INNER DERIVATIONS IN THE TENSOR PRODUCTS OF OPERATOR ALGEBRAS

JUN TOMIYAMA

(Received March 30, 1979, revised September 1, 1979)

Let A and B be unital C^* -algebras and $A \otimes B$ be C^* -tensor product with respect to the minimal C^* -crossnorm α . It has been known in the literature ([1], [6] etc) that in general the product structure of the algebra $A \otimes B$ is not compatible with the properties of derivations of the component algebras A and B, and even in the simplest case of separable C^* -algebras in which A is commutative and B is an UHF algebra one still finds badly behaved derivations of $A \otimes B$. However, as far as the von Neumann algebras are concerned there are another positive results in this direction ([4], [8]) and quite recently Akemann and Johnson [2] has shown that every derivation of the C^* -tensor product $A \otimes N$ of a commutative C^* -algebra A and a von Neumann algebra N is inner. It is then easily verified that if M is a finite von Neumann algebra of type 1 with bounded degree and N an arbitrary von Neumann algebra, every derivation of $M \otimes N$ is inner.

The purpose of the present note is to prove a corresponding C^* -version of this result (Theorem 1.1) which contains the above theorem of Akemann and Johnson, with some additional results towards the investigation of the derivations in the algebra $M \otimes N$ for an arbitrary pair of von Neumann algebras.

1. As we shall freely use slice maps in the tensor products of operator algebras we recall first their definitions ([11], [12]). Let $A \otimes B$ be the C^* -tensor product of C^* -algebras A and B. We denote by A^* the dual space of A. Then, to a functional φ of A^* we associate a bounded linear map R_{φ} , the right slice map, of $A \otimes B$ into B such that $R_{\varphi}(a \otimes b) = \langle a, \varphi \rangle b$. Similarly, a functional ψ of B^* gives rise to a bounded linear map L_{ψ} , the left slice map, of $A \otimes B$ into A such that $L_{\psi}(a \otimes b) = \langle b, \psi \rangle a$. These two kinds of mappings are related in the following way: for an element x in $A \otimes B$ we have

$$\langle x, \varphi \otimes \psi \rangle = \langle R_{\varphi}(x), \psi \rangle = \langle L_{\psi}(x), \varphi \rangle$$
.

We call this the Fubini principle.

Next, let M and N be von Neumann algebras and denote by $M \ \overline{\otimes} \ N$ the von Neumann tensor product of M and N. Let M_* and N_* be preduals of M and N. Then a functional φ of N_* defines a σ -weakly continuous right slice map R_{φ} of $M \ \overline{\otimes} \ N$ into N as an extension of the right slice map R_{φ} on the C^* -tensor product $M \otimes N$. There are also σ -weakly continuous left slice maps to M with respect to the functionals in N_* . Moreover, for a linear functional φ of M^* we can further define a bounded linear map R_{φ} of $M \ \overline{\otimes} \ N$ into N by the relation,

$$\langle R_{\varphi}(x), \psi \rangle = \langle L_{\psi}(x), \varphi \rangle$$

for all $\psi \in N_*$. We call this map R_{φ} the generalized right slice map for φ . Generalized left slice maps may also be defined in a similar way, but we note that in general we cannot expect the Fubini principle to hold for a pair of generalized slice maps (cf. [12: Theorem 5.1]).

Let x be an element of $M \otimes N$. Then it gives rise to the map $r_x : \varphi \in M^* \to R_{\varphi}(x) \in N$, which is weak *- σ -weakly continuous and in particular when x belongs to the C^* -tensor product $M \otimes N$ the map is weak *-norm continuous in the bounded sphere of M^* .

Now let Z be the center of N. Then it is known that there is a normal projection ε of norm one of N onto Z. With these notations we have

THEOREM 1.1. Let A be a unital C^* -algebra whose irreducible representations are finite dimensional with bounded degree. Let δ be a derivation in the algebra $A \otimes N$. Then δ is inner if and only if the restricted derivation $1 \otimes \varepsilon \circ \delta$ in $A \otimes Z$ is inner, where $1 \otimes \varepsilon$ is the product projection of norm one to the subalgebra $A \otimes Z$.

PROOF. If $\delta=\operatorname{ad}(c)$ for some element c in $A\otimes N$, then $(1\otimes \varepsilon\circ \delta)|A\otimes Z=\operatorname{ad}(1\otimes \varepsilon(c))$ by [10: Theorem 1], so that the derivation $1\otimes \varepsilon\circ \delta$ is inner, too. Now suppose the derivation $1\otimes \varepsilon\circ \delta$ be inner and let c_0 be its generator in $A\otimes Z$. Let \widetilde{A} be the enveloping von Neumann algebra of A. We consider the von Neumann algebra $\widetilde{A} \otimes N$ and extend the derivation δ to the algebra $\widetilde{A} \otimes N$ (cf. [7: Lemma 3]). Let c_1 be a generator of this extended derivation. Denote by $1\otimes \varepsilon$ again the normal product projection of norm one of $\widetilde{A} \otimes N$ to $\widetilde{A} \otimes Z$. Then obviously $1\otimes \varepsilon(c_1)$ is a generator of the derivation $1\otimes \varepsilon\circ \delta$. Hence $c_0-1\otimes \varepsilon(c_1)$ belongs to the center of $\widetilde{A} \otimes Z$ which coincides with the center of $\widetilde{A} \otimes N$. Put $\delta_1=\delta-\operatorname{ad}(c_0)$. Then we have

$$\delta_1 = \operatorname{ad}(c_1) - \operatorname{ad}(c_0) = \operatorname{ad}(c_1) - \operatorname{ad}(1 \otimes \varepsilon(c_1)) = \operatorname{ad}(c_1 - 1 \otimes \varepsilon(c_1)) .$$

Now in order to get the conclusion, it suffices to show that the derivation

Thus we may assume for our argument that δ has the generator c in $\widetilde{A} \mathbin{\overline{\otimes}} N$ such that $1 \otimes \varepsilon(c) = 0$. Let φ be a bounded linear functional of A and let $\widehat{\varphi}$ be its canonical extension to \widetilde{A} as a σ -weakly continuous linear functional. We consider the derivation δ_{arphi} in N defined by $\delta_{\varphi}(x)=R_{\varphi}(\delta(1\otimes x)).$ Since $\delta(1\otimes x)$ belongs to $A\otimes N$, the map: $\varphi\in$ $A^* o \delta_{arphi}$ is continuous on the unit sphere S^* of A^* with respect to the weak * topology and point-norm convergence topology in the space of derivations in N. Therefore, the set $\{\delta_{\varphi} | \varphi \in S^*\}$ is compact for the pointnorm convergence topology, hence by [2: Theorem 2.1] it is compact for Thus the point-norm and norm topologies agree on the norm topology. It follows that the map: $\varphi \in S^* \to \delta_{\varphi}$ is continuous the set $\{\delta_{\varphi} | \varphi \in S^*\}$. for the weak * and norm topologies. Now the map: $x \in N \to ad(x)$ induces a homeomorphism between the quotient Banach space N/Z and the space of derivation in N. Hence by Michael's selection theorem [9: Theorem 3.2"] there exists a continuous selection $b(\varphi)$ of S^* to N, that is, $ad(b(\varphi)) =$ δ_{φ} . On the other hand, $R_{\hat{\varphi}}(c)$ is a generator of δ_{φ} so that

$$R_{\hat{\sigma}}(c) = b(\varphi) + z(\varphi)$$

for some element $z(\varphi)$ of Z. Consequently we have

$$arepsilon(b(arphi)) + z(arphi) = arepsilon(R_{\hat{arphi}}(c)) = R_{\hat{arphi}}(1 igotimes arepsilon(c)) = 0$$
 .

Hence,

$$z(\varphi) = -\varepsilon(b(\varphi))$$

and $z(\varphi)$ is a Z-valued continuous function on S^* . Thus we know that the map: $\varphi \in A^* \to R_{\hat{\varphi}}(c) \in N$ is a bounded linear map which is continuous for the weak * and norm topologies in the unit sphere S^* of A^* . By the assumption for A we know by [3: Theorem 3.1] that A satisfies the metrical approximation property. Therefore, by [14: Proposition 4] there exists an element a in $A \otimes_{\lambda} N$ such that $r_{\varphi}(a) = R_{\hat{\varphi}}(c)$ for every $\varphi \in A^*$, where $A \otimes_{\lambda} N$ means the tensor product of A and N with respect to the least crossnorm λ and r_{φ} is the right slice map for φ defined in $A \otimes_{\lambda} N$. Let τ be the canonical map from $A \otimes N$ to $A \otimes_{\lambda} N$. Then, as the assumption for A implies that τ is an onto mapping ([15: Proposition 1]), there is an element c_0 in $A \otimes N$ with $\tau(c_0) = a$. We have

$$R_{\hat{\omega}}(c_0) = R_{\omega}(c_0) = r_{\omega}(a) = R_{\hat{\omega}}(c)$$

for every $\varphi \in A^*$ and $c = c_0 \in A \otimes N$. This completes the proof.

A C^* -algebra A is said to be n-homogeneous if every irreducible representation of A is n-dimensional. In this terminology, the commutativity coincides with the 1-homogeneity. The following corollary contains

the result of Akemann and Johnson [2: Theorem 2.3] cited in the introduction.

COROLLARY 1.2. Let A be a unital n-homogeneous C^* -algebra and N an arbitrary von Neumann algebra. Then every derivation of the algebra $A \otimes N$ is inner.

PROOF. As is easily seen, the algebra $A \otimes Z$ is, in this case, n-homogeneous and every derivation of $A \otimes Z$ is inner (cf. [1: Theorem 3.2]).

COROLLARY 1.3. Let M be a finite von Neumann algebra of type 1 with bounded degree and N an arbitrary von Neumann algebra. Then every derivation of the algebra $M \otimes N$ is inner.

PROOF. This is because every derivation of $M \otimes Z$ is inner by the above corollary.

It is to be noticed that with the assumption for A in the theorem we cannot expect in general that every derivation of the algebra $A \otimes Z$ is inner (cf. [1], [5]).

2. Let M and N be von Neumann algebras. In [2] the problem whether or not every derivation of the algebra $M \otimes N$ is inner is considered and it is shown that the algebra $M \otimes N$ shares some properties related to the arguments on derivations for von Neumann algebras ([2: Theorems 4.3 and 4.8]). The difficult part of the problem lies mainly in the point that we do not have any criterion to tell us when an element c of $M \otimes N$ belongs to the C*-tensor product $M \otimes N$. Here we present a candidate for this sort of criteria. Namely, when an element c of $M \boxtimes N$ belongs to $M \boxtimes N$, the mapping $r_c: \varphi \in M^* \to R_c(c) \in N$ is, as we explained before, continuous for the weak * and norm topologies on the unit sphere of M^* and the set $\{R_{\varphi}(c)|\varphi\in M^*, ||\varphi||\leq 1\}$ is compact for the norm topology in N. Thus the linear space $\{R_{\varphi}(c) | \varphi \in M^*\}$ is generated by the above compact (convex and circled) set. We are not able to decide whether or not the converse to this assertion is true except in a few cases which cover Corollary 1.3. However, if it would be the case the following proposition would settle the general problem.

PROPOSITION 2.1. Let δ be a derivation of $M \otimes N$. Then there exists a generator c of δ in $M \otimes N$ such that the map r_e is continuous for the weak * and norm topologies on the unit sphere of M^* .

PROOF. Let Z be the center of N and ε be a normal projection of norm one to Z. Then the derivation $1 \otimes \varepsilon \circ \delta$ in $M \otimes Z$ is inner by

Corollary 1.2. Let c_0 be a generator of $1 \otimes \varepsilon \circ \delta$ in $M \otimes Z$ and put $\delta_1 = \delta - \operatorname{ad}(c_0)$. Then the same arguments as in the proof of Theorem 1.1 show that there exists a generator c_1 of δ_1 with the map r_{c_1} having the required property. Hence, the generator $c = c_0 + c_1$ for δ has the property in the Proposition.

In the context of the tensor product $M \otimes_{\lambda} N$ for λ -norm it is almost evident that the property cited in the above proposition is symmetric. In our case, however, the element c is in $M \otimes N$ and there is no canonical map from $M \otimes N$ to $M \otimes_{\lambda} N$. Therefore the following remark should be considered.

PROPOSITION 2.2. Take an element c in $M \otimes N$. Then the map r is continuous for the weak * and norm topologies if and only if the map 1 satisfies the same continuity on the unit sphere of N^* .

PROOF. It suffices to show that the property of c for generalized right slice maps implies that for left slice maps. Thus suppose the conclusion does not hold and let S^* be the unit sphere of N^* . Then there is a positive $\varepsilon>0$ and a net $\{\psi_\alpha\}$ in S^* such that $\psi_\alpha\to\psi$ in the weak * topology and $||L_\psi(c)-L_{\psi_\alpha}(c)||\geq \varepsilon$. For each index α choose a functional φ_α in the unit sphere of M_* such that

$$|\langle L_{\psi}(c) - L_{\psi_{lpha}}(c), arphi_{lpha}
angle| > arepsilon/2$$
 .

Passing to the subnet, we may assume that the net $\{\varphi_{\alpha}\}$ converges to a functional φ in the weak * topology. Now by the assumption for c and $\{\psi_{\alpha}\}$, we can find an index α_0 such that

$$||R_{arphi}(c)-R_{arphi_{lpha_0}}(c)|| .$$

We have the following contradiction:

$$egin{aligned} arepsilon/2 & \leq |\langle R_{arphi_{lpha_0}}(c),\,\psi-\psi_{lpha_0}
angle| \leq |\langle R_{arphi_{lpha_0}}(c)-R_{arphi}(c),\,\psi-\psi_{lpha_0}
angle| \ & + |\langle R_{arphi}(c),\,\psi-\psi_{lpha_0}
angle| \leq ||R_{arphi_{lpha_0}}(c)-R_{arphi}(c)| \,\, ||\psi-\psi_{lpha_0}|| + arepsilon/4 < arepsilon/2$$
 ,

where the first inequality holds because the pairs of functionals $(\varphi_{\alpha_0}, \psi)$ and $(\varphi_{\alpha_0}, \psi_{\alpha_0})$ satisfy the Fubini principle by the definition of generalized slice maps.

For a derivation δ in the algebra $M \otimes N$, one may settle the problem if we impose a condition on δ . For instance, we have

PROPOSITION 2.3. Keep the same notations as above. If there exists a maximal abelian subalgebra A of M for which $A \otimes N$ is invariant for δ , then δ is inner.

PROOF. Let c be a generator of δ in $M \ \overline{\otimes} \ N$ and b be a generator of $\delta | A \otimes N$ in $A \otimes N$ by Corollary 1.2. Then, by the assumption the element c-b belongs to the relative commutant of $A \otimes N$ in $M \ \overline{\otimes} \ N$ which coincides with the algebra $A \ \overline{\otimes} \ Z$ by the commutation theorem for von Neumann tensor products. Hence, any generator of δ belongs to $A \ \overline{\otimes} \ N$. Take a generator c of δ which satisfies the property in Proposition 2.1. Then regarding c as an element of $A \ \overline{\otimes} \ N$ one easily verifies that the map: $\varphi \in A^* \to R_{\varphi}(c) \in N$ is continuous for the weak * and norm topologies. It follows that c belongs to the algebra $A \otimes N$ which is the space of all N-valued continuous functions on the spectrum of A. This completes the proof.

[Added in proof. August 19, 1979] The author is kindly informed by C. J. K. Batty on his paper "Derivations of tensor products of C^* -algebras, J. London Math. Soc. 17 (1978), 129-140", in which he proved a theorem (Theorem 3.5) closely related to our Theorem 1.1. In fact, although his result does not imply Theorem 1.1, with aids of the results in [2] one can modify his proof so that the arguments imply our theorem.

REFERENCES

- [1] C. A. AKEMANN, G. A. ELLIOTT, G. K. PEDERSEN AND J. TOMIYAMA, Derivations and multipliers of C*-algebras, Amer. J. Math. 98 (1976), 679-708.
- [2] C. A. AKEMANN AND B. E. JOHNSON, Derivations of non-separable C*-algebras, preprint.
- [3] M. D. Choi and E. G. Effros, Nuclear C*-algebras and the approximation problem, Amer. J. Math. 100 (1978), 61-79.
- [4] G. Elliott, On derivations of AW^* -algebras, preprint.
- [5] G. Elliott, Some C*-algebras with outer derivations III, Ann. Math. 106 (1977), 121-143.
- [6] A. A. Hall, Derivations of certain C*-algebras, J. London Math. Soc. 5 (1972), 321-329.
- [7] R. V. Kadison, Derivations of operator algebras, Ann. of Math. 83 (1966), 280-293.
- [8] E. C. LANCE, Automorphisms of certain operator algebras, Amer. J. Math. 91 (1969), 160-174.
- [9] E. MICHAEL, Continuous selections, I, Ann of Math. 63 (1956), 361-382.
- [10] J. TOMIYAMA, On the projection of norm one in W*-algebras, Proc. Japan Acad. 33 (1957), 608-612.
- [11] J. TOMIYAMA, Applications of Fubini type theorem to the tensor products of C*-algebras, Tôhoku Math. J. 19 (1967), 213-226.
- [12] J. Tomiyama, Tensor products and approximation problems of C*-algebras, Publ. Res. Inst. Math. Sci. Kyôto Univ. 11 (1975), 163-183.
- [13] J. Tomiyama, Some aspects of the commutation theorem for tensor products of operator algebras, to be included in the Proceedings of the Intern. Colloq. Marseille, 1977.
- [14] L. WOELBROECK, Duality and the injective tensor products, Math. Ann. 163 (1966), 122-126.
- [15] S. WASSERMANN, The slice map problem for C*-algebras, Proc. London Math. Soc. 32 (1976), 537-559.

FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN