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Abstract. In the convex-geometric setting of what we call linear Gale transforms
and convex polyhedral cone decompositions, we generalize and reformulate results on

(1) the secondary polytope of a convex polytope considered by Gelfand, Kapranov and
Zelevinskij in connection with the discriminants of projective toric varieties, as well as

(2) the wall geometry of fans considered by Reid in connection with Mori's birational
geometry in the particular case of projective toric varieties.

Introduction. Let Ξ be a finite subset of an r-dimensional vector space W over
the field R of real numbers. As one of us already sketched in [14, §2.6], let us now
outline our results in this paper assuming, for simplicity, that Ξ spans W over R, that
Ξ does not contain 0 and that each ξsΞ is not a positive scalar multiple of any other
element in Ξ\{ξ}.

Among the pairs (F, /) of an /?-vector space V and a map f:Ξ->V such that
f(Ξ) spans V over R and that

Σ£®/(£) = 0 in W®RV,

there exists a pair (G(W, Ξ), g), called the linear Gale transform of (W, Ξ), satisfying
the following universality: For each (K,/) there exists a unique /^-linear map/z:
G(W,Ξ)^V such that f = h<>g.

Convex-geometric and combinatorial properties for Ξ turn out to be reflected in
those for g(Ξ) in an interesting way. See Shephard [16] and McMullen [11], where the
appellations linear representation and linear transform are used. Consider, for instance,
convex polyhedral cones

^ > o ( £ ) : = Σ * > o £ and G>0(W, Ξ):= £ R>og(ξ)
ξsΞ ξeΞ

in W and G(W, Ξ), respectively, spanned by Ξ and g(Ξ) over the additive semigroup
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/?>0 of nonnegative real numbers. As we show in Proposition 1.4, W>0{Ξ) is strongly

convex, i.e., does not contain any nonzero /Minear subspace if and only if

The Gelfand-Kapranov-Zelevinskij decompositions we are about to consider in

this paper fit in nicely with linear Gale transforms and provide another important

reflection of interest.

A convex polyhedral cone decomposition for W is a finite collection 77 of convex

polyhedral cones in W such that the faces of any σeΠ belong to 77 and that σ n σ' for

any pair σ, σ' e 77 is a face of both σ and σ'. 77 is said to be simplicial (resp. nondegenerate)

if every σ e 77 is simplicial (resp. if {0} belongs to 77). We call 1771: = (J σeΠσ the support

of 77.

77 is said to be quasi-projective if there exists a function η: \Π\->R which is piecewise

linear and strictly convex with respect to 77, that is, a globally linear functional zσ: W-+R

exists for each σ e 77 such that

η(w) > zσ(w) for all we\Π\

and that the equality holds if and only if weσ.

As we see in Theorem 2.3, the Kleiman-Nakai criterion in algebraic geometry has

a variant in our context: When 1771 is a convex polyhedral cone, we can describe the

cone CPL(77) of convex functions η: 177 \->R piecewise linear with respect to 77 in terms

of the internal walls in 77. We then get a criterion for 77 to be quasi-projective.

A (possibly degenerate) convex polyhedral cone decomposition 77 for W is said to

be admissible for (W, Ξ) if (i) 77 is quasi-projective, (ii) 1771 = W>0(Ξ) and (iii) each cone

σe77 is spanned over /?>0 by a subset of Ξ.

We show in Theorem 3.5 that each nondegenerate and admissible 77 gives rise to

a convex polyhedral cone cpl(77) in G(W, Ξ), which we call the Gelfand-Kapranov-

Zelevinskij cone (the GKZ-cone, for short) associated to 77. We have dimcpl(77) =

dim G(W, Ξ) if and only if 77 is simplicial. Then

{the faces of the GKZ-cones cpl(77) 177 simplicial and admissible for (W, Ξ)}

turns out to be a nondegenerate convex polyhedral cone decomposition for G(W, Ξ)

with support G>0(W, Ξ). We call it the Gelfand-Kapranov-Zelevinskij decomposition (the

GKZ-decomposition, for short). cpl(77) for nondegenerate but not simplicial 77's turn

out to be contained in the above family. Moreover, degenerate 77's also give rise to

similar cones which appear in the above family and turn out to be contained in the

boundary of G>0(PF, Ξ).

The GKZ-decomposition enables us to compare different admissible convex

polyhedral cone decompositions 77 and 77' in terms of the relative position of the

GKZ-cones cpl(77) and cpl(77') inside G>0(W, Ξ).

When W>0(Ξ) is strongly convex, i.e., does not contain any nonzero /^-linear

subspace, the GKZ-decomposition is a conic variant of the secondary poly tope for a
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convex polytope considered by Gelfand-Zelevinskij-Kapranov [4], [5], [6], [7], [8]
and [9] in connection with the Newton polytope of the discriminant of a projective
toric variety.

On the other hand, the case W>0(Ξ)=W includes the birational geometry of
projective toric varieties. In particular, it includes the wall geometry which Reid [15]
obtained in connection with Mori's birational geometry in the particular case of
projective toric varieties. Referring the reader to [13] for necessary terminology, let us
consider a free Z-module N^Zr of rank r and the corresponding algebraic torus
T\ = N®ZC* of dimension r isomorphic to the product of r copies of the multiplicative
group Cx of nonzero complex numbers. Let W: = N®ZR and assume Ξ to be contained
in the lattice Na W.

A nondegenerate and admissible 77 in this case is nothing but a projective fan such
that the set 77(1) of one-dimensional cones in 77 is contained in the preassigned allowable
set {R>oξ\ξeΞ}. Thus the codimension-one orbits of the corresponding projective toric
variety Xπ occur only among the preassigned allowable set {orb(/?>0£) | ξeΞ}. We know
that Xπ has at most quotient singularities if and only if 77 is simplicial. We can identify
G(W, Ξ) with the scalar extension to R of the group of linear equivalence classes of
preassigned allowable Γ-invariant Weil divisors on Xπ, while G>0(W, Ξ) is the cone in
G(W, Ξ) spanned by the linear equivalence classes of preassigned allowable Γ-invariant
effective Weil divisors. The GKZ-cone cpl(77) coincides essentially with the cone in
G(W, Ξ) spanned by the linear equivalence classes of pseudo-ample divisors on Xπ, but
is so adjusted that all the preassigned allowable divisor classes are taken into account
as well. The cones cpl(77) for simplicial 77's are exactly those of maximal dimension
and turn out to intersect along faces and fill up the cone G>0(W, Ξ) of preassigned
allowable effective divisor classes without overlap. For different 77 and 77', the bi-
rational correspondence (blowing-up, blowing-down or flop, for instance) between
Xπ and Xw is reflected in the relative position of the cones cpl(77) and cpl(77') inside
G^0(W,Ξ).

It might be interesting to relate this result with the codimension-one characteriza-
tion of toric varieties due to Fine [2] and [3].

As we show in Corollary 3.8, the case of strongly convex W>0(Ξ) also has an
interesting application: Suppose a convex polyhedral cone π in W is strongly convex,
i.e., does not contain any nonzero /Minear subspace. Then there exists a simplicial and
quasi-projective polyhedral cone decomposition 77 with |77| = π such that the set 77(1)
of one-dimensional cones in 77 coincides with that of one-dimensional faces of π. If all
the proper faces of π are simplicial, then 77 does not subdivide any of the proper faces
of π. In particular, we get another proof of the following known result (cf. Stanley [17]
and Goodman-Pach [10]): A simplicial convex polytope Q has a triangulation without
additional vertices, that is, one by means of simplices having vertices only in the set of
vertices of Q. Moreover, any two such triangulations turn out to be obtainable from
each other by a finite succession of elementary operations called flops (cf. Corollary 3.9).
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As an important consequence of the result above for π, we get a non-divisorial,
relatively projective and equivariant modification of an affine toric variety with a bad
isolated singularity: Namely, suppose that π above is rational with respect to a Z-lattice
N in W, and that all the proper faces of π are simplicial. Then the corresponding afrlne
toric variety Un may have a bad isolated singularity at the unique Γ-fixed point orb(π).
The above decomposition Π gives rise to an equivariant, relatively projective and
birational morphism f:Xπ^>Uπ from the toric variety XΠ with at most quotient
singularities such that / is isomorphic outside orb(π) and that the fiber f~ί(pτb(π)) is
of codimension at least two in XΠ.

Details for more applications to toric varieties will be published elsewhere.
For necessary results on convex geometry, we refer the reader to [13, Appendix],

for instance.
Thanks are due to Eiji Horikawa who kindly made available the English translation

of Gelfand-Zelevinskij-Kapranov [9]. Thanks are also due to Takayuki Hibi, who
provided the references for triangulations, without additional vertices, of simplicial
convex polytopes.

As the writing of this paper was coming to a close, we received a preprint of
Billera-Filliman-Sturmfels [1] which also notices the relevance of the Gale transforms
to the secondary polytopes of Gelfand, Kapranov and Zelevinskij.

This paper is dedicated to the sixtieth birthday April 9, 1991 of Professor Heisuke
Hironaka, whose Harvard thesis in 1960 noticed the importance of cones in the bira-
tional geometry of projective algebraic varieties, which led to the tremendous later devel-
opments in birational geometry due to S. Kleiman and S. Mori among others, thereby
helping to enrich the content of this paper as well.

1. Linear Gale transforms. Throughout this paper, we fix a finite dimensional
vector space W over the field R of real numbers with r: = dim W, and denote
by W* : = HomR(W, R) its dual space with the canonical /^-bilinear pairing
< , >: W* x W-*R.

Let Ξ be a finite subset of W spanning W over R. Introduce an R-vector space Wγ

with a basis {eξ | ξ e Ξ} which is in bijective correspondence with Ξ. By sending eξ to
ξe W, we get a surjective linear map Wί-^W. Let Wf: = HomR(Wi, R) be the dual
space with the dual basis {ef | ξeΞ}. Then we have the dual injective linear map W*->
W% which sends ze W* to ΣξeΞ<

z> Oe*-

DEFINITION. We denote the cokernel of the injective linear map above by

G(W, Ξ):=W*/W* ,

which is an R-vector space of dimension *Ξ — dimW. For each ξ, we denote by
g(ξ)eG(W,Ξ) the image of eJeJF?. We denote g{Ξ)\ = {g(ξ)\ ξeΞ} and call
(G(W, Ξ), g(Ξ)) the linear Gale transform of (W, Ξ).



GALE TRANSFORMS AND GKZ DECOMPOSITIONS 379

By definition, the defining relations among the elements of g(Ξ) are

Σ<z>Oθ(ξ) = 0 for all zeW* ,
ξeΞ

which we may express more symmetrically as

Σξ®β(ξ) = O in W®RG(W,Ξ).
ξeΞ

REMARK. McMullen [11] and Shephard [16] used the appellations linear transform
and linear representation, while the term Gale transform was reserved for an affine
version. We adopt our present terminology to avoid possible confusion in our context.

Instead of considering finite subsets Ξ of W, we could generalize our situation and
formulate the linear Gale transform more symmetrically as follows: Consider a finite
set Ξ, a finite dimensional R-vector space W and a map ι\ Ξ-*W whose image spans
W over R. Then the linear Gale transform g: Ξ-+G of i: Ξ-> W is defined to be the
universal one among all the maps / : Ξ^V to R-vector spaces V such that the image
f(Ξ) spans V over R and that

Σ*(ί)®/(ξ) = O in W®RV.
ξeΞ

The universality means that for each such / : Ξ-+V, there exists a unique /^-linear
maph: G-» V with f = hog. It is then easy to see by symmetry that i: Ξ-> Win turn is
the linear Gale transform of g: Ξ-+G.

In the rest of this paper, however, we restrict ourselves to the case where i is
injective. Clearly, the linear Gale transform in this generalized sense then coincides with
the earlier one given in the definition above.

Recall that a subset σ is said to be a convex polyhedral cone in W if there exist
wu , ws e W such that σ is the set of nonnegative linear combinations of w1? , ws,
namely,

where i?>0 is the additive semigroup of nonnegative real numbers, σ is said to be
simplicial if {wl5 , ws} can be chosen to be /Minearly independent, σ is said to be
strongly convex if σn( — σ)={0}, that is, σ does not contain any nonzero l?-linear sub-
space of W. The dual cone for σ is defined to be

σv : = {ze W* | <z, w>>0 for all weσ} ,

which is a convex polyhedral cone in the dual space W*. A subset ΐ c σ i s said to be
a face of a convex polyhedral cone σ and denoted τ<σ if there exists z e σ v such that

We now derive immediate consequences of the definition, which we need in Section 3.
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We refer the reader to [11] and [16] for more.

PROPOSITION 1.1. Let ζ be a vector belonging to Ξ.
(1) ξΦO if and only if g(ξ) is in the R-linear subspace of G(W, Ξ) spanned by

{g(ξ')\ξΈΞ,ξ'ϊξ}.
(2) g(ξ)φθ if and only if ξ is in the R-linear subspace of W spanned by Ξ\{ξ\.
(3) A subset Ω ofΞ is an R-basisfor W if and only if{g(ξ) \ ξ eΞ\Ω} is an R-basis

forG(W,Ξ).

PROOF. (1) If ξ Φ0, there exists zeW* such that <z, ξ}= -1. Hence

Q(ξ)= Σ <z,ξr>g(ξf).
ξ'eΞ\{ξ}

Conversely, suppose g{ζ) = Σξ'eΞ\{ξ}cξ'^')' Then by the definition of G(W, Ξ), there
exists ZE W* such that <z, ξ)= - 1 and <z, ξ'} = cξ> for all £'eΞ\{<ί;}. In particular,
ξΦO.

(2) can be proved symmetrically.

As for (3), suppose Ω is a basis for W. Then each ξEΞ\Ω can be written as

ζ = ΣωeΩaξ,o>ω f ° r aξ,ωER> hence

0= Σ ω®(g(ω)+ Σ aι
ωeΩ \ ξeΞ\Ω

Since Ω is supposed to be a basis for W, we have g(ω) + ΣξeΞ \Ω aξ,ω9(ζ) = ® f° r aU (

Thus {g(ξ) \ξsΞ \Ω} spans G{ W, Ξ) over R. Since its cardinality is *Ξ - r = dim G( W, Ξ),
it is a basis for G(W, Ξ). The converse can be proved symmetrically. q.e.d.

DEFINITION. For each pair (W, Ξ), we define convex polyhedral cones in W and
G(W, Ξ), respectively, by

^>o(£) = Σ * > o £ and G > 0 ( ^ , Ξ ) : = Σ ^
ξeΞ ξeΞ

If W>0(Ξ)= W (resp. G>0(H^, Ξ) = G(^, Ξ)), then we say that Ξ (resp. gf(S)) positively
spans ^(resp. G(W, Ξ)).

LEMMA 1.2. (1) PFe tov^ H^>0(Ξ)Φ W if and only if Σ^ΞaΦ^ = 0for a subset
{aξ I ξ e Ξ} cz R > 0 «o/ all zero.

(2) Λ ^Mfeβ/ Ωc^Ξ is a facial subset, //zα/ w, Ω = ΞnFfor a face F<W>0(Ξ\ if

and only ifΣξeΞ\Ωaξd(^ = ^for positive real numbers aξ for ξeΞ\Ω.

PROOF. (1) Clearly, W> 0(Ξ) Φ W holds if and only if there exists a nonzero z e W*
such that <z, ξ}>0 for all ξ e Ξ. If such a z exists, then ΣξeS<z> Oβ(ξ) = ° w i t h <z' O ^ °
not all zero, since Ξ spans Wover R and z^O. Conversely, suppose ΣξeΞaξ9(ζ) = ® w ^ t n

aξeR>0 not all zero. By the definition of G(W, Ξ), there exists zeW* such that
<z, O = tf«^0 f°r au< ^ G ^ We have z/0, since aξ's are not all zero by assumption.
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(2) By definition, Ω is a facial subset of Ξ if and only if there exists z e W* such

that <z, ω> = 0 for all ωeΩ and that <z, ξ}>0 for all £ e Ξ \ Ω . The rest of the proof

is similar to that for (1). q.e.d.

PROPOSITION 1.3. (1) Suppose g(ξ)φθ for all ξeΞ. If G>0(W,Ξ) is strongly

convex, then W>0(Ξ)= W.

(2) // fV>0(Ξ)= W, then G>0(W, Ξ) is strongly convex.

PROOF. (1) If W^0(Ξ)Φ W, then by Lemma 1.2, (1), there exist {aξ\ ξeΞ}aR>0

such that ΣξeΞa$(ζ) = 0 with aξ0^^ f ° r a ζoEΞ Hence

-aξog(ξo)= X aξg(ξ)
ξeΞ\{ξ0}

is contained in

G>0(W,Ξ)n(-G>0(W,Ξ))

and is nonzero since g(ξo)φ0 by assumption. Thus G>Q{W, Ξ) is not strongly convex.

(2) Suppose G>0{W, Ξ) is not strongly convex. Then there exists a nonzero

element

ξeΞ ξeΞ

in G^oiW, Ξ)n(-G^0(W, Ξ)) with aξ9 bξ>0 for all ξeΞ. Thus Σ { 6 S (β{ + W 9 = 0 w i t h

aξ + bξ nonnegative and not all zero. As in the proof of Lemma 1.2, (1), there exists a

nonzero zeW* such that <z, ξy = aξ + bξ>0 for all ξ e Ξ . Hence W>O(Ξ)ΦW. q.e.d.

By symmetry, we have:

PROPOSITION 1.4. (1) Suppose Ξ does not contain 0. If W> 0(Ξ) w strongly convex,

(2) IfG>0(W, Ξ) = G(W, Ξ), then W>0(Ξ) is strongly convex.

2. Convex polyhedral cone decompositions.

DEFINITION. A convex polyhedral cone decomposition for W is a finite collection

77 of convex polyhedral cones in W such that (i) the faces of any σe/7 belong to 77

and (ii) the set-theoretical intersection σ n σ ' of any pair σ, σΈΠ is a face of both σ

and σ'. 77 is said to be simplicial if every σ e 77 is simplicial. 77 is said to be nondegenerate

if every σ e 77 is strongly convex. The support of 77 is defined to be 1771: = (J σeΠσ. We

say 77 to be complete if \Π\=W. For each 0<j<r, we denote by 77(y) the set of

/-dimensional cones in 77.

Note that simplicial implies nondegenerate. A convex polyhedral cone decomposi-

tion 77 is easily seen to be nondegenerate if and only if {0} belongs to 77. More gen-
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erally, a convex polyhedral cone decomposition 77 possesses a unique /Minear subspace

WQCZW such that W0<σ for all σeΠ. The induced convex polyhedral cone decom-

position

Π/W0: = {σ/lV0\σeΠ}

for the quotient vector space WjW0 is nondegenerate, and 77 consists of the inverse

images of the cones in Π/Wo. Clearly, Π(j) is empty for j< dim Wo.

In this paper, we restrict ourselves to convex polyhedral cone decompositions 77

with support | 771 spanning W over R.

We denote by PL(77) the finite-dimensional R-vector space of functions η : 177 \-+R

which are piecewίse linear with respect to 77, that is, there exists zσ e W* for each σ e 77

such that

η(w) = <zσ, w> for all weσ .

We denote by PL > O(77) c PL(77) the subset consisting of η with η(w) > 0 for all w e \ 771.

LEMMA 2.1. Π is simplicial if and only if Π is nondegenerate and dimPL(77) coin-

cides with the cardinality of the set 77(1) of one-dimensional cones in 77.

PROOF. If 77 is degenerate, then, clearly, 77 is not simplicial.

We thus suppose 77 to be nondegenerate, hence 77(1) is nonempty. For each p e 77(1),

we may regard the one-dimensional /^-vector space W^/p1 as the /^-vector space of

linear mapsp->/?. By restriction, we get an /^-linear map

α: PL(77)-> © (W/p1),
pe/7(l)

which is clearly injective. For each σe77, the R-vector space W^/σ1 of linear maps

σ->R can also be embedded by restriction as

peΠ(l),ρ<σ

which is bijective if and only if σ is simplicial. The rest of the proof is clear. q.e.d.

A function τ/ePL(77) is said to be convex if η(w-\-w')<η(w) + η(w') for all w,

w'e\Π\. We denote by CPL(77) the convex polyhedral cone in PL(77) consisting of

the convex functions which are piecewise linear with respect to 77. Clearly, a function

η: I 77 |->i? belongs to CPL(77) if and only if there exists zσe W* for each σe77 such

that

f]{w)><zσ, w> for all we\Π\

and that the equality holds if weσ.

Since 1771 is assumed to span W over /?, the natural linear map
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is injective with the image contained in CPL(/7). From now on we always identify W*

with its image in CPL(/7).

LEMMA 2.2. We have CPL(77)c ^ * + PL>0(77). If 77 contains an r-dimensional

cone, then

CPL(77) n ( - CPL(/7)) = W* .

PROOF. Let ηeCPL(Π) and σeΠ. By definition, there exists zσe W* such that

η(w) > (zσ, w} for all we\Π\

with the equality holding if w e σ. Hence η — zσ belongs to PL > O(77), and the first inclusion

holds.

Let us now choose σ to be in 77(r), which is nonempty by assumption, and suppose

further that η belongs to — CPL(/7) as well. Hence there exists z'σe W* such that

-η{w)>{z'σ, w} for all we\Π\

with the equality holding if w e σ. Thus

<-z'σ,w>>η(w)>(zσ,w} for all ws\Π\.

Moreover, the equalities hold for w belonging to the r-dimensional σ. Hence we

necessarily have — z'σ = zσ, and, consequently, the equalities hold for all we\Π\.

We are done, since W* is contained in CLP(J7) as well as — CPL(/7). q.e.d.

DEFINITION. A convex polyhedral cone decomposition 77 for W is said to be

quasί-projective if there exists η e PL(17) which is strictly convex with respect to 77, that is,

there exists zσ e W* for each σ e 77 such that

η(w)>(zσ, H>> for all we\Π\

and that the equality holds if and only if weσ.

REMARK. The above terminology was motivated by the algebraic geometry of

toric varieties, where equivariant ample line bundles correspond to strictly convex

support functions. Consequently, complete and quasi-projective 77 may be said to be

projective. In the literature, such a 77 is also said to be strongly poly topal in combinatorics

or regular by Gelfand-Zelevinskij-Kapranov [9].

EXAMPLE. Here are examples of 77 which are simplicial but not quasi-projective

with dim W=3.

(1) Choose an /?-basis {wl5 w2, w3} for W. Let
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and denote by 77 the set of faces of the following nine simplicial cones of dimension

three:

Then 77 is a convex polyhedral cone decomposition for H^with 1771 = /?>ow1 +R>ow2 +

R>ow3 simplicial. In this case, no ηeCPL(Π) can be strictly convex with respect to 77.

Indeed, since wi + wf

2 = w\ + vv2, we have w'2 = H^ + w2 — wl9 the right hand side of which

is a linear combination of three vectors contained in a common cone belonging to 77.

Thus φv 2 )>^(w ' 1 ) + 7 / ( ^ 2 ) - ^ ! ) , so that ^(w1) + ιy(w2)>ι/(w'1) + ̂ (w2). Similarly, we

have η(w2) + ̂ /(vv3)>η(w'2) + J7(w3) and ^/(w3) + ί|(wi)>y;(w3) + ηiw^. Adding these three

inequalities, we see that they are necessarily equalities.

(2) Let wo:= — (w1 + w2 + w3) instead, and consider the set 77 consisting of the

faces of the nine simplicial cones in (1) as well as the tenth simplicial cone

Then 77 is complete but there exists no η e CPL(77) which is strictly convex with respect

to 77 for exactly the same reason as above. This is precisely the simplest fan which gives

rise to a smooth non-projective toric variety of dimension three (cf. [13, pp. 84-85]).

We refer the reader to [12, pp. 68-74] for more examples.

To characterize quasi-projective 77, let us consider the dual space

PL(77)*: =HomR(PL(77), R)

with the canonical /^-bilinear pairing denoted again by

< , >: PL(77)*xPL(77)->/?.

Since | 771 is assumed to span W over /?, we have a natural surjective linear map

PL(77)* -• W. We need to consider the dual polyhedral cone

CPL(77)v : = {le PL(77)* | </, η} > 0 for all η e CPL(77)} .

Beside assuming 1771 to span W over /?, let us further assume that the support 1771

is a convex polyhedral cone, although we do not assume it to be strongly convex. Thus

a complete 77, for instance, meets our requirement.

Under this further assumption, 77 obviously contains an r-dimensional cone. Hence

by Lemma 2.2, we see that CPL(77)V spans, over /?, the kernel of the surjective linear

Recall that r: = dim W. A polyhedral cone in 77(r—1) is called a wall for 77. We

say a wall τ e 77(r — 1) to be internal if τ is not contained in the boundary of the support
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\Π\. It is the case if and only if there exist σ, σ'eΠ(r) such that τ = σnσ', since the

r-dimensional convex polyhedral cone | Π | is necessarily the union of cones in Π(r). In

particular, every wall is internal when Π is complete.

The following result, which was motivated by the toric version of the Kleiman-

Nakai criterion in algebraic geometry, plays a crucial role later. It is essentially a

local characterization of convexity and strict convexity of piecewise linear functions.

THEOREM 2.3 (Kleiman-Nakai criterion). Let Π be a convex polyhedral cone

decomposition for W such that \Π\ is a convex polyhedral cone spanning W over R. Then

for each internal wall τeΠ(r—\), there exists a nonzero element /τePL(/7)* uniquely

determined up to positive scalar multiple such that the following are satisfied.

(1) lτfor internal walls τeΠ(r— 1) span, over R, the kernel of the surjective linear

mapPL(Π)*->W.

(2) The polyhedral cone CPL(/7)V consists of nonnegative linear combinations oflτ

for internal walls τeΠ(r— 1), that is,

CPL(77)V= Σ R±o'τ
τ internal walls

Consequently, η e PL(77) belongs to CPL(J7) if and only if

</τ, η} > 0 for all internal walls τ e Π(r — 1).

(3) ηePL(Π) is strictly convex with respect to Π if and only if

</τ, η} > 0 for all internal walls τ e Π(r— 1).

PROOF. (2) implies (1), since CPL(/7)V spans the kernel of PL(Π)*^>W as we

noted above.

For each σeΠ(r) (resp. each internal wall τ), let us denote PL(σ):=W* (resp.

PL(τ):= W^/τ1), which consists of the linear maps σ-+R (resp. τ-+R). Since \Π\ is

assumed to be an r-dimensional convex polyhedral cone, we have \Π\ = \JσeΠ(r)σ as

we remarked above.

For each internal wall τ, there exist σ(τ), σ'(τ)eΠ(r) such that τ = σ(τ)nσ'(τ). Define

δτ: Π PL(σH^*
σeΠ(r)

to be the /Minear map sending ζ = (zσ)σeΠ(r) to δτ(ζ): = zσ(τ) — zσ,(τ), and denote by

δτ\ f]σ e 7 J ( r )PL(σ)-^PL(τ) the composite of δτ with the projection W*-+W*/τ1 = PL(τ).

Then PL(77) can obviously be identified with the kernel of their product

ί:=(ίτ)τint.rn.lw.ll.: Π PL(*)-> Π P )̂
σeΠ(r) τ internal walls

In other words, PL(77) coincides with the subspace of J~[<reίJ(ι.)PL(σ) consisting of ζ with
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δτ(ζ)eτL for all internal walls τ .

The induced /^-linear map δτ\ PL(77)->τx is surjective. Furthermore, τ 1 n σ ( τ ) v is one

of the two half-lines inside the one-dimensional R-vector space τ 1 .

We now claim that

CPL(/7) = \ζe
σeΠ(r)

<5τ(ζ)eτ1nσ(τ)v for all internal walls τ

and that ζeCPL(77) is strictly convex with respect to 77 if and only if δτ(ζ)φ0 for all

internal walls τ. Indeed, CPL(/7) is obviously contained in the set on the right hand

side of the claimed equality. Suppose now that ζ is an element of the set on the right

hand side. In particular, ζ is an element of PL(/7). The r-dimensional convex polyhedral

cone I 771 is the union of cones in Π(r). By the defining property for ζ, we see that

ζ: \Π\-+R is locally convex, that is, for each σe77(r), the function ζ is convex on the

union of {σ'eΠ(r)\σ'nσeΠ(r—\)}. By definition, ζ is a globally convex function on

1771 if and only if so is its restriction to every affine line segment. Namely, for any

w, w' e 1771, the function

f(λ): = ζ(λw + (\-λ)w'), 0<λ<\

is convex in the variable λ. This is clearly the case, since a function in one variable

which is locally convex is necessarily globally convex.

The assertion on the strict convexity can be proved similarly.

The /Minear map

δf: W/Rτ-+PL(Π)*

dual to δτ: PL{Π)->τ± is injective so that the image under it of the one-dimensional

cone (σ + Rτ)/Rτ is again one-dimensional and is of the form

for a nonzero element lτ determined uniquely up to positive scalar multiple. Obviously,

we have

τ internal walls

For ζ G PL(77), we clearly have δτ(ζ) e τL n σ(τ)v (resp. δτ(ζ) e τ λ n σ(τ)v \{0}) if and only

if </t, C> > 0 (resp. </τ, ζ> >0) for all internal walls τ. q.e.d.

COROLLARY 2.4. The following are equivalent for a convex polyhedral cone

decomposition Π for W such that \Π\ is a convex polyhedral cone spanning W over R.

(1) 77 is quasi-projective.

(2) CPL(77) spans PL(77) over R.

(3) CPL(77)V is strongly convex.
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In this case, the interior of CPL(/7) consists of those η e PL(77) which are strictly

convex with respect to 77.

PROOF. (2) and (3) are equivalent by the duality for convex polyhedral cones (see,

for instance, [13, Proposition A.6]).

(1) implies (2). Indeed, suppose τ/ePL(77) is strictly convex with respect to 77. Then

for any η'ePL(Π) we can find a large enough positive real number c such that

</τ, η' + cη}>0 for all internal walls τeΠ(r — 1). Hence η' + cη is strictly convex with

respect to 77 by Theorem 2.3.

If (2) is satisfied, then CPL(77), as a subset of PL(/7), has an interior point η, which

is necessarily strictly convex with respect to 77 again by Theorem 2.3. q.e.d.

REMARK. When 77 is complete, it can be shown to be quasi-projective (hence

projective) if and only if there exists a nonzero wp in each peΠ(l) such that the convex

hull • of {wp\peΠ(l)} has exactly {wp\peΠ(\)} as its set of vertices and that 77

consists of the convex polyhedral cones spanned by the faces of • .

A convex polyhedral cone decomposition 77 is said to be a subdivision (or refinement)

of another 77' if \Π\ = \Πf\ and if each σeΠ is contained in a σ'eΠ'. In this case,

PL(77') can be canonically identified with a subspace of PL(77), and CPL(77') = PL(77')n

CPL(77).

THEOREM 2.5. Let Π be a convex polyhedral cone decomposition such that 1771 is

a convex polyhedral cone spanning W over R. Then the faces of the convex polyhedral

cone CPL(77) are exactly of the form CPL(Π')for quasi-projective convex polyhedral cone

decompositions 77' such that 77 is a subdivision of IT'.

PROOF. Choose and fix an arbitrary η e CPL(77).

On the one hand, there exists a unique convex polyhedral cone decomposition 77'

such that 77 is a subdivision of 77' and that η is strictly convex with respect to 77'. In

particular, 77' is quasi-projective. Moreover, PL(77') can be regarded as a subspace of

PL(77) and η is contained in the relative interior of CPL(77') = PL(77')nCPL(77).

On the other hand, let F be the unique face of CPL(77) containing η in its relative

interior. It suffices to show that F=CPL(77').

The face of CPL(77)V dual to Fby the Galois correspondence in [13, Proposition

A.6] is

F* : = CPL(77)v n FL = CPL(77)v n {η}λ .

Let

/: = {internal walls τ with </τ, η} = 0} .

Then by Theorem 2.3, we see that

F* = Σ * > 0 / τ and F = { ζ e C P L ( Π ) | < / Γ , O =
τel
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Each σ'eΠ\r) is the union of the family {σeΠ(ή\σczσ'}. This family coincides with
that of the closures of the connected components of σ ' \ ( J τ e / τ . Thus ζeCPL(/7)
is contained in CPL(/7') if and only if ζ is linear across the walls (τ|τc:σ '}, that is,
</t,C>=0. q.e.d.

Applying Theorem 2.5 to the improper face CPL(/7) itself, we get:

COROLLARY 2.6. Let Π be a convex polyhedral cone decomposition such that \ Π |
is a convex polyhedral cone spanning W over R. Then there exists a quasi-projective convex
polyhedral cone decomposition W such that CPL(/7) = CPL(/7') and that Π is a subdivision
ofΠ1.

REMARK. It is essential to allow degenerate W to occur in Theorem 2.5 as well,
even when 77 is nondegenerate. As we supplement this theorem in Proposition 3.10, the
description of facets (i.e., codimension-one faces) of CPL(/7) includes the wall geometry
which Reid [15] obtained in connection with Mori's birational geometry in the partic-
ular case of projective toric varieties. Reid deals with the case where Π is a projective
fan. By Corollary 2.4, CPL(/7)V is then strongly convex. The one-dimensional faces of
CPL(/7)V are called extremal rays, and correspond to the facets of CPL(/7) by duality
(see, for instance, [13, Proposition A.6]). Contraction of an extremal ray R amounts
to removal of the walls τeΠ{r— 1) satisfying lτeR and gives rise to Π' which is a
possibly degenerate fan. The corresponding equivariant morphism of toric varieties is
Mori's contraction of extremal rational curves whose numerical equivalence classes are
contained in R.

3. Gelfand-Kapranov-Zelevinskij decompositions. In this section, a finite subset
ΞczW, which spans W over R as in Section 1, is further assumed to satisfy the following
conditions: Ξ does not contain 0, and each ξeΞ is not a positive scalar multiple of any
other element of Ξ\{ξ}. Thus R>oξ for ξeΞ are mutually distinct one-dimensional
cones in W.

DEFINTION. A (possibly degenerate) convex polyhedral cone decomposition Π for
W is said to be admissible for {W, Ξ) if

( i ) 77 is quasi-projective,
(ii) | i 7 | = ^ 0 ( S ) a n d
(iii) each cone σeΓI is spanned over /?>0 by a subset of Ξ.

By definition, an admissible Π is complete if and only if W>0(Ξ)= W.

REMARK. For the Gelfand-Kapranov-Zelevinskij decomposition considered later
in this section, it is essential to allow degenerate Π to be admissible as well. However,
if W>0(Ξ) is strongly convex as in the case dealt with by Gelfand, Kapranov and
Zelevinskij, then an admissible Π is necessarily nondegenerate.
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DEFINITION. Let 77 be a convex polyhedral cone decomposition admissible for

(W, Ξ). A subset S^Ξ is said to be a spanning subset for 77 if for each σe77, there exist

ξu , ξ p e S s u c h that

ff = ^ > o £ i + ' '

When 77 is nondegenerate, we denote

where 77(1) is the set of one-dimensional cones in 77.

If 77 is nondegenerate, then Ξ(77) is the smallest spanning subset for 77. Indeed,

we have Π(\) = {R>oξ\ ζeΞ(Π)}. Moreover, the one-dimensional faces of strongly

convex σ e 77 are of the form R>oξί9 , R>oξp for a subset {ξu , ξp}aΞ(Π). Hence

σ = R>oξ1+ - +R>oξp.

By Lemma 2.1 and Corollary 2.4, an admissible 77 is simplicial if and only if it

is nondegenerate and dim CPL(77) = dim PL(77) = *Ξ(77).

We have introduced in Section 1 a surjective linear map Wγ = ® ξeΞ Re ξ->W which

sends eξ to ξ, as well as the dual injective linear map W*-+WX = 0 ξetfRe% which sends

ze W* to ΣξeΞ(z, ζ}e* We again identify W* with its image under this map.

The key idea due to Gelfand, Kapranov and Zelevinskij of considering the follow-

ing CPL~(77, 5)'s instead of CPL(77)'s enables us to compare different 77's in a quite

convenient manner.

DEFINITION. Let 77 be a convex polyhedral cone decomposition admissible for

(IV, Ξ) and S a spanning subset for 77. Denote by PL~(77, S) the linear subspace of W\

consisting of x = ΣξeSX£e* e W\ for which there exists 77ePL(77) such that xξ = η(ξ) for

all ξeS. We denote by CPL~(77, S)c PL ~(Π9 S) the convex polyhedral cone consisting

of x = ΣξeΞxξe*e W* such that there exists ηeCPL(Π) satisfying xξ>η(ξ) for all ξeΞ

and xξ = η(ξ) for all ξeS.

For nondegenerate 77, we denote

CPL~(77): = CPL~(77, Ξ(Π)).

PROPOSITION 3.1. Let Π be α convex polyhedral cone decomposition admissible for

(W, Ξ). Then for each spanning subset S for 77, we have

CPL~(77, S)n(-CPL~(77, S))= W* .

We have dimCPL~(77, S) = *Ξ if and only if Π is simplicial and S=Ξ(Π). The faces of

CPL~(77, S) are exactly of the form CPL~(77', S"), where Π' runs through the admissible

convex polyhedral cone decompositions such that 77 is a subdivision of 77', while Sf runs

through the spanning subsets for 77' such that S'^>S.

PROOF. If x e PL ~ (77, S\ there exists a unique η e PL(77) such that xξ = η(ξ) for all

ξeS. Sending X E P L ~ ( 7 7 , S) to
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(η, Σ (xξ-η(ξ))et),

we have a linear isomorphism

PL~(/7,S)^PL(/7)x( 0 ReU
\ξeΞ\S )

which sends CPL~(/7, S) onto the product cone

CPL(Π)x( Σ
\ξeΞ\S

The rest of the proof is an immediate consequence of Lemmas 2.1 and 2.2, as well as

Theorem 2.5 and the following easy lemma. q.e.d.

LEMMA 3.2. Let C (resp. C) be a convex polyhedral cone in a finite dimensional

R-vector space V (resp. V). Then the faces of the product cone CxC in Vx V are

exactly of the form Fx F' for faces F^C and F'<C.

PROPOSITION 3.3. Inside the vector space W%, we have

ξeΞ Π,S

where Π runs through the convex polyhedral cone decompositions admissible for (W, Ξ),

while S runs through the spanning subsets for Π.

PROOF. The right hand side is obviously contained in the left hand side by Lemma

2.2. To prove the opposite inclusion, let x = ΣξeΞxξe* ^ e a n e ^ment of the left hand

side. In the product space Wx /?, consider the convex polyhedral cone

ξeΞ

Since x belongs to the left hand side of the claimed equality, there obviously exists a

function η: W>0(Ξ)^R such that E(x) coincides with the epigraph

epifa): = {O, c) e W> 0(Ξ) x R \ c > η{w)}

of η. Since E(x) is a convex polyhedral cone, we see that η is convex and that the graph

of η, denoted graph(^y), is the union of the non-vertical faces i*Xepi(fj) of the form

F=ep'ι(η)n{(z, I ) } 1 for some (z, \)eepi(η)v. The first projection p ^ : WxR^>Wmaps

the faces F-<epi(f/) with F<^gva,χ>h(η) isomorphically onto the convex polyhedral cones

pr^F) which obviously form a convex polyhedral cone decomposition Π with support

W>0(Ξ). Clearly, each σeΠ is spanned over /?>0 by elements of S: = {ξeΞ\(ξ, xξ)e

graph(^/)}. By construction, η is strictly convex with respect to Π. Consequently, Π is

admissible for (W, Ξ). Moreover, we have xξ > η(ξ) for any ξeΞ with the equality holding
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if ξ belongs to S. Hence xeCPL~(77, S). q.e.d.

REMARK, η and 77 in the above proof are uniquely determined by x, and are

denoted by ηx and 77X, respectively. Πx is nondegenerate if and only if epi(τ/x) is strongly

convex. This is the case if and only if the restriction of Πx to the linear subspace

W>0(Ξ)n(- W>0(Ξ)) is nondegenerate.

THEOREM 3.4. Under the assumptions on Ξ at the beginning of this section,

{CPL~(77, S)\Π admissible for (W, Ξ) and S spanning subsets for 77}

is a convex polyhedral cone decomposition for W% with the smallest cone W* and with

support equal to W* +Y4ξsΞ^>oet-

PROOF. In view of Propositions 3.1 and 3.3, we only need to show the following:

For any pair 77, 77' of convex polyhedral cone decompositions admissible for (W, Ξ)

and for any spanning subsets S, S'czΞ for 77 and 77', respectively, we have

CPL~(77, S)nCPL~(77', S") = CPL~(/7", SvS')

for another convex polyhedral cone decomposition 77" admissible for (W, Ξ) such that

77 and 77' are subdivisions of 77".

(1) We first show that CPL~(77, S)nCPL~(77', S') is a union of faces of

CPL~(77, S\ hence is a union of faces of CPL~(77', S') as well by symmetry. Indeed,

let F be a face of CPL~(77, S) such that an element x in the relative interior of F also

belongs to CPL~(77', S'). Then in the notation in the remark above, ηx is strictly convex

with respect to 77̂ . of which 77 and 77' are subdivisions. Consequently, F i s contained

entirely in CPL~(77, S)nCPL~(77', 5") in view of Theorem 2.5 and Proposition 3.1.

(2) We see that CPL~(77, S) n CPL~(77', S') is indeed a face of both CPL~(77, S)

and CPL~(77', S"), since it is convex and, by (1), a union of faces of CPL~(77, S) as well

as CPL~(77\ S').

The rest of the proof is clear. q.e.d.

REMARK. AS a consequence of Corollary 3.11 given later, CPL~(77, S) for de-

generate 77's turn out to be contained in the boundary of the support W* +

The convex polyhedral cone decomposition in Theorem 3.4 is degenerate unless

^ = { 0 } , since W* is the smallest cone appearing in it. The linear Gale transform in

Section 1 is exactly what we need to obtain a nondegenerate convex polyhedral cone

decomposition. Recall that

which is an /^-vector space of dimension *Ξ — dim W, and
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DEFINITION. Let 77 be a convex polyhedral cone decomposition admissible for

(W, Ξ) and let S be a spanning subset for 77. We denote the image in G(W, Ξ) of

CPL~(77, 5)c= W% by cpl(/7, S\ and call it the Gelfand-Kapranov-Zelevinskij cone (the

GKZ-cone, for short) associated to 77 and S. In particular, we denote cpl(77): =

cpl(J7, £(77)) for nondegenerate 77 and call it the GKZ-cone associated to 77.

By Proposition 3.1, we see that the faces of the GKZ-cone cpl(/7, S) are exactly

of the form cpl(/7', Sf), where 77' runs through the admissible convex polyhedral cone

decompositions such that 77 is a subdivision of 77', while S' runs through the spanning

subsets for 77' with S'^S.

Taking the image of the convex polyhedral cone decomposition in Theorem 3.4,

we have the following main result in view of Proposition 3.1:

THEOREM 3.5. Suppose that a finite subset ΞaW spanning W over R does not

contain 0 and that each ξeΞ is not a positive scalar multiple of any other element of

Ξ\{ξ). Then the collection

{cpl(77, S) 177 admissible for (W, Ξ) and S spanning subsets for 77}

of the QYJL-cones gives rise to a nondegenerate convex polyhedral cone decomposition

for G(W, Ξ) with support equal toG>0( W, Ξ). We call it the Gelfand-Kapranov-Zelevinskij

decomposition {the GYJL-decomposition, for short) for (W9 Ξ). We have dimcpl(77, S) =

dim G(W, Ξ) if and only if Π is simplicial and S = Ξ(Π).

REMARK. The GKZ-decomposition might also be called the secondary fan as in [1].

As a consequence of Corollary 3.11 given later, cpl(77, S) for degenerate 77's turn out

to be contained in the boundary of the support G>0(W, Ξ).

By Proposition 1.3, (2) and Theorem 3.5, we have the following which includes

the case of projective toric varieties:

COROLLARY 3.6. Suppose that a finite subset ΞaW positively spanning W does not

contain 0 and that each ξeΞ is not a positive scalar multiple of any other element of

Ξ\{£} . Then the faces of the GKZ-cones cpl(77), with 77 running through the simplicial

convex polyhedral cone decompositions admissible for (W, Ξ), give rise to a nondegenerate

convex polyhedral cone decomposition for G(W, Ξ) having a strongly convex polyhedral

cone G>0(W, Ξ) as support.

On the other hand, by Proposition 1.4, (1) and Theorem 3.5, we have a conic

variant of a result obtained by Gelfand-Zelevinskij-Kapranov [9]:

COROLLARY 3.7. Suppose that a finite subset Ξ a Wnot containing 0 spans a strongly

convex polyhedral cone W> 0(Ξ) of dimension equal to r: = dim W and that each ξeΞ is
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not a positive scalar multiple of any other element of Ξ\{ξ). Then the faces of the

G¥^L-cones cpl(/7), with Π running through the simplicial convex polyhedral cone

decompositions admissible for (W, Ξ), give rise to a complete and nondegenerate polyhedral

cone decomposition for G(W, Ξ).

REMARK. In fact, the GKZ-decomposition in Corollary 3.7 is projective. To show

this, let us modify results in Gelfand-Zelevinskij-Kapranov [9] and first construct a

function κ\ W* +YjξeΞR>Qe^R which is piecewise linear and strictly convex with

respect to the cone decomposition for W\ consisting of the faces of CPL~(/7) for sim-

plicial 77's. A translate of it by a globally linear function then induces a function

κ\ G{W, Ξ) = G>0(W, Ξ)->R which is piecewise linear and strictly convex with respect

to the GKZ-decomposition.

Indeed, let H_ be a half-space of W containing the origin of W in its interior and

that the intersection K\ — H_ n W>0(Ξ) is an r-dimensional convex polytope. Such an

H_ exists, since W> 0(Ξ) is assumed to be an r-dimensional strongly convex polyhedral

cone. Introduce the appropriately normalized Lebesgue measure dμ on W and let

JK
Φ):=-\ ηxdμ for xe W* + £ #>oe£ ,

where ηx: W>0(Ξ)->R is the function piecewise linear and strictly convex with respect

to Πx as in Proposition 3.3 and the remark immediately after that. This K turns out to

be piecewise linear and strictly convex with respect to the convex polyhedral cone

decomposition for W\ consisting of the faces of CPL~(/7) for simplicial 77's admissible

foτ.{W,Ξ).

For instance, suppose xeCPL~(/7) so that 77 is a subdivision of Πx. Then

Φ)=- Σ nxdμ
σeΠ(r) J K n σ

with the summand §Knσηxdμ linear in the variables {xξ\ξeΞ, R>oξ-<σ}9 since the

restriction of ηx to σ is linear. Hence there exists y(Π)e Wx such that

φ) = <χ? y(Π)y for x e CPL~(/7).

If x happens to belong to W* c W\ so that there exists a unique z e W* with

Xξ = (z, ξ} for all ξeΞ, then κ:(x) is linear in z. Denote by π : WX^W the surjective

linear map appearing at the beginning of Section 1. Hence there exists y0 e W1 such that

φ) = O, yo) = <z, π(y0)} for xe W* .

Consequently, fc—^0 vanishes on W* and induces a function K: G(^Γ, S') = G>0(W/, Ξ)-»

/? piecewise linear and strictly convex with respect to the GKZ-decomposition.

Moreover, {y(Π)\Π simplicial and admissible for (W, Ξ)} is contained in the affine

subspace π~1(π(y0))a Wx.
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As we stated in [13, Theorem A. 18 and Corollary A. 19] (however, with upper

convex and inf there replaced by convex and sup, respectively), a convex polytope P in

a finite dimensional R-vector space V is in one-to-one correspondence with a function

h: K*->/? which is piecewise linear and strictly convex with respect to a complete and

nondegenerate convex polyhedral cone decomposition for the dual space V*: Namely,

the support function h of P is defined by

(M, v)\veP} for ueV* ,

while P is described in terms of h by

P={ϋ6K|<κ,t;>^ft(κ),VtteK*}.

The cones of outer normals for P at various points of P comprise the complete and

nondegenerate convex polyhedral cone decomposition for V*9 with respect to which h

is piecewise linear and strictly convex.

As in Gelfand-Zelevinskij-Kapranov [9], consider a finite subset A of a finite

dimensional /^-vector space W. Denote by • the convex polytope in W obtained as

the convex hull of A. Then let W:=W'xR and Ξ: = {(α, 1) | oceA}. Hence

By Corollary 3.7, the faces of the GKZ-cones cpl(/7) for simplicial /7's give rise to a

complete and nondegenerate polyhedral cone decomposition for G(W, Ξ).

The secondary polytope constructed by [9] is, up to scale and symmetry with respect

to the origin, the convex polytope obtained as the convex hull in W1 of {y(Π)\Π

simplicial and admissible for (W, Ξ)} with y(Π) appearing above, where we let

H_ : = {O', c)eW\=W'xR\c<\) .

The translate by — y0 of this convex polytope is contained in the kernel π " 1 ^ ) of

π: WX^W. The GKZ-cones are nothing but its cones of outer normals in the space

G(W,Ξ) dual to T T ^ O ) .

Corollary 3.7 has the following important application which guarantees the exis-

tence of a simplicial subdivision of a strongly convex polyhedral cone without any ad-

ditional one-dimensional cones:

COROLLARY 3.8. Let π be a strongly convex polyhedral cone in W. Then there

exists a simplicial and quasi-projective cone decomposition Π with | Π | = π such that 77(1)

coincides with the set of one-dimensional faces of π. If all the proper faces of n are

simplicial, then such a Π does not subdivide any of the proper faces of n. Moreover, any

two such subdivisions can be obtained from each other by a finite succession of flops to

be defined below.

PROOF. Choose and fix a nonzero vector on each one-dimensional face of π. If
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we denote by Ξ the set of all these vectors, then the faces of π form a convex poly-

hedral cone decomposition which is nondegenerate and admissible for (W, Ξ). Since

W>0(Ξ) = π is strongly convex by assumption, we see by Proposition 1.4, (1) that

G>0(W, Ξ) = G(W, Ξ). Choose Π to be any one of the admissible convex polyhedral

cone decompositions in Corollary 3.7 such that the corresponding GKZ-cones cpl(/7)

comprising the complete GKZ-decomposition satisfy dimcp\(Π) = dimG(W, Ξ).

Clearly, Π is simplicial with Ξ(Π) = Ξ, and the last assertion holds. The last assertion

is an easy consequence of Theorem 3.12 below. q.e.d.

As a special case of Corollary 3.8, we get another proof as well as a strengthening

of a result in Stanley [17] and Goodman-Pach [10]:

COROLLARY 3.9. A simplicial convex polytope Q admits a triangulation without

additional vertices, i.e., one by means of simplices having vertices only in the set of vertices

ofQ. Moreover, any two such triangulations can be obtained from each other by a finite

succession of flops.

Let us now follow Reid [15, §§2-3] and Gelfand-Zelevenskij-Kapranov [9] to

analyze when maximal dimensional CPL~(/7)'s (hence cpl(/7)'s), with 77 simplicial and

admissible, intersect along facets (i.e., codimension-one faces).

We first supplement Theorem 2.5 and Proposition 3.1.

PROPOSITION 3.10. Suppose Π is a simplicial convex polyhedral cone decomposition

admissible for (W, Ξ). Then each facet F<CPL{Π) is of the form F=CPL(Π)for a convex

polyhedral cone decomposition Π admissible for (W, Ξ) such that Π is a subdivision of Π

and that one of the following holds:

(1) Π is degenerate.

(2) 77 is simplicial and Π is the star subdivision ofΠ with respect to a ξx eΞ\Ξ(Π).

Namely, let oceΠ be the unique cone containing ξλ in its relative interior and let βu •, βs

be the facets of α with s: = dimcc. Then Π consists of the faces of the cones belonging to

the union of

Π(ή\{σeΠ(r)\σ>a}

and

ξ^ \<j<s, λefl(r-s) with λ + oceΠ(r) and λcκx =

(3) 77 is nondegenerate but not simplicial with Ξ(Π) = Ξ(Π). There exists another

simplicial convex polyhedral cone decomposition W admissible for (W, Ξ) such that W

is a subdivision of Π with Ξ(W) = Ξ(Π) and that CPL(/7) = CPL(/7) n CPL(Πf) is a facet

of both CPL(/7) and CPL(/7f). We call W the flop of Π along Π.

PROOF. AS in the proof of Theorem 2.5, consider

F * : = CPL(/7)V nF1
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and

/: = {internal walls τeΠ with </τ, ζ> = 0, VCeF} .

Since F is assumed to be a facet, F* is a one-dimensional face of CPL(/7)V (hence is
an extremal ray in the context of Mori's birational geometry and Reid's wall geometry).

For τe/, there exist ξu , ξr, ξr+ιeΞ(Π) such that, in the simplified notation
Pj:=R>oξj for 1 < 7 < r + l , we have

r - 1
τ=ΣPj a n d τ = (τ + Pr)n(τ + p r + 1 ) with τ + pr, τ + p r + 1 e/7(r).

By rearranging the £/s if necessary, we may assume that the linear relation, unique up
to nonzero scalar multiple, among the ξ/s is of the form

r + l

Σ ajξj = O with
J *

cij<0 for 1 <j<p

a. = 0 for p+\<j<q

as>0 for q +

for 0 <p <q<r—\. The facets of τ are
j

cύj' = Pi+ '' ' + v 4- ' * * +Pr-i (Pj omitted) for 1 <j<r— 1 .

By Reid [15, Lemma 2.3 and Theorem 2.4], /3(τ): = τ + pr + p Γ + 1 is decomposed into a
union of r-dimensional cones in two different ways

r - 1 \ p

|J (ω,. + pr + p r + 1 ) ) = |J (<^ + pr + p r + 1 )

with π = Σί=iPΐ + Σj =ί + iP./ a ^ a c e °f ^(τ) Moreover, p, q and π are determined by /
independently of any particular choice of τ e /.

By Reid [15, Theorem 2.4 and Corollary 2.10], we now get the following:
If p = 0, then π is an (r — ^-dimensional /?-subspace of f^such that P(τ) = τ + π. In

this case, the faces of the cones in

turn out to form a degenerate convex polyhedral cone decomposition Π admissible for
(W, Ξ) with π as the smallest cone such that Π is a subdivision of Π and that F=CPL(77).
Thus we are in Case (1).

Suppose /7#0. Then there exists a nondegenerate convex polyhedral cone de-
composition Π admissible for (W, Ξ) such that Π is a subdivision of Π and that F=
CPL(/7). To describe Π in more detail, let us rewrite the linear relation among the
minimal linearly dependent set {ξu , ξp, ξq+u - -,ξr,ξr+1} more symmetrically as

(-ajξ, + +{-ap)ξp = a\ξ\ + +a'p,ξ'p, with (- f l l ) , , (-ap), a'l9 - , a'p.>0,

where pf : = r+\— q>2 with
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Let us denote

where p \ : = /?> 0 £Ί, p'2 : = R>0ξ2,

ί , a\ \ = ar+1, a'2 : = ar, ,a'p.: =

Pi + ' ' ' +P'p'» hence π = ε + ε ' ,

ρ'p> =R>oζ'P" Let us further denote

We see that λ0 : =pp+ι + + pqeΠ(r+ 1 —p—p') satisfies

2 a n d τ = /lo + ε + (ε/

1 nε'2). HenceIn particular,

i 0 belongs to

We have

If/7—1, then ε + ε/ = ε' is simplicial, hence so is 77. Obviously, Π is the star sub-

division of 77 with respect to ξt, and we are in Case (2).

If/?>2, then 77 is not simplicial. By Reid [15, Theorem 3.4], there exists a simplicial

convex polyhedral cone decomposition 77f admissible for {W, Ξ) satisfying

Π\r) = (Π(ή\{λ + ε + εfj\λeΛ, 1 <j <p'}) JjμH-ε. -l-ε' | λeΛ, \<i<p) .

By symmetry, CPL(77) is a facet of CPL(Πf) as well. Thus we are in Case (3). q.e.d.

REMARK. The process of obtaining the flop 77f from 77 in (3) was called an

elementary transformation by Reid [15, §3], who later introduced the new terminology

flip in algebro-geometric context. An analogous but symmetric operation called a flop

was also introduced in birational geometry. Since our operation is symmetric, we here

adopt the latter terminology in our context. The process is analogous to what

Gelfand-Zelevinskij-Kapranov [9] calls the surgery with respect to a circuit, i.e., a

minimal dependent subset.

As the non-projective example in Section 2 shows, we also have the following

possibility: for a face CPL(77) of CPL(77) of codimension greater than one, there can

exist a flop W of 77 along 77, which is not quasi-projective, hence is no longer admissible

ϊoτ{W,Ξ).

COROLLARY 3.11. Suppose 77 is a simplicial convex polyhedral cone decomposition

admissible for (W, Ξ). Then each facet F-<CPL~(77) is of one of the following forms:

(a) There exists a ξoeΞ\Ξ(Π) such that
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(b) There exists a convex polyhedral cone decomposition Π admissible for (W, Ξ)

such that Π is a subdivision of. 77, that CPL(/7) is a facet of CPL(/7) and that F=

CPL~(/7, Ξ(Π)). In this case, we have the following possibilities:

(bl) Π is degenerate.

(b2) Π is simplicial with Ξ(Π)\Ξ(Π) = {ξJ. In this case, Π is the star sub-

division of Π with respect to ξx.

(b3) 77 is nondegenerate but not simplicial with Ξ(Π) — Ξ(Π). There exists another

simplicial polyhedral cone decomposition W {called the flop of Π along Π) admissible

for (W, Ξ) such that W is a subdivision of Π with Ξ(/7t) = Ξ(/7) and that CPL~(77) =

CPL~(Π)nCPL~(Πi) is a facet of CPL~{W) as well.

PROOF. By the proof of Proposition 3.1, we have an isomorphism

CPL~(/7) -^> CPL(/7) x Σ R>oe$ .
ξeΞ\Ξ(Π)

In view of Lemma 3.2, a facet of the cone on the right hand side is either of the form

CPL(77) x Σ R>oet for a ξoeΞ\Ξ(Π),
ξeΞ\Ξ(Π),ξ*ξ0

or of the form FxJ]ξeΞ\Ξ{Π) ^ > o ^ | for a facet F<CPL(Π). Thus we are done by

Proposition 3.10. q.e.d.

We are now ready to describe when maximal dimensional CPL~(/7)'s and cpl(/7)'s,

with Π simplicial and admissible, intersect along facets. The proof is an easy application

of Corollary 3.11 above.

THEOREM 3.12 (Reid [15] and Gelfand-Zelevinskij-Kapranov [9]). Suppose Π and

Πf are simplicial convex polyhedral cone decompositions admissible for (W, Ξ). Then

CPL~(/7)nCPL~(/7') (resp. cpl(/7) n cpl(/7')) is a facet of both CPL~(J7) and CPL~(/7')

(resp. both cpl(/7) and cpl(/7')) if and only if one of the following holds:

( i ) W is the star subdivision of Π with respect to a ξoeΞ\Ξ(Π).

(ii) Π is the star subdivision of W with respect to a ξι eΞ\Ξ(Π').

(iii) 77 and W are flops of each other with respect to a nondegenerate but not

simplicial convex polyhedral cone decomposition Π.
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