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1. Introduction and statement of results. In his paper [4], Wagschal
proved that for a given non-degenerate system of (partial) differential
equations various formulations of the (non-characteristic) Cauchy problem
are well-defined. The purpose of this paper is to give a characterization
of the well-defined Cauchy problem for general system of ordinary
differential equations. It will be shown, in conclusion, that the well-
defined Cauchy problem is nothing but the classical Cauchy problem for
a normal system.

Let A(x\ D) — (aiά(x', D))ίSiyj^N be a system of ordinary differential
operators with holomorphic coefficients in Ω aC, where D = d/dx. Let
T = (tu — ,tN) be a pair of non-negative integers. We shall consider
the following Cauchy problem (A(x; D), T):

(1.1) Σ M » ; D)u5{x) = ft(χ) , l£i£N,
3=1

(1.2) D k u t ( x 0 ) = w i ) k e C , O ^ k < t i f l £ i £ N ,

where xoeΩ.
In order to clarify our problem we give some definitions. We say

that the Cauchy problem (A(x; D), T) is well-defined at xQ if the problem
(1.1)-(1.2) has a unique holomorphic solution {u^x)} at x0 for any holomor-
phic functions {fi(x)} at xQ and any Cauchy data {witk\. A system A(x; D)
is said to be in a normal form with respect to T = (tu , tN) or simply
T-normal if ai3- = 8tiD

u + b^x; D) and order bid < tά for any i and j>
where δiά is Kroneker's δ.

It is well-known that for a Γ-normal system A(x; D) the Cauchy
problem (A(x; D), T) is well-defined at every point in Ω. Our purpose is
to show the converse. In order to state our results we need the follow-
ing definition. A system P(x; D) of differential operators is said to be
invertible if there exists a system P~\x; D) of differential operators
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satisfying PP~X = P~λP = IN, where IN is the identity matrix of size N.
Now the main result is the following

THEOREM I. The Cauchy problem (A(x; D), T) is well-defined at every
point in Ω if and only if there exists an invertible system P(x; D) of
differential operators with holomorphic coefficients in Ω such that PA
is in a T-normal form. Moreover, the inverse system P~\x; D) has also
holomorphic coefficients in Ω.

Next we give

THEOREM II. Assume that the coefficients of A(x; D) are meromor-
phic in Ω. Let us consider the Cauchy problem (A(x; D), T) at every
point in Ω with the exception of the points in a discrete subset of Ω.
Then in order that the Cauchy problem (A(x; D), T) may have at least
one solution for any {fix)} and any Cauchy data {wiik}, it is necessary
and sufficient that there exists an invertible system P(x; D) with mero-
morphic coefficients in Ω such that PA is in a T-normal form, with
respect to some f = (tlf , tN) with ?< ̂  ί<.

REMARK 1. In the above theorem, a discrete subset of Ω is not
given a priori.

REMARK 2. In the above theorem, if we demand the uniqueness of
the solution, then we have f = T. In fact, the Cauchy problem
(A(x; D), f) is well-defined at every point in Ω with the exception of the
points in a discrete subset.

We give here a remark on the invertible system of differential
operators. As in the theory of matrices, we define elementary operations
on the system of differential operators P(x; D) = (ptί(x; D)) with mero-
morphic coefficients in Ω.

(a) Multiplication of any row (resp. column) by a meromorphic
function c{x) φ. 0.

(b) Addition to any row (resp. column) of any other row (resp.
column) multiplied by any arbitrary differential operator b(x; D) with
meromorphic coefficients.

(c) Interchange of any two rows (resp. columns).
We say that systems A(x; D) and B(x\ D) are equivalent if one of

them can be obtained from the other by means of elementary operations.
Especially, we say that they are left-equivalent (resp. right-equivalent)
if they are equivalent by means of elementary operations only by use
of rows (resp. columns). Now we have
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THEOREM III. A system P(x; D) is invertible if and only if P(x; D)
can be expressed as a product of elementary operations.

The proof is the same as in the theory of elementary divisor of
matrices (see Gantmacher [1]). It suffices to see that P(xm, D) — (ptί(x; D)δfj)
is invertible if and only if pit(x; D) = ct(x) ^ 0.

We note that for a holomorphically invertible system P(x;D) its
elements of elementary operations are not necessarily holomorphic. In
fact, the following example shows this.

EXAMPLE. Let

Then we have

" ^ • V B - . D

U-D + l »8/2/ 1-1 oΛo l/U2/2 l/\0 1/
Wagschal proved that for a given non-degenerate system A(x; D) at

x0 with holomorphic coefficients there exists at least one T such that the
Cauchy problem (A(x; D), T) is well-defined at every point in a neighbour-
hood of x0 [4, Th. 4.1]. The definition of a non-degenerate system will
be given in §3. Hence, by Theorem I, there exists a holomorphically
invertible system P(x; D) of differential operators such that PA is in a
Γ-normal form. On the other hand, as is shown by the above example,
the elements of elementary operations are in general meromorphic. Con-
cerning this we have

THEOREM IV. Let A(x; D) be a non-degenerate system at xQ with
holomorphic coefficients. Then there exists at least one T such that
A(x'f D) can be reduced to a T-normal system B(x; D) by holomorphic
left-elementary operations in a neighbourhood of xQ.

The remainder of this paper is organized as follows. Theorem I will
be proved in §2 by means of Theorem II. §3 will be devoted to pre-
liminary considerations for the proof of Theorem II. Then Theorem II
will be proved in §4. In §5, we shall prove Theorem IV. In §6, we shall
give an example which indicates the difference between Theorems I and
II. Moreover, the existence will be shown of a well-defined Cauchy
problem (A(x; D), ϊ7) for such a system A(x; D) which is not reduced to a
Γ-normal system by holomorphic left-elementary operations.

We note that the idea of the proof of this paper was given in the
previous paper of the author [2] (see also [2]').
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The author is indebted to Professor K. Kitagawa for useful discus-
sions, and also to the referees for the improvement of the original
manuscript.

2. Proof of Theorem I. We prove Theorem I by means of Theorem
II. We have only to prove the necessity, since the sufficiency is obvious.
Let P(x; D) be an invertible system with meromorphic coefficients in Ω
given by Theorem II and Remark 2. In order to prove the necessity,
it suffices to show that P(x; D) is holomorphically invertible in Ω. Now
assume that P has singular coefficients at x0. First, we consider the case
where PA is holomorphic at x0. Let f(x) = \f(x), , fN{x)) be a vector
of holomorphic functions at x0 such that Pf is singular at x0. Then it
is easy to see that the Cauchy problem (A(x; D), T) for the equation
Au — f has no holomorphic solution at x0, where u = \uu , uN). Next,
we consider the case where PA is singular at x0. Let f(x) = \f1{x\ ,
fN(x)) be a vector of holomorphic functions such that Pf is holomorphic
at xQ. Then the Cauchy problem (A(x; D), T) for the equation Au = / has
no holomorphic solution at x0 for a suitable choice of the Cauchy data
{wiik}. In fact, it suffices to choose the Cauchy data so that (PAU) (x)
is s ingular a t x0, where U(x) = \U±(x), ---, UN(x)) w i th Ut(x) =

Σλ^o^i^x — xo)
k/k\ + O((x — Xo)**). Hence P(x; D) is holomorphic in Ω.

Note that the Cauchy problem (PA, T) is well-defined at every point in
Ω, since PA is a holomorphic T-normal system in Ω. Thus P"\x\ D) is
also holomorphic in Ω. q.e.d.

3. Preliminary considerations. We begin by summarizing the work
of Volevic [3]. Let A(x; D) = (aiS(x; D))^^-^ and let miό = order atί(x; D)
if aiά Φ 0 and order aiά = — oo if aiά = 0. Then the total order m of the
system A(x; D) is defined by

N

(3.1) m = maxΣw i β ( i , ,

where Θ^ denotes the permutation group of {1, 2, , N} and — co + r =
— oo for any r eZ+ = {0, 1, 2, •}. A system A(αr, D) of total order m
is said to be non-degenerate (at x0) if m = degf {det A(α?; f)} (m =
degf {det A(a?0; f)}). Then we have

THEOREM ([3, Th. 1]). A system A(x; D) of size N with meromor-
phic coefficients in Ω is left-equivalent to a non-degenerate system
B(x; D) or to a system B(x; D) of rank B < N, where rank B < N means
that B = (bij) satisfies biQJ = 0 for some i0 and any j .

It is obvious that in order that the Cauchy problem (A(x; D), T) may
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be well-defined, it is necessary that the system B(x\ D) is non-degenerate
in the above theorem. Hence in the following, we consider a non-
degenerate system with meromorphic coefficients in Ω.

Now our first purpose is to reduce a non-degenerate system to a
normal system by left-elementary operations. In order to do so, we need
the following

LEMMA 3.1. Assume that A(x; D) is a non-degenerate system of total
order m(^0). Then A(x; D) is left-equivalent to a system B(x; D) = (bi3-)
such that

N N

(3.2) m = Σ ^ u > Σ niσ(i) for any σ Φ 1 ,
i=l i = l

where ni3 — order bi5.

PROOF. By a suitable interchange of rows, we may assume that
m = ΣίU mu> where mi3 = order ai3. Therefore, there exists a system
of integers {sjf=1 such that mi3 ^ Si — s3 + m3Ί (see [2] or [2]'). We may
assume without loss of generality that sλ ^ s2 ^ ^ sN by a suitable
interchange of rows and columns. Note that the interchange of columns
is permitted in our problem. We put Ίi3 = st — s3- + mj3 . Let ix =
min {i;mu = 7̂ }- Obviously it — 1, since mn = yn. Then we lower the
order of the (i, l)-component for i Φ iλ to be less than yiU using the
ίi-th row. Thus we obtain a left equivalent system B(x; D) = (bi3)
satisfying order biά ^ jij9 order bhl — yiχl and order bn < ytl for i Φ ilu

Next, we put ί2 = min {i; order bi2 = τ42, i =̂  i j . The existence of such
i2(Φiί) is guaranteed by the non-degeneracy of A(x; D), a fortiori of
B(x; D). Then we lower the order of the (i, 2)-component for i Φ iu i2

to be less than yiz, using the ί2-th row. Continuing these operations,
we finally obtain a left-equivalent system E(x; D) = (etj) and {ίl9 - -,iN} =
{1, , N} such that order eiά<* yijf order eij3 — Ίi5ΰ and order eί3 < τ<y for

PROPOSITION 3.1. Asst6me ίfeαί α non-degenerate system A(x; D)
satisfies

N N

(3.3) Σ*mu> Σi ™>ioW for any σ Φ 1 .
i l i l

A(cc; D) ΐs left-equivalent to an (mn, , mNN)-normal system
B(x; D) = (6^) ^ Λ the following property:

(*) If for some % we have mioj < m3Ί for any j(Φi0), then biQJ = aiQJ

for any j.

For the proof of this proposition, we need some lemmas.
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LEMMA 3.2. Assume that A(x; D) satisfies the condition (3.3). Then
if miQJQ ^ mjojo for some i0 Φ j Q , A(x; D) is left-equivalent to a system
B(x; D) = (bij) such that order bu = miif order δ ί o i o < mJQJo and B(x; D)
satisfies the condition corresponding to (3.3).

PROOF. Let aioh(x; D) = -c(x; D)ahh(x\ D) + biQJ0(x; D), where
orderc(x; D) = mίoJO — mJQJ0 and orderδ ί o i o <m i o i o . Then adding to the io-ίh
row the io-th row multiplied by c(x; D), we obtain a system B(x; D) which
satisfies the desired properties. It is easy to see that order bu — mu and
order & V o < m i o i o , since miQio + mjoh > mioh + mhH. In order to prove
that B(x; D) satisfies the condition corresponding to (3.3), we have only
to prove it under the assumption that order bίQσHo) = mJQσ{ίQ) + miQJQ - mJ0JQ.
Hence, it suffices to show

(3.4) g ™>« + mjoh > 4 Σ m*,u> + m i o i o + mioσ(<o, , σΦl.

First, we consider the case when {σ(i0), σ(j0)} Π {%, j0) Φ 0 We examine
only the case when σ(j0) = i0. It is easy to see that Σ<#i0

 miou) + w<oyo +
r(iO) + (w<o<o + myoio). On the other hand, we have
iOw<u, since {1,2, ,N}\{i0} = {σ(l), ,tf(iSOAMio)}-

This proves (3.4). Next, we consider the other case. Choose ko(Φio, j0) so
that σ(k0) = i 0. Let A = {σk(j0); 0 <>k<.l}, B = {<7fc(i0); 0 < A; ̂  m} and
C = {1, , iV}\A U B, where I = min {n; σn(j0) = Λo or ί0} and m = min {n;

σ

n(iQ) = ί0 or fc0}. It is easy to see that σ\jQ) Φ σm(iQ), AΠB = 0 and
JoίB. Hence, {1, 2, , JV} is expressed as a disjoint union of A, B and
C. We have ΣiecW^ω ^ Σieσfl&«> since σ(C) = C On the other hand,
we have Σϊe^ w,iσ{i) < Σ ί 6 ^ m i£ and m i o σ ( i o ) + Σie^ miσ[i) < Σ<esuw m « '
where we redefine σι+1(j0) = j 0 and 0 m+1(io) = i o q.e.d.

LEMMA 3.3. Suppose that A(x; D) satisfies the condition (3.3) and
that win < mΰΊ for any i Φ j with 2 ^ i, j <> N. Then A(x; D) is left-
equivalent to a system B(x; D) which satisfies biβ = aiό for i Φ 1,
order δ n = mn and order blά < m55 for j Φ 1.

PROOF. Let r = max2<;y<^ {mu — mάά] i> 0, and put J = {j; m l 3 =
m,-,- + r}. Then for i 0 e J, we can lower the order of the (1, j0)-component
to be less than mJQJ0, using the jo-th row as in Lemma 3.2. Let B(x; D)
be a system obtained by this operation. Then, biά == aiS for i Φ 1 and
order 6iy <Ξ max {miy, m i o i + r} for i ^ 1, j 0 . Hence, by the assumption
of the lemma, we have order bl3 — msΊ + r for j e J with j Φ j 0 and
order blk < mkk + r for & g /. Continuing these operations, we finally
obtain a desired system. q.e.d.
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PROOF OF PROPOSITION 3.1. We prove the proposition by induction
on N. First, the case N = 2 is obvious. Assume that the proposition
is true for N — 1 and that the condititions in (*) are true for
1 ^ i ^ k — 1. Then applying the induction assumption to the system
of size JV — 1 obtained by removing the k-ih row and &-th column from
A(x; D), we obtain a left-equivalent system B(x; D) = (btj)1Siti^N such that
bi5 =Ξ αίy for i ^ k and m^ = order b3j > m o for i Φ j with i Φ k or j Φ k.
Note that B(a?; D) also satisfies the condition (3.3), in view of Lemma 3.2.
We have to mention that the left-elementary operation in the proof of
Lemma 3.2 is only used in our proof. Then applying Lemma 3.3 to the
system B(x; D), we obtain a left-equivalent system C(x; D) which satisfies
the conditions in (*) for 1 <̂  i <J k. Continuing these operations, we
finally obtain a desired system. q.e.d.

Our next purpose is to reduce a normal system to another.

PROPOSITION 3.2. Assume that an (mn, , mNN)-normal system
A(x; D) satisfies

N

(3.5) m12 + Σ m« > Σ ™^ ,

where {jlf j 3 , - , jN) = {2, 3, , N) and (jl9 j z , - , jN) Φ (2, 3, -, iV).
27&ew A(α;; Z>) i s left-equivalent to an ( m u + m2 2 — m1 2, m12, m33, , mNN)-

normal system B(x; D).

For the proof we need the following

LEMMA 3.4. Assume that A(x; D) satisfies the condition (3.3) and
mjΊ > miά for i Φ j with j Φ 1. Then for any k Φ 1 we have

N

(3.6) Σ ™>iou) + mlσ(Jfc) < Σ w« /or αwi/ σ .

PROOF. Without loss of generality, we may assume that k = N. We
consider the case when {σ(l), σ(N)} Π {1} = 0 , since in the other case it
is obvious. Let I = min {s; σs(l) = 1}. First, consider the case when
σj(l) Φ σ(N) for any j < I. In view of (3.3), we have Σy=i mσJ-iωσHD <
ΣjZι

omσjωσJa)- Next, consider the case when σio(l) = σ(N) for some
jo < L Let & = min {j; σj(N) = 1}. Then we have

k k-l

Mlσ(N) + Σ ™>aJ~UN)oHN) < ™11 + Σ ^ahmoHN)

Hence, by the assumptions of the lemma, we obtain (3.6). q.e.d.

PROOF OF PROPOSITION 3.2. Note that α12 =έ 0. Now we lower the
order of the (2, 2)-component to be less than m12, using the first row.
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Then we obtain a left-equivalent system B(x; D) — (6<y) such that hi5 = ai5

for i Φ 2, order b21 = m n + m22 — m12, order δ22 < m12 and order b2j ^
max {m2i, ml3 + m22 — m12} for j = 3, , N. By Proposition 3.1, we have
only to show that order 62σ{2) + Σt^w^σu) < Σ ^ ϋ for any σ such that
(σ(l), , σ(N))Φ(2, 1, 3, . . , N). In the case when {σ(l), σ(2)} Π {1, 2}Φ0,
it is obvious by the assumptions and the construction of B(x; D). Let
us consider the other case. Moreover, it suffices to show the inequality
under the assumption that order b2σ{2) = mlσ{2) + m22 — m12. We choose
&(e{3, , N}) so that σ(k) = 1. Considering that mkσ{k) + m22 — mn <
order 621, it suffices to show

N

(3.7) mla{2) + Σ miσ(<) < m12 + Σ w l t .
iφ2,k i-'S

On the other hand, for the matrix of size N — 1 which is obtained by
removing the second row and the first column from A(x; D), the assump-
tions of Lemma 3.4 are satisfied, in view of (3.5). This implies (3.7).

q.e.d.

4. Proof of Theorem II. Without loss of generality, we may assume
that A(x; D) is in a normal form with respect to (mlu , mNN). We put
si = mu. If s{ ^ tι for any ί, there is nothing to prove. Suppose siQ < tiQ

for some i0. Then there exists jo(Φio) such that mίoh ^ ίio, for other-
wise, in the ΐo-th equation Σί=i α<oi(a?; D)uά(x) — fio(x), there should exist
compatibility conditions between the Cauchy data {wi)k\ and fio(x). Here
we note that we consider the Cauchy problem at the point where
the coefficients of the system are holomorphic. If

(4.1)<0 miQJ0 + Σ mit > Σ ™>ih ,

for {ju , i io_!, j h + 1 9 , iif} = {1, , iV}\{ί0} and 0\, ,i i o_i, i i o + 1 , . >,jN)Φ
(1, , i0— 1, JO, i o + 1 , , i o - 1 , Jo+1, * 9 N)9 then applying Proposition 3.2,
we obtain a left-equivalent system B(x; D) which is in a normal form
with respect to

(4.2)< 0 («!, , s<0_i, siQ + s i o - m ί o i o , 8< 0 + 1, , βio_i, m i o i o , β i o + 1, , sN) .

When the inequality (4.1)<0 does not hold, there exists i(Φi09 j0) such
that mih>mίQh. We choose ί* such that m,. io = max^ i o{m< f o}(>m< o i o).
Then the inequality (4.1)^ holds instead of (4.1)io. Hence we have a left-
equivalent system C(x; D) which is in a normal form with respect to
(4.2)i*. Here we have to mention that in the system C(x; D) it holds
that ciQJ ΞΞ aiQO for any j in view of (*) in Proposition 3.1. Now, for the
system C(x; D), if the condition corresponding to (4.1)ίo does not hold,
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then we continue the above operations. Finally we obtain a system
E(x; D) satisfying the following:

( i ) E(x; D) is in a normal form with respect to some S with S =
(SΊ, , siQ_l9 siQ, 8t0+ί, , sN), where t h ^ sJQ < sh and st ^ β, for i Φ i0, j0,

(ii) eioj(x; D) = α ί o i for any i ,
(iii) The condition corresponding to (4.1)<0 holds for E(x; D).
Therefore by the method of the first step, we have a left-equivalent

system F(x; D) in a normal form with respect to some Γ = (tlf •••, Fy)
satisfying tiQ > β<0, ί/0 ^ ίio < 8io and tt ^ s£ for i Φ ί0, j 0 . Hence, con-
tinuing these operations we obtain our proposition. q.e.d.

5. Proof of Theorem IV. The proof is similar to that of Theorem
I, which, however, was carried out in the class of meromorphic func-
tions. So we need more careful considerations.

Let A(x; D) be a non-degenerate system of total order m at x0 with
holomorphic coefficients. Then we may assume without loss of generality
that

(5.1) m = Σ™<(? > ΣmiVn) for any σΦl,

where mf — order aiS{x^ D).
In fact, the reduction to such a system by holomorphic left-elementary
operations is the same as that of Lemma 3.1 with miό replaced by m $ .
In this case {sj c Z should be chosen so that m { i = order ai3 (x; D) ^ s^ —
βy + mfί.

Now we have

LEMMA 5.1. Assume that A(x; D) satisfies the condition (5.1). Then
A(x; D) can be reduced to a system B(x; D) = (biS) by locally holomorphic
left-elementary operations in a neighbourhood of x0 with the following
property:

(5.2) m = Σ n$> > Σ niσU) for any σ Φ 1 ,
ϊ=l i=l

where niά = order btί(x) D) and nfl = order bi3 (x0; D).

PROOF. By the condition (5.1), there exists { s J c Z such that mi3 <̂
Si — Sj + m?j, where m o = order atj(x; D). Without loss of generality,
we may assume that sx ^ s2 ^ <̂  sN. We put yti = Si — s, + mf3K Then
we can show that A(x; D) can be reduced to a system B(x; D) = (bί3) by
locally holomorphic left-elementary operations which satisfies order
bu(x0; D) = mίi\ order bi3(x\ D) ^ yi3- and order bi3(x; D) < yiS for i < j .
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In fact, assume that order aίQί(x; D) = 7<ol for some iQ Φ 1. Now we
put

Note that αiίO(^o) ^ 0. Then adding to the v t h row the first row multi-
plied by — (aiolo(x)/am(x))DH°~Sl

f we obtain a system E(x; D) = (eiά) which
satisfies order etί ^ yiίf order eiQl < 7*oi, order ett(x0; D) = mff and the con-
dition corresponding to (5.1) holds for E(x; D). In order to prove these
facts, it suffices to show

(5.3) Π aiσU)0(x0) x (α<oio(aJo) <*>iou0)o(%o)) = 0

for any σe&N. We omit the proof. It is the same as that of Lemma
3.2. Continuing these operations, we finally obtain a desired system.

q.e.d.

PROOF OF THEOREM IV. We may assume that A(x; D) satisfies the
condition corresponding to (5.2). It is easy to see that for our system
A(x; D) Lemmas 3.2 and 3.3 hold by locally holomorphic left-elementary
operations in a neighbourhood of x0. Hence Proposition 3.1 holds for
A(x; D) by locally holomorphic left-elementary operations. q.e.d.

6. An example. Let us consider the following system in C:

ID2 D\

- 1 D2 '

The Cauchy problem (A(x; D), T) is well-defined at every point in C if
and only if T = (3, 1) or (2, 2) or (0, 4). On the other hand, the Cauchy
problem (A(x; D), T) is well-defined at every point in C with the excep-
tion of the points in a discrete subset of C if and only if T Φ (4, 0)
and | Γ | = tx + t2 = 4.

Let us prove these facts. First, the case T = (2, 2) is obvious.
( i ) Let us consider the case T = (4, 0). Let

Then we have

This proves immediately that the Cauchy problem is not well-defined at
every point in C.
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(ii) In the case T = (3, 1), it is obvious that the Cauchy problem
is well-defined at every point in C by (i).

(iii) In the case T = (1, 3), it is easy to see that the Cauchy problem
is not well-defined at the origin. Let

κ-x D-

Then we have

= ID-ljx -l/»

\x θ) ' Γ2J± [-2/x D* - (2/x)D2 - xDJ '

This shows that the Cauchy problem is well-defined at every point in C
except the origin.

(iv) Let us consider the case T — (0, 4). Let

Then we have

_ ID* (x/2)D\
* 3 = I \ pA^ί

\xD + 1 ar/2/ \0 DA - xD2 - ZD) '

This implies that the Cauchy problem is well-defined at every point in
C. Note that the system P3(x; D) is the one given by Example in §1.
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