)$. Define the process *N* by $N_t = M_{t \wedge 1}$, where $t \wedge 1 = \min(t, 1)$. Let $F_t = \sigma(N_s, s \leq t)$ and $\lambda_t = I_{[0,1]}(t)$. Then *N* and λ are as required. Indeed, since

$$\widehat{N}_t = N_t - \int_{_0}^t \lambda_s ds = M_{t \wedge 1} - t \wedge 1$$
 ,

it is easy to see that N is a stochastic point process with the intensity λ over (G_t) . By the definition of M, the process $(M_{t\wedge 1} - t \wedge 1)$ is a G_t -martingale. Hence \hat{N} is an F_t -martingale, because $F_t \subset G_t$. Thus the condition (S) is satisfied. Furthermore, for any stopping time T,

$$E\left[\int_{_T}^{_\infty} \lambda_s ds \,|\, {F}_{_T}
ight] \leqq 1 \;.$$

Consequently, \hat{N} belongs to BMO over (F_i) by (8).

4. Proof of Theorem 1. First, we show that U is a continuous linear mapping of $L^1(\mu)$ into H^1 . For this purpose, let $f \in L^1(\mu)$. By Lemma 2, the process $\left(\int_0^t |f_s| d\hat{N}_s\right)$ is a uniformly integrable martingale. Since $\Delta U(f)(t) = f_t \Delta N_t$, we have

$$egin{aligned} &\|U(f)\|_{H^1} = E[[U(f),\,U(f)]^{\scriptscriptstyle 1/2}_\infty] = Eiggl[\left(\sum_s \,(f_s arDelta N_s)^2
ight)^{\scriptscriptstyle 1/2}iggr] \ &\leq Eiggl[\sum_s \,|f_s|\,arDelta N_siggr] = Eiggl[\int_0^\infty \,|f_s|\,ard N_siggr] \ &= Eiggl[\int_0^\infty \,|f_s|\,\lambda_s dsiggr] = \|f\|_{L^1(\mu)} \;. \end{aligned}$$

Thus $||U|| \leq 1$, and the linearity of U is obvious. On the other hand, by the martingale representation theorem [1, Theorem 3.4], every $X \in H^1$ has a representation $X_t = \int_0^t f_s d\hat{N}_s$, where f is a predictable process such that $P\left(\int_0^t |f_s|\lambda_s ds < \infty\right) = 1$ for all t. Define $X' \in L$ by $X'_t = \int_0^t |f_s| d\hat{N}_s$. Then we have $[X', X']_t = \sum_{s \leq t} (|f_s| \Delta N_s)^2 = [X, X]_{t'}$ which implies that $||X||_{H^1} = ||X'||_{H^1}$ and $X' \in H^1$. By Fefferman's inequality [5], we have

$$\begin{array}{ll} (\,9\,) & \qquad ||\,f\,||_{L^{1}(\mu)} = E\Big[\int_{0}^{\infty}|\,f_{s}\,|\,dN_{s}\Big] = E\Big[\sum_{s}\,(|\,f_{s}\,|\,\varDelta N_{s})(\varDelta N_{s})\Big] \\ & = E[[X',\,\hat{N}\,]_{\infty}] \leq \sqrt{2}\,\,||\,X||_{H^{1}}||\,\hat{N}\,||_{\mathrm{BMO}}\,, \end{array}$$

so that $f \in L^1(\mu)$ and X = U(f). Namely, $U: L^1(\mu) \to H^1$ is isomorphic, and $(\sqrt{2} || \hat{N} ||_{BMO})^{-1} \leq || U ||.$

Next, we show the latter part of the theorem. Let $g \in L^{\infty}(\mu)$ and $V(g)(t) = \int_{0}^{t} g_{s} d\hat{N}_{s}$. Let $X \in H^{1}$ and $f = U^{-1}(X) \in L^{1}(\mu)$, where U^{-1} denotes the inverse of U. Then we have

$$egin{aligned} &E[[X,\ V(g)]_{\infty}] \leq E[|[X,\ V(g)]_{\infty}|] = Eigg[igg|_{0}^{\infty}f_{s}g_{s}dN_{s}igg|igg] \ &\leq Eigg[\int_{0}^{\infty}|f_{s}g_{s}|dN_{s}igg] = Eigg[\int_{0}^{\infty}|f_{s}g_{s}|\lambda_{s}dsigg] \ &\leq ||f||_{L^{1}(\mu)}||g||_{L^{\infty}(\mu)} = ||U^{-1}(X)||_{L^{1}(\mu)}||g||_{L^{\infty}(\mu)} \ &\leq \sqrt{2}\ ||\hat{N}||_{ ext{BMO}}||X||_{H^{1}}||g||_{L^{\infty}(\mu)} \ , \end{aligned}$$

which follows from (9). Since $E[[V(g), V(g)]_{\infty}] = E\left[\int_{0}^{\infty} g_{s}^{2}\lambda_{s}ds\right] < \infty$, V(g) is a square integrable martingale. It follows from Lemma 1 that $||V(g)||_{BMO} \leq \sqrt{5} \sup \{E[[X, V(g)]_{\omega}]; ||X||_{H^{1}} \leq 1\} \leq \sqrt{10} ||\hat{N}||_{BMO} ||g||_{L^{\infty}(P)}.$ Therefore, V is a continuous linear mapping of $L^{\infty}(\mu)$ into BMO such that $||V|| \leq \sqrt{10} ||\hat{N}||_{BMO}$. To see that $L^{\infty}(\mu)$ and BMO are isomorphic under the mapping V, let $Y \in BMO$ and set $C(f) = E[[U(f), Y]_{\infty}]$ for every $f \in L^{1}(\mu)$. Then by Fefferman's inequality and the former part,

$$|C(f)| \leq \sqrt{2} ||U(f)||_{H^1} ||Y||_{ ext{BMO}} \leq \sqrt{2} ||f||_{L^{1(\mu)}} ||Y||_{ ext{BMO}}$$
 ,

from which it follows that C is a bounded linear functional on $L^{1}(\mu)$. Hence, there exists $g \in L^{\infty}(\mu)$ such that $C(f) = \int fgd\mu$ for all $f \in L^{1}(\mu)$. Namely,

$$C(f) = E\left[\int_0^\infty f_s g_s \lambda_s ds
ight] = E\left[\int_0^\infty f_s g_s dN_s
ight] = E\left[\left[U(f), V(g)
ight]_\infty
ight], \quad f\in L^1(\mu),$$

and by the definition of $C(\cdot)$ we have $E[[X, V(g)]_{\infty}] = E[[X, Y]_{\infty}]$ for all $X \in H^1$. Therefore, Y = V(g). Furthermore, if $f \in L^1(\mu)$ and $g \in L^{\infty}(\mu)$, then, as $\left| \int fg d\mu \right| = |E[[U(f), V(g)]_{\infty}]| \leq \sqrt{2} ||f||_{L^1(\mu)} ||V(g)||_{BMO}$, we have

(10)
$$||g||_{L^{\infty}(\mu)} = \sup\left\{\left|\int fg d\mu\right|; ||f||_{L^{1}(\mu)} \leq 1\right\} \leq \sqrt{2} ||V(g)||_{BMO}$$

This implies that $1/\sqrt{2} \leq ||V||$. Thus the theorem is proved.

5. Proof of Theorem 2. Let $\nu \in \Phi$ and $Y \in BMO$. Then it is clear that $W(\nu)$ is linear, and by (10) we have

$$\|W(
u)(Y)\| \leq \|V^{-1}(Y)\|_{L^{\infty}(\mu)} \|
u\| \leq \sqrt{2} \|Y\|_{ ext{BMO}} \|
u\|$$
 ,

which implies that $W(\nu) \in BMO^*$ and $||W|| \leq \sqrt{2}$. On the other hand, if $B \in BMO^*$, then from Theorem 1 it follows that for every $g \in L^{\infty}(\mu)$,

$$\|B \cdot V(g)\| \le \|B\| \|V(g)\|_{{}_{\operatorname{BMO}}} \le \|B\| (\sqrt{10} \|\hat{N}\|_{{}_{\operatorname{BMO}}} \|g\|_{L^{\infty}(\mu)}) \;.$$

Namely, $B \cdot V$ is a bounded linear functional on $L^{\infty}(\mu)$. Then there exists $\nu \in \Phi$ such that

$$B \cdot V(g) = \int_{[0,\infty) imes \mathcal{Q}} g d
u = W(
u) \cdot V(g) ext{ for all } g \in L^\infty(\mu) \;.$$

Therefore, $B = W(\nu)$ on BMO by Theorem 1. Furthermore, we have by Theorem 1,

$$\||v\|| = \|W(v) \cdot V\| \le \|W(v)\|(\sqrt{10} \|\hat{N}\|_{{}_{\operatorname{BMO}}})$$

so that $(\sqrt{10} || \hat{N} ||_{BMO})^{-1} \leq || W ||$. Thus the theorem is established.

REFERENCES

 R. BOEL, P. VARAIYA AND E. WONG, Martingales on jump processes I, SIAM J. Control 13 (1975), 999-1021.

H. MORIMOTO

- [2] P. BRÉMAUD, The martingale theory of point processes over the real half line, Lecture Notes in Economics and Mathematical Systems 107, Springer-Verlag, (1974), 519-542.
- [3] C. DOLÉANS-DADE AND P. A. MEYER, Intégrales stochastiques par rapport aux martingales locales, Séminaire de Probabilités IV, Lecture Notes in Math. 124, Springer-Verlag, (1970), 77-107.
- [4] P. A. MEYER, Complément sur la dualité entre H¹ et BMO, Séminaire de Probabilités IX, Lecture Notes in Math. 465, Springer-Verlag, (1975), 237-238.
- [5] P. A. MEYER, Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer-Verlag, (1976), 245-400.

Tôhoku Institute of Technology Sendai, 982 Japan