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Let A and B be unital C*-algebras and A ® B be C*-tensor product
with respect to the minimal C*-crossnorm «. It has been known in the
literature ([1], [6] etc) that in general the product structure of the algebra
A& B is not compatible with the properties of derivations of the com-
ponent algebras A and B, and even in the simplest case of separable
C*-algebras in which 4 is commutative and B is an UHF algebra one
still finds badly behaved derivations of A ® B. However, as far as the
von Neumann algebras are concerned there are another positive results
in this direction ([4], [8]) and quite recently Akemann and Johnson [2]
has shown that every derivation of the C*-tensor product A® N of a
commutative C*-algebra A and a von Neumann algebra N is inner. It
is then easily verified that if M is a finite von Neumann algebra of type
1 with bounded degree and N an arbitrary von Neumann algebra, every
derivation of M X N is inner.

The purpose of the present note is to prove a corresponding C*-
version of this result (Theorem 1.1) which contains the above theorem
of Akemann and Johnson, with some additional results towards the
investigation of the derivations in the algebra M @ N for an arbitrary
pair of von Neumann algebras.

1. As we shall freely use slice maps in the tensor products of operator
algebras we recall first their definitions ([11], [12]). Let A& B be the
C*-tensor product of C*-algebras A and B. We denote by A* the dual
space of A. Then, to a functional @ of A* we associate a bounded linear
map R,, the right slice map, of A B into B such that R,(a ® b) =
{a, #Db. Similarly, a functional  of B* gives rise to a bounded linear
map Ly, the left slice map, of A B into A such that Ly(a ® bd) =
(b, vya. These two kinds of mappings are related in the following
way: for an element x in A B we have

(&, PR y) = (By(®), v) = {Ly(x), P) .
We call this the Fubini principle.
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Next, let M and N be von Neumann algebras and denote by M @ N
the von Neumann tensor product of M and N. Let M, and N, be
preduals of M and N. Then a functional @ of N, defines a o-weakly
continuous right slice map R, of M@ N into N as an extension of the
right slice map R, on the C*-tensor product M @ N. There are also o-
weakly continuous left slice maps to M with respect to the functionals
in N,. Moreover, for a linear functional ¢ of M* we can further define
a bounded linear map B, of M ® N into N by the relation,

(Bo(@), ) = {Ly(x), P>

for all 4r€ N,. We call this map R, the generalized right slice map for
@. Generalized left slice maps may also be defined in a similar way,
but we note that in general we. cannot expect the Fubini principle to
hold for a pair of generalized slice maps (cf. [12: Theorem 5.1]).

Let « be an element of M&® N. Then it gives rise to the map
r.. e M* — R,(x) € N, which is weak *-0-weakly continuous and in par-
ticular when x belongs to the C*-tensor product M @ N the map is weak
x-norm continuous in the bounded sphere of M*.

Now let Z be the center of N. Then it is known that there is a normal
projection ¢ of norm one of N onto Z. With these notations we have

THEOREM 1.1. Let A be a wunital C*-algebra whose irreducible
representations are finite dimensional with bounded degree. Let 6 be a
derivation in the algebra AQ N. Then 0 is imner if and only if the
restricted derivation 1®ecd in AR Z is inner, where 1 Qe is the
product projection of norm one to the subalgebra AR Z.

Proor. If 0 = ad(c) for some element ¢cin A @ N, then 1 ® e-0)|A R
Z = ad(1 ®e(c)) by [10: Theorem 1], so that the derivation 1) e<d is
inner, too. Now suppose the derivation 1 ® e 0 be inner and let ¢, be
its generator in A® Z. Let A be the enveloping von Neumann algebra
of A. We consider the von Neumann algebra A @ N and extend the
derivation 6 to the algebra A® N (cf. [7: Lemma 3]). Let ¢, be a
generator of this extended derivation. Denote by 1 &) ¢ again the normal
product projection of norm one of /~1®N to AR Z. Then obviously
1 ®e(e,) is a generator of the derivation 1 ®e-d. Hence ¢, — 1 ®e(c)
belongs to the center of A ® Z which coincides with the center of A @ N.
Put 6, = 6 — ad(¢,). Then we have

0, = ad(c,) — ad(c,) = ad(e,) — ad(1 ® &(e,)) = ad(e, — L ® e(ey) -

Now in order to get the conclusion, it suffices to show that the derivation
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0, is inner. Thus we may assume for our argument that 6 has the
generator ¢ in A ® N such that 1 ®e(c) = 0. Let @ be a bounded linear
functional of A and let & be its canonical extension to A as a og-weakly
continuous linear functional. We consider the derivation d, in N defined
by d,(x) = R, (0(1 ® x)). Since /(1 ® x) belongs to A QY N, the map: p¢
A* — 0, is continuous on the unit sphere S* of A* with respect to the
weak * topology and point-norm convergence topology in the space of
derivations in N. Therefore, the set {0,|» € S*} is compact for the point-
norm convergence topology, hence by [2: Theorem 2.1] it is compact for
the norm topology. Thus the point-norm and norm topologies agree on
the set {0,/ € S*}. It follows that the map: e S* — 4, is continuous
for the weak » and norm topologies. Now the map: x € N — ad(x) induces
a homeomorphism between the quotient Banach space N/Z and the space
of derivation in N. Hence by Michael’s selection theorem [9: Theorem
3.2"] there exists a continuous selection b(@) of S* to N, that is, ad(b(®)) =
0,. On the other hand, R;(c) is a generator of d, so that

R;(c) = b(®) + 2(P)
for some element z(®) of Z. Consequently we have
e(b(P)) + 2(P) = e(By(c)) = B3(LQe(e)) = 0.
Hence,
2(p) = —e(b(P))

and 2(®) is a Z-valued continuous function on S*. Thus we know that
the map: pe A* — R;(c) € N is a bounded linear map which is continuous
for the weak * and norm topologies in the unit sphere S* of A*. By
the assumption for A we know by [3: Theorem 3.1] that A satisfies the
metrical approximation property. Therefore, by [14: Proposition 4] there
exists an element a in A Q,; N such that »,(a) = R;(c) for every @e A*,
where A ®); N means the tensor product of A and N with respect to
the least crossnorm X\ and 7, is the right slice map for @ defined in
A ®; N. Let ¢ be the canonical map from A® N to AQ,; N. Then, as
the assumption for A implies that = is an onto mapping ([15: Proposition
1]), there is an element ¢, in A Q@ N with z(¢c,) = a. We have

R;(e)) = Ryc)) = r4(a) = R;(c)
for every e A* and ¢ = ¢, € A® N. This completes the proof.

A C*-algebra A is said to be n-homogeneous if every irreducible
representation of A is n-dimensional. In this terminology, the commuta-
tivity coincides with the 1-homogeneity. The following corollary contains
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the result of Akemann and Johnson [2: Theorem 2.3] cited in the intro-
duction.

COROLLARY 1.2. Let A be a unital m-homogeneous C*-algebra and
N an arbitrary von Neumann algebra. Then every derivation of the
algebra A Q N is inner.

PROOF. As is easily seen, the algebra A Z is, in this case, n-
homogeneous and every derivation of A ® Z is inner (ef. [1: Theorem
3.2]).

COROLLARY 1.8. Let M be a finite von Neumann algebra of type 1
with bounded degree and N an arbitrary von Neumann algebra. Then
every derivation of the algebra M Q N 1is inner.

ProoF. This is because every derivation of M ®Q Z is inner by the
above corollary.

It is to be noticed that with the assumption for A in the theorem
we cannot expect in general that every derivation of the algebra AR Z
is inner (ef. [1], [5]).

2. Let M and N be von Neumann algebras. In [2] the problem
whether or not every derivation of the algebra M@ N is inner is con-
sidered and it is shown that the algebra M & N shares some properties
related to the arguments on derivations for von Neumann algebras ([2:
Theorems 4.3 and 4.8]). The difficult part of the problem lies mainly in
the point that we do not have any criterion to tell us when an element
¢ of M & N belongs to the C*-tensor product M @ N. Here we present
a candidate for this sort of criteria. Namely, when an element ¢ of
M ® N belongs to M & N, the mapping ».: € M* — R,(c)e N is, as we
explained before, continuous for the weak * and norm topologies on the
unit sphere of M* and the set {R,(¢)|pe M* ||®| <1} is compact for
the norm topology in N. Thus the linear space {R,(c)|® € M*} is generated
by the above compact (convex and circled) set. We are not able to decide
whether or not the converse to this assertion is true except in a few
cases which cover Corollary 1.3. However, if it would be the case the
following proposition would settle the general problem.

PROPOSITION 2.1. Let 6 be a derivation of M Q N. Then there exists
a generator ¢ of & in M Q@ N such that the map r, is continuous for
the weak * and norm topologies on the unit sphere of M*.

PROOF. Let Z be the center of N and ¢ be a normal projection of
norm one to Z. Then the derivation 1®eod in M Z is inner by
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Corollary 1.2. Let ¢, be a generator of 1 ®¢cc0 in M Z and put ¢, =
0 — ad(¢,). Then the same arguments as in the proof of Theorem 1.1
show that there exists a generator ¢, of d, with the map », having the
required property. Hence, the generator ¢ = ¢, + ¢, for 6 has the property
in the Proposition.

In the context of the tensor product M ®; N for A-norm it is almost
evident that the property cited in the above proposition is symmetric.
In our case, however, the element ¢ is in M & N and there is no canonical
map from MQ N to M ®; N. Therefore the following remark should be
considered.

PROPOSITION 2.2. Take an element ¢ in M & N. Then the map 7,
18 continuous for the weak = and morm topologies if and only if the
map 1, satisfies the same continuity on the unit sphere of N*.

Proor. It suffices to show that the property of ¢ for generalized
right slice maps implies that for left slice maps. Thus suppose the con-
clusion does not hold and let S* be the unit sphere of N*. Then there
is a positive ¢ > 0 and a net {y} in S* such that +, — in the weak
+ topology and || Ly(c) — Ly (c)|| = . For each index « choose a functional
@, in the unit sphere of M, such that

| {Ly(e) — Ly (0), Pay| > €/2..

Passing to the subnet, we may assume that the net {®,} converges to a
functional @ in the weak * topology. Now by the assumption for ¢ and
{v«}, we can find an index «, such that

[Ry(c) — Ry, ()l < /8 and [<R,(c), v — ) | < €/4.
We have the following contradiction:
6/2 = | Ry (), ¥ — a) | S [{Roy (0) — Rel©), ¥ — bap)|
+ [{Ry(e), ¥ — Yrap) | = || Ry, () — R(O) ]| |[4 — A || + €/4 < /2,
where the first inequality holds because the pairs of functionals (@, 4)

and (P, v, satisfy the Fubini principle by the definition of generalized
slice maps.

For a derivation 6 in the algebra M Q N, one may settle the problem
if we impose a condition on 4. For instance, we have

PROPOSITION 2.3. Keep the same notations as above. If there exists
a maximal abelian subalgebra A of M for which AR N is8 invariant
for 8, then 0 is inmer.
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PrROOF. Let ¢ be a generator of d in M@ N and b be a generator
of 6|/AQ N in AQ N by Corollary 1.2. Then, by the assumption the
element ¢ — b belongs to the relative commutant of AQN in MQ N

which coincides with the algebra A& Z by the commutation theorem for
von Neumann tensor products. Hence, any generator of & belongs to
AX® N. Take a generator ¢ of § which satisfies the property in Proposi-
tion 2.1. Then regarding ¢ as an element of A X N one easily verifies
that the map: € A* — R,(c) € N is continuous for the weak * and norm
topologies. It follows that ¢ belongs to the algebra A & N which is the
space of all N-valued continuous functions on the spectrum of A. This
completes the proof.

[Added in proof. August 19, 1979] The author is kindly informed
by C. J. K. Batty on his paper “Derivations of tensor products of C*-
algebras, J. London Math. Soec. 17 (1978), 129-140”, in which he proved
a theorem (Theorem 3.5) closely related to our Theorem 1.1. In fact,
although his result does not imply Theorem 1.1, with aids of the results
in [2] one can modify his proof so that the arguments imply our theorem.
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