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0. Introduction. Let / be an isometric immersion of an ^-dimen-
sional conformally flat Riemannian manifold M, with n ^ 4, into the
(n + p)-dimensional Euclidean space En+P. We shall investigate the
character of isometric immersions / for which all sectional curvatures
of M are positive. In this paper we generalize results due to O'Neill
[4], In Theorem 1, we give a fairly complete description of the second
fundamental form tensor of / when p ^ n — 3, which shows that each
tangent space TX(M), xeM, contains an umbilic space %SX of dimension
r >̂ n — p (that is, all directions in <%sβ have the same normal curvature).
Theorem 2 asserts that the umbilic distribution ^ in some open set may
be integrated to give submanifolds umbilic in M and in En+P.

The author would like to express his sincere gratitude to Professors
Y. Ogawa, S. Tachibana and H. Wakakuwa for their valuable advice
and encouragement.

1. Notation and some formulas of Riemannian geometry. Let
f:M-+En+p be an isometric immersion of an ^-dimensional conformally
flat Riemannian manifold M, with n ^ 4, into the (n + p)-dimensional
Euclidean space En+P. For all local formulas and computation we may
consider / as an imbedding and thus identify x e M with f(x) e En+P.
The tangent space TX(M) is identified with a subspace of Tx(En+p). The
normal space T*1 is the subspace of Tx(En+p) consisting of all Xe Tx(En+p)
which are orthogonal to TX(M) with respect to the Euclidean metric
< , •>. Let V (respectively v) denote the covariant differentiation in M
(respectively En+P) and let VL denote the covariant differentiation in the
normal bundle. We will refer to V as the tangential connection and to
F 1 as the normal connection.

The second fundamental form a is defined by

Γ, Γ ) ,

where X and Y are vector fields tangent to M. Let R be the Rieman-
nian curvature tensor of M. We then have the Gauss equation:
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(Gl) <α(F, Z\ a(X, W)) - <α(X, Z),a{Y, W)) = (R(X, Y)Z, W)

for all X, Y, Z, WeTx(M). Let Q and k be the Ricci tensor of type
(1, 1) and the scalar curvature of M, respectively, and ψ the tensor de-
fined by

ψ(X, Y) = (l/(n - 2)){(QX, Y) - (k/2(n - 1))<X, Y)}

for X, YeTx(M). Since M is a conformally flat Riemannian manifold,
the Gauss equation may be written as

(G2) <α(Γ, Z\ a(X, W)) - <α(X, Z\ a(Y, W)>

= ψ(Y, z){x, wy - ψ{x, z){γ, wy
+ <F, Z)ψ(X, W)- <X, Z)ψ(Y, W)

for X, Y, Z, We TX(M). We define the difference function A of a by

Δ{Xy Y) = A{π) = {(a(X, X), α(Γ, Γ)> - ||α(X, F)||2}/||X Λ F | | 2 ,

where X and F are linearly independent vectors in a plane π tangent
to M at x, and | |XΛ F | | is the area of the parallelogram spanned by
X and Y. The difference function is given by the Gauss equation:

(G3) ||XΛ Y\MX, Y) = <a(X, X), a(Y, Y)) - \\a(X, Γ)| | 2

= ψ(X, X) | |Γ | | 2 + ψ(Y, F) | |X | | 2 - 2f(X, Γ)<X, Y) ,

where X and Y span a plane tangent to M at α.
For the second fundamental form α we define the covariant deriv-

ative, denoted by F|α, to be

(F?α)( Y, Z) = Γi(α( F, ^)) - ^(^x Y, Z) - α( Γ, VXZ) ,

where X, F, Z are vector fields of M. Then the Codazzi equation is

(Cl) (Fία)(Γ, Z) = (F?ά)(X, Z)

for all X, F, ^ 6 Γβ(Λf). Let ^, , ξp be orthonormal normal vectors at
x. Extend ξk's (1 <^ k <* p) to orthonormal normal vector fields defined
in a neighborhood of x and define — AkX to be the tangential component
of Fχξk for XeTx(M). AkX depends only on ξk at x and X. We call
t h e Ak's t h e second fundamental forms associated with ξl9 •• ,fp. I f
ίi> *••>£*> a r e orthonormal normal vector fields in a neighborhood of xf

they determine normal connection forms skl(l ίί k, I ^ p), in a neighbor-
hood of x, by

for X tangent to M. skl's are skew-symmetric with respect to indices k
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and I. The Codazzi equation (Cl) is also expressed as

(C2) {VxAh)Y- Σ,skl(X)AιY = (FγAk)X - Σ skl(Y)AιX (1 ^ fc ^ p)

for X and Y tangent to M.

2. The second fundamental form at one point. The following
useful result is due to Chern and Kuiper [1],

LEMMA 1. Let ^K be the subspace {XeTx(M)\a(X, Y) = 0 for all
YeTx(M)} of TX(M). If A = 0, then there exists a vector Z e ΛlL such
that a(Z, •) is one-to-one from ^/V~X

L to Tx. Hence d i m ^ ς ^ n — p.

We now define a subspace ^/x of TX(M) to be umbilic relative to a
provided dim ^x ^ 2 and a(X, X) is constant for all unit vectors X in
*%yx. If the whole space TX(M) is umbilic relative to a, we say that
the point x is umbilic. It is easy to see that if <%fx is an umbilic sub-
space, then a(X, Y) = 0 for any two orthogonal vectors X, Y in ^/x,
and thus the difference function Δ is constant and non-negative on
planes in <Z/X% Recall that a non-zero vector XeTx(M) is asymptotic
provided a(X, X) = 0. As is well known, if all sectional curvatures of
M are positive, then a has no asymptotic vector.

Denote by h the real-valued function

h:X->\\a(X, X) | | 2 -2ψ(X, X)

on the unit sphere in TX(M).

LEMMA 2. If U is a critical point of the function hf then we have

(a(U, V), a(U, X)) - ψ(U, X) = 0

for all vectors XeTx(M) orthogonal to U.

PROOF. Let Y be the curve in the unit sphere in TJJM) such that
Y(t) = cosίC7 + sinίX Then we have (d/dt)h(Y(t))\t=0 - 4«α(l7, U),
a(U, X)) — ψ(U, X)). Since U is a critical point of h, our assertion is
proved.

LEMMA 3. If U is a minimam point of h, and X is a unit vector
orthogonal to U. Then we have

PROOF. For the curve Y as above, we have (d2/dt2)h(Y(t))\t=0 =
4(311 α( IT, X ) | | 2 - h(U)) by using (G3). Now U is a minimum point of h,
hence we have the desired inequality.

LEMMA 4. Let U be a critical point of h. Suppose that the sub-
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space &— Ker a(Uf )Π U1 of TX(M) has dimension at least two. Let 7
be the (umbilic) symmetric bilinear function such that 7(X, X) = a(U,U)
for all unit vectors X in TJJM). Then
(1) the symmetric bilinear function a* — a — 7 on & has its values
in a(U,&*)Lc:T£, where & = [ / 1 Π^ p l , and
( 2 ) the difference function Δ* of α* on & has the constant value h(U).

PROOF. (1) It suffices to prove that if X and Y are two orthogonal
unit vectors in £?, and Ze^, then a(U, Z) is orthogonal to both
α*(X, X) and α*(X, Y). By (G2) and Lemma 2, we have <α*(X, X),
a(U, Z)) = 0. Since & is umbilic relative to 7, we have α*(X, Y) =
α(X, Y). Then <α*(X, Y), a(U, Z)} = 0 follows from (G2).
(2) For X and Y as above, a(U, X) = a(U9 Y) = 0. Making use of
(G3), we have

Δ*{Xf Y) = <α*(X, X), α*(Γ, Γ)> - \\a*(X, F)| | 2 - z/(X, F) - Δ{U, X)
- Δ(U, Y) + \\a{U, UW = \\a(U, U)\\> - 2f(U, U) - h(U) .

LEMMA 5. Let U be a minimum point of the function h. Then
(1) we have ψ(U, U) ^ ψ(X9 X) for any unit vector XeTx(M) such
that \\a(U, U)\\ = \\a(X, X)\\, and
(2) if p ^ n — 3, we have ψ(Uf U) — ψ(X, X) for any unit vector

such that a{U, U) = a(X, X).

PROOF. (1) Since U is a minimum point of h, we have
\\a(U, U)\\2 - 2f(U, U) ^ \\a(X, X)\\2 - 2ψ(X, X) for Xe TX(M). Thus
ΉU, U) ^ f(X, X) follows from \\a(U, U)\\ = \\a(X, X)\\.
(2) Let X be a unit vector in ^ . The condition p <ί n — S implies
dim Ker a(X, ) ^ 3. Hence there exists a unit vector yeKerα(X, •)
orthogonal to both U and X. Using the assumption a(U, U) — a(X, X)
and (G3), we have φ(X, X) + ψ(Y, Y) = <α(X, X), a(Y, Γ)> - <a(U, U),
α(Γ, Γ)> = \\a(U, YW + KU, U) + ψ(Y, Y). Hence 0 ^ ||α(tΓ, F) | | 2 =
f(X, X) - f (U, ϋ). But f (X, X) -ψ(U,U)^0 by (1) above. Thus

, U).

LEMMA 6. Suppose that M has positive sectional curvatures and
that p ^ n — 3. If U is a minimum point of hf then h(U) — 0. Fur-
thermore, a(U, •) is zero on the orthogonal complement of U in TX(M).

PROOF. Since all sectional curvatures of M are positive, a has no
asymptotic vector. The condition p ^ n — 3 implies dim Ker a(U, •) ̂  3.
Hence we have dim & ^ 2 and there exists a unit vector X orthogonal
to ?7 and such that a(U, X) = 0. Using Lemma 3 we find that
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h(U) ^ 0. Hence, by Lemma 4, α* on & has J* <; 0. Now by Lemma
4 again, the values of α* on ^ lie in a(U, ^Y c ϊ^ . Since α(Z7, •) is
one-to-one on ^ and TX{M) = & + [U] + ^*, we have w* = dim &>p-
dimα(Z7, &) = dim α(C7, ^ ) x = p*. We may now apply the last asser-
tion in Lemma 3 of O'Neill [4] to α*, concluding that α* has an asy-
mptotic vector 7 e ^ . Thus a(Yf Y) = α(Z7, J7), and since a(U, Y) = 0,
the equation (G3) implies ||α(tf, U)\\2 - f{U, U) - ψ(Y, Y) = 0. But we
have ψ(Y, Y) = ψ{U, U) by (2) of Lemma 5. Hence h(U) = 0.

We now show that a(U, U1) = 0, or equivalently that & — UL Π ̂ p l

is zero. Assume that there is a unit vector Z in ^ , we shall derive a
contradiction by a dimension argument. Let g* = {Ee έ2*\a*(Ef •) = 0}.
Note that J* = h(U) = 0 on ^ .

Case 1. S? ^ <^. Then there exists, by Lemma 1, a unit vector
W in ^ f l g 7 1 such that α*(TΓ, •) is one-to-one on ^ Π i ? 1 . Let ^
consist of the vectors in ^ orthogonal to W and to g\ Since PΓ is
orthogonal to g7 + <^~, we have a(W, •) = a*(W,-) on g7 + ^ ^ . Hence
a(W, •) is one-to-one on ,^ r , and α(TΓ, g") = 0. We have expressed Tm{M)
now as a sum of mutually orthogonal subspaces, thus: TX(M) = [U] +
& + (g7 + &~ + [TΓ]). Since α(l7, g7 + ^^) = 0 and a(W, g7) = 0, we
see from (G2) that subspaces a(U, &*), a{W, Jr), a{Z, g7) of Tϊ are
mutually orthogonal. Thus, counting dimensions, we find p^ dima(U,
&*) + dimα(TΓ, &~) + dim a(Z, ξ?) = d i m ^ + d i m ^ + dim a(Z, g7),
since a(U, •) is one-to-one on & and α(TΓ, •) is one-to-one on J^. By
the decomposition of TX(M) given above, and the fact that p ^ n — 3,
we conclude that dimα(^, g7) < dim g\ Let S e g 7 be a unit vector
such that a(Z, E) = 0. Using (G3) and α(#, JS1) = a(U, U) which follows
from a*(E, E) = 0, we have φ(E, E) + ψ(Z, Z) = <α(^, JE), α(Z, Z)> =
<α(?7, C/), α(Z, Z)> = \\a(U, Z)\\2 + ψ(U, U) + ψ(Z, Z). Hence we have
||a(J7, Z)\\2 = ψ{E, E) - ψ(U, U). Since ^ ( ^ , JS) - ψ(U, U) - 0 by (2) of
Lemma 5, we have a{ U, Z) = 0. This is a contradiction.

Case 2. g7 = <̂ \ Here the proof by contradiction is a simplifica-
tion of the argument above, based on the orthogonal decomposition
[U] + & + g7 of Γx(ikf), and the mutually orthonormal subspaces

a(Z, g7) in 2Ϊ.

Reduction to the flat case is completed by

LEMMA 7. Suppose that M has positive sectional curvatures and
p <: n — 3. Lei U be a minimum point of h, with 7 defined as in
Lemma 4. Then the symmetric bilinear function α* from TX(M) x T9(M)
to Ti has A* = 0.



104 M. SEKIZAWA

PROOF. By the preceding lemma, TJM) is spanned by U and the
nullspace & of a(U, •)• Furthermore, U is non-zero and orthogonal to
&. Since h(U) — 0, assertion (2) of Lemma 4 implies that J* is zero
on planes in <̂ \ Since α*(E/, 17) = 0 and a*(U, &) = 0, it follows
easily that J* = 0 on all planes in TJJd).

We can now give the main result of this section.

THEOREM 1. For n ^ 4, let f be an isometric immersion of an
n-dimensional conformally flat Riemannίan manifold M of positive
sectional curvatures into the (n + p)-dimensional Euclidean space, and
p <L n — Z. Let a be the second fundamental form of the immersion f,
and <%fx, xeM, be the set of all vectors U in TJM), such that
\\a(U, U)\\2 - 2\\U\\2ψ(U, U) = 0. Then <Zf9 is the largest umbilic sub-
space of TJM) relative to a, and has dimension r ^ n — p. Further-
more, if V is a vector in Ί&x, then

a(V, X) = (V, X)a(U, U) for any Xe TJM) ,

where U is a unit vector in 2/x (OL(U, U) is independent of the choice
of U in <&,).

PROOF. By Lemma 6, the set of unit vectors in C2/X is precisely the
set h~\0) at which the function h takes its minimum value. For one
such unit vector U, let ^Ϋl * be the subspace of TJM) consisting of all
Xe TJM) such that a*(X, •) = 0, where as usual, α* = a — 7. Since
J* = 0, it follows from Lemma 1 that dim Λl * ^ n — p. We shall show
that ^ = «^ς*. If X is a unit vector in ^ * , then 0 = a*(X, X) =
a(X, X) — a(U, U), so <^K* is umbilic relative to a. Since ψ(X, X) =
ψ(U,U) by the assertion (2) of Lemma 5, \\a(X, X)\\2 - 2f(X, X) -
||α(E7, Ϊ7)||2 - 2f(U, U) = 0. Hence X is in <%fx. Thus <sK*a^x.

Now assume that there exists a unit vector V in ^ which is not
in Λ^*. Without loss of generality we may suppose that V is orthog-
onal to U. (In fact, we can write V = cU + sX, where X is a unit
vector orthogonal to U, and c2 + s2 = 1. Since a(U, X) = 0 and
ψ(U, X) = 0, we have 0 = \\a{V, V)\\2 - ty(V, V) = c2\\a(U, U)\\2 +
s2\\a(X, X)\\2 - c2s2h(X) - 2(c2f(tf, U) + s2ψ(X, X)) = 8*h(X). This shows
that X is in ^ . But U is evidently in ^K*f hence V$ Λl* implies
X g ^ ς * ) . Thus V is in & which implies a(JJ, V) = 0. By this and
(G3), Schwartz's inequality (a(U, U), a(V, V))2 ^ \\a{U, C7)||2||α(F, F) | | 2

is reduced (f (U, U) - ψ{V, V))2 ^ 0. Hence, ψ(U, U) = ψ(.y, V). Since
i7 and 7 are unit vectors in ^x, the vectors a(U, U) and a(V, V)
have the same norm. Now a*(V, •) Φθ since F ί ^ / ^ * . Then zί* = 0
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implies a*(V, V) Φ 0, that is, a(U, U) Φ a(V, V). Thus <a(U, U) -
a(V,.V), a{U, J7)> $; 0. But, by (G3), a(U, V) = 0 and ψ(U, U) =
Ψ(V, V), we see that \\a(U, U)\\2 - <α(C7, U}, a(V, V)) = 0. Thus we
reach a contradiction. This completes the proof that ^ = ΛΊ*. So,
by the remark above, ^ is an umbilic subspace relative to a and has
dimension r ^ n — p.

If Ψl is any umbilic subspace, we have α(X, X) = a(Y, Y) and
a(X, Y) = 0 for any orthogonal unit vectors X and Y in 3^. Then, by
(G3), \\a(X, X)\\2 = ψ(X, X) + ψ(Y, Y). Since p ^ n - 3, as in the proof
of (2) of Lemma 5, there exists a unit vector Z e TJJM) s u c h that
a(X, Z) = 0. Hence ψ(X, X) - φ(Y, Y) = | |α(Γ, Z)||2 ^ 0. By the sym-
metry in X and Y, we have ψ(X, X) = ψ(Y, Y). Thus we see that
\\a(X, X)\\2 - 2ψ>(X, X) = 0. Then, by the definition of %SX, Tx is a sub-
space of ffcV

It remains to prove the final assertion of the theorem. If J e TX(M)
is orthogonal to 7 e ^ , the assertion follows immediately from Lemma
6. Let U, V be unit vectors in ^ a n d l = α 7 ( α e B). Then α( F, X) =
aa(V, V) - αα(?7, U), and <F, X>α(C7, ?7) = α<F, F>α(C7, C7) - aa(U,
U). Thus the assertion holds, and the proof is complete.

REMARK. The lower bound n — p of the largest umbilic space J/X

was obtained independently by Moore [3].

COROLLARY. Under the assumptions of Theorem 1, we have

where V is a vector in Wx, X is a vector in TX(M) and λ is the length
of a{U, U) for any unit vector in <%fx.

PROOF. In the case of X = F e ^ and \\V\\ — 1, we have

f{V, V) = \\a(V, F)||2/2 = λ2/2.

If X and V are orthogonal, then a(V, X) = 0. Hence, by Lemma 2,
ψ( V, X) = 0. These imply the assertion.

3. Local properties. We assume throughout that f:M-^En+p is
an isometric immersion of an ^-dimensional conformally flat Riemannian
manifold into an (n + ^-dimensional Euclidean space such that n ^ 4,
p <; n — 3 and that the sectional curvatures of M are positive. Denote
by Z(x) the common value of the normal curvature vectors a(U, U) for
all unit vectors U in *%SX. We call Z the normal curvature vector field
of /. Let p(x) denote the dimension of ^ and call it the umbilic index
of / at x.
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By Corollary of Theorem 1, any vector in <%fx is a proper vector of
the Ricci tensor Q corresponding to the proper value (n — 2)λ2/2 + k/
2(n — 1) = μ, say. Let έ?x{μ) be the proper space of the Ricci tensor
Q corresponding to this proper value μ. We denote by W9 the sub-
space of Tx generated by the vectors a(X(x), Y(x)) for all vectors X(x),
Y(x) in &x{μ). Let έ? be an open set in M on which the umbilic index
takes a constant value and the multiplicity of each proper value of the
Ricci tensor is constant (in the argument below, we only need the con-
stancy of the multiplicity of the proper value μ of the Ricci tensor).
Furthermore we assume that the field of space *W has constant di-
mension on ^ .

LEMMA 8. The normal curvature vector field Z is differentiable on έ?.

PROOF. Let A(X(x)) = a(X(x), X(x)) for all unit vectors X(x) in
T.(M), xeM. By Theorem 1 and (G3), (A(X(x)), Z(x)} = \2(x) for all
unit vectors X(x) in έ39(μ)cT9(M)9xeέ?>. Let ^ be the plane in
Tϊ c Ep through the end points of A(X(x)) for X(x)e&x(μ). Choose
unit vectors X^x), , Xq(x) in &x{μ) such that the vectors A(X1(x))9 ,
A{Xq{x)) are aίίinely independent and determine J^~. We assert that a?"
does not contain the zero vector. In fact, if F(x) e J?~', we can write
F{x) = ΣΛfi{x)A{Xi{x)) with Σ Λ = l By Theorem 1 and (G3), (Z(x),
F(x)) = (Σifi&Wix) = λ2(α0 > 0, hence F(x) Φ 0. Thus the vectors
A(Xί(x))9 '"9A(Xq(x)) are linearly independent. Furthermore, they are
a basis for the space CW9. For, <W9 is spanned by the set {A(X(x))\
X(x) 6 &x{μ)} since α(X(x), Y(x)) is a linear combination of A(X(x))9

A(Y(x)) and A(X(x) + Y(x)).
By hypothesis the field of proper space έ2{μ) of the Ricci tensor Q

is differentiable on &. Thus we can extend Xi(x)'s (1 ^ i ^ q) differenti-
ably to vector fields X/s (1 ^ i ^ q) on έ? such that they are in ^(μ)
at each point of £?. If έ? is small enough, the vector fields A(Xty&
(1 <ί i <Ξ, q) remain affinely independent and linearly independent at each
point of &>. These vector fields are in W" at each point of <̂ \ By
hypothesis we may suppose that dim 'W is constant on ^ . Thus the
vector fields A(Xi)'s (1 ^ i ^ q) form a basis for W~ at each point of
d7. Since Z = α(U,U) (Ue <%fαέ?(μ)) is in 5^" at each point of έ?9 we
have a unique expression Z — X ZiA{Xύ for ^ on ^ . Since <Z, A(X, )> =
λ2 (1 ^ i ^ ?), we obtain Σ ^<A(X,), A(Xy)> = λ2 for each index
3 (1 ^ i ^ 9). By hypothesis the proper value μ of the Ricci tensor Q is
differentiable on ^ . So the function λ2 = (2μ - k/(n - ί))/(n - 2) is
differentiable on £?. Furthermore the g x q matrix {{A{Xt)9 A(Xy)>) is
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non-singular. Thus we may solve for z/s (1 ^ i tS- q) as differentiable
function on &. Hence Z is differentiate on έ7.

LEMMA 9. The distribution Ήf\ x -> ̂ x is differentiable on &.

PROOF. At each point of & we define α* to be a — 7, where
7(X, X) = Z(a?) for all unit vectors Xe TX(M), xe^. Then, by Lemma
8, α* is a differentiable tensor field on £?, and by the proof of Theorem
1, ^ is the null space of the linear transformation X—>α*(X, •)• Since
p = dim ^ is constant on £?, it follows that ^ is differentiable on £?.

LEMMA 10. T&e normal curvature vector field Z on έ? satisfies
VIJZ = 0 /or αZZ ϊ7e^Λ

PROOF. Since ^ ^ w — p ^ 3, we can take orthonormal vector fields
U, Vβ'Zf on 0*. Applying the last assertion of Theorem 1, we have

(Fta)(V, V) = Γh(a(V, V)) - 2a(FϋVf V) = VhZ,

(r$a)(U, V) - Ft(a(U, V)) - a(ΓvU, V) - a(U, VVV) = 0 .

But, by the Codazzi equation (Cl), we have VhZ = 0 for all Ue^f.

LEMMA 11. The umbίlic distribution Ήf is involutive on &\

PROOF. Let U and V be non-zero vectors in ^ . Then a(V, X) =
< V, X}Z for all vector field X tangent to £?. Using Lemma 10, we
have (TίάKV, X) = (U(V, X^Z-aψvV, X)-<V, VVX)Z= (yπVy X)Z-
a(VuV,X). Hence, by (Cl), we have a([U, V], X) = <\U, V], X)Z,
which implies [U, V] is in <&.

We consider now the configuration of a leaf L of *%S in ^ .

LEMMA 12. E'αcfe ieα/ L of ^ in & is umbilic in M and in En+P

relative to f.

PROOF. Let ξu ••-,£„ be orthonormal normal vector fields in &
such that λ£i (λ = \\Z\\) is the normal curvature vector field Z. Denote
by X(Zr) (resp. X(Λί)) the algebra of vector fields on L (resp. M).
Let Ϊ7 and V denote vector fields in ϊ(L), and let X denote a vector
field in ϊ(ilί). The second fundamental forms Ak's (1 ^ fc ^ p) satisfy
Axi7 = λZ7, AkU = 0 (2 ^ fc ^ p). By Lemma 10, we have Ϊ7λ = 0, that
is, λ is constant on L. Hence we have slk(U) = 0 (1 <; & ̂  p). Differ-
entiating both sides of AJJ = λί7 by X and using (C2), we have

( * ) (ruA1)X= - AγVx U + (XX) U+XFXU.

By a similar computation for AkU — 0, we have
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p

(FLrAk)X = Xslk(X)U + Σskl(U)A tX + AkVxU (2 ^ k ^ p) .
ί = l

Let /3 be the second fundamental form of L in M, and let P denote
the orthogonal projection of H{M) to Ϊ(L). For any vector field £
which is orthogonal to L and tangent to M, we denote by Bξ the second
fundamental form associated to ζ. Then we have BξU——PVuξ. Since
AJί — λX is in X(L)-LnX(Λf), we may compute ^ l X _ ; x as follows:

~BAlX_λx{U) = PWvAJX + A/^X - λF^X)

= P{-AXVXU + (Xλ)C/ + λFxC7 + AXVLX - XV VX)

, X] + (XX)U- X[U, X])

, X] + (XX)U- XP[U, X] - (X\)U,

where we have used the equation (*) and the fact that £(£) is a
proper space of the symmetric operator Aγ. Hence we have (β(U, V),
A1X-\Xy = -(X\)<iU,Vy. Since AkX's (2 ^ k ^ p) are in ΪCL^ΓΊ
ϊ(Af), a similar computation shows that BAjcXU = Xslk(X)U (2 ^ k ^
Hence we have </9(Z7, F), 4 f c I ) = λslfc(X)<[7, F> (2 ^ k ^ p).

Let /3* be the symmetric bilinear function on ϊ(L) defined by

/5*(C7, F) - /3(17, F) - <?7, V)β(Wf W) ,

where TT̂  is a fixed unit vector field tangent to L. Then the above
two equations for β imply </3*(ί7, F), Λ ^ - λX> = 0 and </3*(ί7, F),
AkX) = 0 (2^k^p). Hence we have <α(/3*(ί7, F), X), &> = λ</8*-(l7,
F), X> and <α(/5*(C7, F), X)τ f/c> - 0 (2 ^ & ̂  p). These imply a(β*(U,
V), X) = (β*(U, F), X)Z, that is, β*(U, V) is in 9£(L). But, by defini-
tion, β*(U, V) is in X(L)-1. Thus we have /3*(Z7, F) = 0. So we have
β(U9 V) = (U, V)β(W, W) for all U, VeX(L) and a fixed unit vector
field We%(L). This also implies β(W, W) is independent of the choice
of a unit vector field W in H(L). Hence L is umbilic in M. Let δ be
the second fundamental form of L in jErw+?? relative to f\L. Then
S = a + /3 on ϊ(L). Thus we have 5(Z7, F) - <i7, F > ( ^ + /S(TΓ, W)).
Hence L is umbilic in En+P.

THEOREM 2. Lei /: M-> En+P, with p <^n — 3 αwd ^ ^ 4, 6e α7̂  iso-
metrίc immersion from an n-dimensίonal conformally flat Riemannian
manifold M with positive sectional curvatures to the (n + pydimensional
Euclidean space En+P. Let (7 he an open set on which the umbilic
index takes constant value and the multiplicity of each proper value of
the Ricci tensor is constant. Then the umbilic distribution ^ is in-
volutive on & and each leaf L of %f in {7 is umbilic in M and in
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En+P relative to f. Furthermore, L is a Rίemannian manifold of con-
stant curvature λ2 + μ2, where λ (resp. μ) is the length of the normal
curvature vector field of f (resp. f\L).

PROOF. All except the final assertion were already proved. Let δ
be the second fundamental form of f\L, and KL the sectional curvature
function on L. Then we have KL(U, V) = (δ(U, U), δ(V, V)) - \\δ(U,
V)\\2 = \\Z\\2 + ||/3(17, *7)||2 = λ2 + μ2 for all orthonormal vectors U and
V tangent to L. Since dim L ^ 3 by Theorem 1, L is a Riemannian
manifold of constant curvature λ2 + μ2.
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