INFINITESIMAL TORELLI THEOREM FOR COMPLETE INTERSECTIONS IN CERTAIN HOMOGENEOUS KÄHLER MANIFOLDS, III

Kazuhiro Konno

(Received August 8, 1990, revised January 28, 1991)

Introduction. This is the third part of a study of the infinitesimal Torelli problem for complete intersections X in Kähler C-spaces Y with $b_{2}(Y)=1$. The preceding papers [6] will be referred to as Parts I and II, where we showed that the problem has an affirmative answer for almost all cases [Part II, Main Theorem]. However, it can never be answered completely as in the case of projective complete intersections [3, Theorem (3.1)]. In view of Flenner's criterion [3] which should be most workable in our context, this is probably because it is technically hard to know precisely when $H^{q}\left(Y, \Omega_{Y}^{p}(m)\right)$ vanishes. So, in this article, we restrict ourselves to the case where Y is the Grassmannian of lines in \boldsymbol{P}^{l} in order to get a more accurate result.

In §1, we briefly review Flenner's result for the later use. In §2, we study the infinitesimal Torelli problem for complete intersections in the Grassmannian Y of lines. Unfortunately, in our main result (Theorem 2.6), a few cases are still left unsettled. In order to apply Flenner's criterion, we need the vanishing theorem for $H^{q}\left(Y, \Omega_{Y}^{p}(m)\right)$ (Theorem 2.1) which will be shown in §4. In §3, we study annoying exceptions in Theorem 2.6, i.e., the case where X is of type $\left(1^{c}\right), 2 \leq c \leq 4$. It eventually turns out that some of them are counterexamples to the Torelli problem (Proposition 3.4): They depend on some moduli whereas their Hodge structures have no variations, like a cubic surface in \boldsymbol{P}^{3} or an even-dimensional projective complete intersections of type (2, 2). We remark here that the Hodge structure of X with $\operatorname{codim} X=2,3$ was previously studied by Donagi [2]. §4 will be devoted to the proof of Theorem 2.1.

The vanishing theorem for $H^{q}\left(Y, \Omega_{Y}^{p}(m)\right)$ was obtained by Kimura [4], when Y is an irreducible Hermitian symmetric space of type $E_{\text {III }}$ or $E_{\text {VII }}$. In $\S 5$, we state the corresponding infinitesimal Torelli theorems which can be shown as in §2.

Acknowledgement. The author would like to thank Professor Shigeru Mukai who pointed out Donagi's work [2].

1. Flenner's criterion. In this section, we recall and recast Flenner's criterion [3] for the infinitesimal Torelli theorem.

Natation 1.1. Let Y be a Kähler C-space with $b_{2}=1$, and put $N=\operatorname{dim} Y$. The Picard group of Y is isomorphic to Z and we let $\mathcal{O}_{Y}(1)$ denote its ample generator. There
exists a positive integer $k(Y)$ with $K_{Y}=\mathcal{O}_{Y}(-k(Y))$. If a global section x of the vector bundle

$$
E=\oplus_{i=1}^{N-n} \mathcal{O}_{Y}\left(d_{i}\right), \quad d_{i} \in N
$$

defines an irreducible nonsingular subvariety X of dimension n, we call it a nonsingular complete intersection of type (d_{1}, \cdots, d_{N-n}) in Y. We put $d=\sum d_{i}$ and assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{N-n}$. We sometimes write, for example, ($2,1^{3}$) instead of $(2,1,1,1)$. We say that X is of hyperplane-section type if $d_{i}=1$ for $1 \leq i \leq N-n$, i.e., X is of type $\left(1^{N-n}\right)$.

For the fundamental properties of Kähler C-spaces with $b_{2}=1$, see [6, Part I].
1.2. Let Y be a Kähler C-space with $b_{2}(Y)=1$, and let X be a nonsingular complete intersection of type (d_{1}, \cdots, d_{N-n}). By using the exact sequence

$$
\left.0 \longrightarrow N_{X}^{*} \longrightarrow \Omega_{Y}^{1}\right|_{X} \longrightarrow \Omega_{X}^{1} \longrightarrow 0,
$$

we can construct an exact Koszul sequence
$(\mathrm{KS})_{p}:\left.\quad 0 \longrightarrow S^{p} N_{X}^{*} \longrightarrow S^{p-1} N_{X}^{*} \otimes \Omega_{Y}^{1} \longrightarrow \cdots \longrightarrow \Omega_{Y}^{p}\right|_{X} \longrightarrow \Omega_{X}^{p} \longrightarrow 0$
for any $p>0$. Tensoring (KS $)_{n-1}$ with K_{X}^{-1}, we get an exact Koszul sequence

$$
\begin{gather*}
0 \longrightarrow S^{n-1} N_{X}^{*} \otimes K_{X}^{-1} \longrightarrow \cdots \longrightarrow S^{i} N_{X}^{*} \otimes \Omega_{Y}^{n-i-1} \otimes K_{X}^{-1} \longrightarrow \tag{1.1}\\
\cdots \longrightarrow \Omega_{Y}^{n-1} \otimes K_{X}^{-1} \longrightarrow \Theta_{X} \longrightarrow 0
\end{gather*}
$$

Dualizing (KS $)_{n-p}$ and tensoring it with K_{X}, we get another exact Koszul sequence

$$
\begin{equation*}
0 \longrightarrow \Omega_{X}^{p} \longrightarrow \bigwedge^{n-p} \Theta_{Y} \otimes K_{X} \longrightarrow \cdots \longrightarrow S^{j} N_{X} \otimes \bigwedge^{n-p-j} \Theta_{Y} \otimes K_{X} \longrightarrow \tag{1.2}
\end{equation*}
$$

$$
\cdots \longrightarrow S^{n-p} N_{X} \otimes K_{X} \longrightarrow 0
$$

We break (1.1), (1.2) and (KS$)_{p-1}$ into short exact sequences as follows:

$$
\begin{aligned}
& 0 \longrightarrow L_{i+1} \rightarrow S^{i} N_{X}^{*} \otimes \Omega_{Y}^{n-1-i} \otimes K_{X}^{-1} \longrightarrow L_{i} \longrightarrow 0, \\
& 0 \longrightarrow K^{j} \rightarrow S^{j} N_{X} \otimes \bigwedge^{n-p-j} \Theta_{Y} \otimes K_{X} \longrightarrow K^{j+1} \longrightarrow 0 \\
& 0 \longrightarrow K_{k+1} \longrightarrow S^{k} N_{X}^{*} \otimes \Omega_{Y}^{p-1-k} \longrightarrow K_{k} \longrightarrow 0
\end{aligned}
$$

Considering the cohomology long exact sequences for these, we have coboundary maps

$$
\begin{aligned}
& \partial_{i}: H^{i+1}\left(L_{i}\right) \longrightarrow H^{i+2}\left(L_{i+1}\right), \\
& \delta^{j}: H^{n-p-j-1}\left(K^{j+1}\right) \longrightarrow H^{n-p-j}\left(K^{j}\right), \\
& \partial_{k}^{\prime}: H^{n-p+k+1}\left(K_{k}\right) \longrightarrow H^{n-p+k+2}\left(K_{k+1}\right) .
\end{aligned}
$$

Note that the natural pairing

$$
\left(S^{i} N_{X}^{*} \otimes \Omega_{Y}^{n-1-i} \otimes K_{X}^{-1}\right) \otimes\left(S^{j} N_{X} \otimes \bigwedge^{n-p-j} \Theta_{Y} \otimes K_{X}\right) \longrightarrow S^{i-j} N_{X}^{*} \otimes \Omega_{Y}^{p-1-(i-j)}
$$

induces a pairing $H^{s}\left(L_{i}\right) \otimes H^{t}\left(K^{j}\right) \rightarrow H^{s+t}\left(K_{i-j}\right)$. In particular, we denote by $\mu_{i}(0 \leq$ $i \leq n-1$) the following pairings:

$$
\begin{array}{ll}
\mu_{i}: H^{i+1}\left(L_{i}\right) \otimes H^{n-p}\left(\Omega_{X}^{p}\right) \longrightarrow H^{n-p+i+1}\left(K_{i}\right) & \text { for } \quad 0 \leq i \leq p-2, \\
\mu_{i}: H^{i+1}\left(L_{i}\right) \otimes H^{n-i-1}\left(K^{i+1-p}\right) \longrightarrow H^{n}\left(S^{p-1} N_{X}^{*}\right) & \text { for } \quad p-1 \leq i \leq n-1
\end{array}
$$

The following can be found in [3, (2.10)].
Lemma 1.3. (1) The diagram

commutes up to sign for $0 \leq i \leq p-2$.
(2) For $p-1 \leq i \leq n-2$, then diagram

commutes up to sign in the sense that $\mu_{i+1}\left(\partial_{i} \alpha \otimes \beta\right)= \pm \mu_{i}\left(\alpha \otimes \partial^{i+1-p} \beta\right)$ for $\alpha \in H^{i+1}\left(L_{i}\right)$ and $\beta \in H^{n-i-2}\left(K^{i+2-p}\right)$.

A simple diagram chasing shows the following:
Lemma 1.4. Let i_{0} and i_{1} be integers satisfying $0 \leq i_{0}<i_{1} \leq n-1$, and suppose that the cup-product map $\mu_{i_{1}}$ is non-degenerate in the first factor. Then so is $\mu_{i_{0}}$ provided that the composite of the coboundary maps $\partial_{i_{1}-1} \circ \cdots \circ \partial_{i_{0}}$ is injective.

The following is a special case of a more general result due to Flenner [3, Theorem (1.1)].

Theorem 1.5. Assume that the multiplication map

$$
\mu: H^{0}\left(S^{n-p} N_{X} \otimes K_{X}\right) \otimes H^{0}\left(S^{p-1} N_{X} \otimes K_{X}\right) \longrightarrow H^{0}\left(S^{n-1} N_{X} \otimes K_{X}^{2}\right)
$$

is surjective. If the map $\partial:=\partial_{n-2} \circ \cdots \circ \partial_{0}$ is injective, then the infinitesimal period map

$$
H^{1}\left(X, \Theta_{X}\right) \longrightarrow \operatorname{Hom}_{c}\left(H^{n-p}\left(X, \Omega_{X}^{p}\right), H^{n-p+1}\left(X, \Omega_{X}^{p-1}\right)\right)
$$

is injective.
Proof. It is clear that the infinitesimal period map is injective if and only if μ_{0}, which is nothing but the cup-product map

$$
H^{1}\left(\Theta_{X}\right) \otimes H^{n-p}\left(\Omega_{X}^{p}\right) \longrightarrow H^{n-p+1}\left(\Omega_{X}^{p-1}\right),
$$

is non-degenerate in the first factor. Therefore, by Lemma 1.4, we get the desired result if

$$
\mu_{n-1}: H^{n}\left(S^{n-1} N_{X}^{*} \otimes K_{X}^{-1}\right) \otimes H^{0}\left(S^{n-p} N_{X} \otimes K_{X}\right) \longrightarrow H^{n}\left(S^{p-1} N_{X}^{*}\right)
$$

is non-degenerate in the first factor, which is equivalent to saying that μ is surjective.
q.e.d.

We clearly have the following:
Lemma 1.6. The map ∂ in Theorem 1.5 is injective if
$(\mathrm{V})_{i}$:

$$
H^{i+1}\left(X, S^{i} N_{X}^{*} \otimes \Omega_{Y}^{n-1-i} \otimes K_{X}^{-1}\right)=0
$$

holds for $0 \leq i \leq n-2$.
Corollary 1.7. The condition $(\mathrm{V})_{i}$ is satisfied if the condition
$(\mathrm{V})_{i, j}$:

$$
H^{i+j+1}\left(Y, \bigwedge^{j} E^{*} \otimes S^{i} E^{*} \otimes \Omega_{Y}^{n-1-i}(k(Y)-d)\right)=0
$$

is satisfied for $0 \leq j \leq N-n$.
Proof. We use a spectral sequence associated to the resolution

$$
0 \longrightarrow \bigwedge^{N-n} E^{*} \longrightarrow \cdots \longrightarrow \bigwedge^{2} E^{*} \longrightarrow E^{*} \longrightarrow \mathcal{O}_{Y} \longrightarrow \mathcal{O}_{X} \longrightarrow 0 .
$$

For details, we refer the reader to [Part II, 2.4].
Remark 1.8. The result [Part II, Theorem 1.7] follows from Theorem 1.5 and Lemma 1.6.
2. Infinitesimal Torelli theorem. From this section up to $\S 4, Y$ is the Grassmannian of lines in $\boldsymbol{P}^{l}, l \geq 4$. Therefore $N=2 l-2$ and $k(Y)=l+1$. The following will be shown in §4.

Theorem 2.1. Let Y be the Grassmannian of lines in $\boldsymbol{P}^{l}, l \geq 4$. Then group $H^{q}\left(Y, \Omega_{Y}^{p}(m)\right)$ vanishes except in the following cases.
(1) $q=0$ and $m>[(p+3) / 2]$.
(2) $p=q$ and $m=0$.
(3) $q=2 l-2$ and $m<[(p+2) / 2]-l-1$.
(4) $q-l<p<3 q-4 l+5$ and $m=p-2 q+2 l-3$.
(5) $3 q-1<p<q+l$ and $m=p-2 q+1$.

Here, the symbol $[s]$ denotes the greatest integer not exceeding $s \in \boldsymbol{Q}$.
Lemma 2.2. Let Y be as above and X an n-dimensional nonsingular complete intersection in Y. Put $p=n / 2$ if n is even, and $p=(n+1) / 2$ if n is odd. Then the multiplication map

$$
H^{0}\left(X, S^{n-p} N_{X} \otimes K_{X}\right) \otimes H^{0}\left(X, S^{p-1} N_{X} \otimes K_{X}\right) \longrightarrow H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right)
$$

is surjective.
Proof. As in the proof of [Part II, Lemma 2.3], we can check that each direct summand of $S^{p-1} N_{S} \otimes K_{X}$ has nonnegative degree except when X is of hyper-plane-section type with $\operatorname{codim} X \leq 4$ or of type $(2,1)$. Since $p-1 \leq n-p$, our assertion follows for those which are not the exceptions. If X is of hyperplane-section type with codim $X \leq 4$, then $H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right)$ vanishes, since each direct summand of $S^{n-1} N_{X} \otimes K_{X}^{2}$ has negative degree. If X is of type (2,1), we have $K_{X}=\mathcal{O}_{X}(2-l)$ and $p=l-2$. Then

$$
\begin{aligned}
& S^{p-1} N_{X} \otimes K_{X} \simeq S^{p-1}\left(\mathcal{O}_{X}(1) \oplus \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X}(-1) \\
& S^{n-p} N_{X} \otimes K_{X} \simeq S^{n-p}\left(\mathcal{O}_{X}(1) \oplus \mathcal{O}_{X}\right) \\
& S^{n-1} N_{X} \otimes K_{X}^{2} \simeq S^{n-1}\left(\mathcal{O}_{X}(1) \oplus \mathcal{O}_{X}\right) \otimes \mathcal{O}_{X}(-1)
\end{aligned}
$$

Therefore, the multiplication map in question is nothing but

$$
\left(\bigoplus_{i=0}^{p-2} H^{0}\left(\mathcal{O}_{X}(i)\right)\right) \otimes\left(\oplus_{i=0}^{n-p} H^{0}\left(\mathcal{O}_{X}(i)\right)\right) \longrightarrow \bigoplus_{i=0}^{n-2} H^{0}\left(\mathcal{O}_{X}(i)\right)
$$

which is clearly surjective.
q.e.d.

By virtue of Theorem 2.1, an easy calculation shows the following:
Lemma 2.3. With the above notation, for $0 \leq i \leq n-2$ and $0 \leq j \leq N-n$, the condition $(\mathrm{V})_{i, j}$ in Corollary 1.7 is satisfied except in the following cases:
(1) X is of hyperplane-section type.

$$
\begin{array}{lll}
\operatorname{codim} X=2 & (i, j)=((l-5) / 2,0),((l-7) / 2,2) & (l: \text { odd }), \\
& (i, j)=((l-6) / 2,1) & (l: \text { even }), \\
\operatorname{codim} X=3 & (i, j)=((l-5) / 2,0),(l-5,3) & (l: \text { odd }), \\
& (i, j)=((l-6) / 2,1),(l-5,3) & (l: \text { even }), \\
\operatorname{codim} X=4 & (i, j)=((l-5) / 2,0),(l-5,2),((3 l-13) / 2,4) & (l: \text { odd }), \\
& (i, j)=(l-5,2) & (l: \text { even }), \\
\operatorname{codim} X=5 & (i, j)=(l-5,1), & \\
\operatorname{codim} X=6 & (i, j)=(l-5,0) . &
\end{array}
$$

(2) X is not of hyperplane-section type.

type (2)	$(i, j)=(0,0)$	$(l=4)$,
type $(2,1)$	$(i, j)=(l-3,0),((3 l-9) / 2,2)$	$(l:$ odd $)$,
	$(i, j)=(l-3,0),(l-4) / 2,0)$	$(l:$ even $)$,
type $(3,1)$	$(i, j)=(l-3,0)$,	
type $(2,1,1)$	$(i, j)=(l-4,1)$,	
type $(2,1,1,1)$	$(i, j)=(l-4,0)$.	

Corollary 2.4. $\quad X$ is rigid, that is, $H^{1}\left(X, \Theta_{X}\right)=0$, in the following cases:
(1) X is a hypersurface of degree 1 .
(2) $l=4$ and X is of hyperplane-section type with $\operatorname{codim} X \leq 4$.

Proof. By Lemma 2.3, Corollary 1.7 and Lemma 1.6, we see that $H^{1}\left(\Theta_{X}\right)$ is mapped injectively in $H^{n}\left(S^{n-1} N_{X}^{*} \otimes K_{X}^{-1}\right)$. But this latter is zero, since we have

$$
H^{n}\left(S^{n-1} N_{X}^{*} \otimes K_{X}^{-1}\right) \simeq H^{0}\left(S^{n-1} N_{X} \otimes K_{X}^{2}\right)^{*}
$$

by Serre duality.
q.e.d.

Lemma 2.5. Let p be an integer with $0<2 p \leq n=\operatorname{dim} X$. Then $H^{p}\left(Y, \Omega_{Y}^{p}\right) \simeq$ $H^{p}\left(X,\left.\Omega_{Y}^{p}\right|_{X}\right)$.

Proof. Let I_{X} denote the ideal sheaf of X in Y. Then we have

$$
\left.0 \longrightarrow I_{X} \otimes \Omega_{Y}^{p} \longrightarrow \Omega_{Y}^{p} \longrightarrow \Omega_{Y}^{p}\right|_{X} \longrightarrow 0 \text {. }
$$

Therefore, it suffices to check that $H^{p}\left(I_{X} \otimes \Omega_{Y}^{p}\right)=H^{p+1}\left(I_{X} \otimes \Omega_{Y}^{p}\right)=0$. We have the Koszul resolution

$$
0 \longrightarrow \bigwedge^{N-n} E^{*} \otimes \Omega_{Y}^{p} \longrightarrow \cdots \longrightarrow E^{*} \otimes \Omega_{Y}^{p} \longrightarrow I_{X} \otimes \Omega_{Y}^{p} \longrightarrow 0 .
$$

Therefore, by an easy spectral sequence argument, it suffices to check that

$$
H^{p+i-1}\left(\bigwedge^{i} E^{*} \otimes \Omega_{Y}^{p}\right)=H^{p+i}\left(\bigwedge^{i} E^{*} \otimes \Omega_{Y}^{p}\right)=0
$$

for $1 \leq i \leq N-n$, which follows from Theorem 2.1.
q.e.d.

Theorem 2.6. Let Y be the Grassmannian of lines in $\boldsymbol{P}^{l}, l \geq 4$. For a nonsingular complete intersection X of type $\left(d_{1}, \cdots, d_{N-n}\right)$ in Y, the infinitesimal Torelli theorem holds except possibly in the following cases:
(1) X is of hyperplane-section type, $l \geq 5$ and $2 \leq \operatorname{codim} X \leq 5$.
(2) $l=4$ and X is of type (2).
(3) X is of type $\left(2,1^{m}\right), 1 \leq m \leq 2$.

Proof. Except when X is of type $(3,1),\left(2,1^{3}\right)$ or $\left(1^{6}\right)$, the assertion follows from Theorem 1.5 by Lemmas 1.6, 1.7, 2.2 and 2.3.

We assume that X is of type $(3,1)$, since the other cases can be treated similarly. We put $p=n / 2=l-2$. In view of Lemma 2.3, ∂_{i} is injective unless $i=p-1$. By Lemma 1.3 , we have the commutative diagram

We shall show that μ_{p-1} is non-degenerate in the first factor. For this purpose, since

$$
H^{p}\left(S^{p-1} N_{X}^{*} \otimes \Omega_{Y}^{p} \otimes K_{X}^{-1}\right) \longrightarrow H^{p}\left(L_{p-1}\right) \xrightarrow{\partial_{p-1}} H^{p+1}\left(L_{p}\right)
$$

and since we already know, by Lemmas 1.4 and 2.2 , that μ_{p} is non-degenerate in the first factor, it suffices to show that

$$
\begin{equation*}
H^{p}\left(S^{p-1} N_{X}^{*} \otimes \Omega_{Y}^{p} \otimes K_{X}^{-1}\right) \otimes H^{p}\left(\Omega_{X}^{p}\right) \longrightarrow H^{n}\left(S^{p-1} N_{X}^{*}\right) \tag{2.1}
\end{equation*}
$$

is non-degenerate in the first factor. Note that we have $K_{X}=\mathcal{O}_{X}(1-p)$ and, furthermore,

$$
\begin{aligned}
H^{p}\left(S^{p-1} N_{X}^{*} \otimes \Omega_{Y}^{p} \otimes K_{X}^{-1}\right) & \simeq H^{p}\left(S^{p-1}\left(\mathcal{O}_{X} \oplus \mathcal{O}_{X}(-2)\right) \otimes \Omega_{Y}^{p}\right) \simeq H^{p}\left(\left.\Omega_{Y}^{p}\right|_{X}\right), \\
H^{n}\left(S^{p-1} N_{X}^{*}\right) & \simeq H^{n}\left(S^{p-1} N_{X}^{*} \otimes \mathcal{O}_{X}(p-1) \otimes K_{X}\right) \\
& \simeq H^{n}\left(S^{p-1}\left(\mathcal{O}_{X} \oplus \mathcal{O}_{X}(-2)\right) \otimes K_{X}\right) \\
& \simeq H^{n}\left(K_{X}\right) \oplus \oplus_{i=1}^{p-1} H^{n}\left(K_{X}(-2 i)\right)
\end{aligned}
$$

Therefore, the pairing (2.1) is non-degenerate in the first factor, if so is

$$
\begin{equation*}
H^{p}\left(\left.\Omega_{Y}^{p}\right|_{X}\right) \otimes H^{p}\left(\Omega_{X}^{p}\right) \longrightarrow H^{n}\left(K_{X}\right) . \tag{2.2}
\end{equation*}
$$

Note that we have $H^{p}\left(\left.\Omega_{Y}^{p}\right|_{X}\right) \simeq H^{p}\left(\Omega_{Y}^{p}\right) \subset H^{p}\left(\Omega_{X}^{p}\right)$ by Lemma 2.5 and the Lefschetz theorem. Since $H^{p}\left(\Omega_{X}^{p}\right) \otimes H^{p}\left(\Omega_{X}^{p}\right) \rightarrow H^{n}\left(K_{X}\right)$ is non-degenerate, we see that (2.2) is non-degenerate in the first factor.
q.e.d.

Remark 2.7. If l is odd, a nonsingular hypersurface of degree 1 is the Kähler C-space of type ($C_{(l+1) / 2}, \alpha_{2}$) (see [9] or [7]). Therefore, the infinitesimal Torelli theorem holds for a general X of type $(2,1)$ by [Part II, Main Theorem].
3. Complete intersections of hyperplane-section type. In this section, we assume that X is a nonsingular complete intersection of hyperplane-section type with $2 \leq$ codim $X \leq 4$. We also assume that $l \geq 5$.

Lemma 3.1. Let X be as above. If $2 p<n$, then $H^{n-p}\left(\Omega_{X}^{p}\right)=0$ except in the cases where l is odd and
(1) $\operatorname{codim} X=3$ and $p=l-3$, or
(2) $\operatorname{codim} X=4$ and $p=l-4, l \neq 5$.

Therefore, no variations of Hodge structures exist except in the above cases.
Proof. By (KS $)_{p}$, if $H^{n-p+i}\left(S^{i} N_{X}^{*} \otimes \Omega_{Y}^{p-i}\right)=0$ for $0 \leq i \leq p$, then $H^{n-p}\left(\Omega_{X}^{p}\right)=0$. Since X is of hyperplane-section type, it suffices to check $H^{n-p+i+j}\left(Y, \Omega_{Y}^{p-i}(-i-j)\right)=0$ for $0 \leq i \leq p, 0 \leq j \leq \operatorname{codim} X$. By Theorem 2.1, these hold except in the cases:
(a) $2 i=l-5, j=3, p=l-3, n$ is odd,
(b) $2 i=l-7, j=4, p=l-4, n$ is even.
q.e.d.

Remark 3.2. If $\operatorname{codim} X=3$ and l is odd, then we have $h^{2 l-5}=h^{l-2, l-3}+$
$h^{l-3, l-2}=(l-1)(l-3) / 4$, see [2, Lemma 2.6].
Lemma 3.3. Let X be as above. If $\operatorname{codim} X=3$ or 4 , then $H^{1}\left(\Theta_{X}\right) \neq 0$.
Proof. We consider the cohomology long exact sequence for

$$
\left.0 \longrightarrow \Theta_{X} \longrightarrow \Theta_{Y}\right|_{X} \longrightarrow N_{X} \longrightarrow 0 .
$$

It is known, and can be shown by using Theorem 2.1 , that $H^{1}\left(\left.\Theta_{Y}\right|_{X}\right)=0$. Therefore, we get

$$
0 \longrightarrow H^{0}\left(\Theta_{X}\right) \longrightarrow H^{0}\left(\left.\Theta_{Y}\right|_{X}\right) \longrightarrow H^{0}\left(N_{X}\right) \longrightarrow H^{1}\left(\Theta_{X}\right) \rightarrow 0 \text {. }
$$

Since we have $H^{i-1}\left(Y, \Theta_{Y} \otimes \bigwedge^{i} E^{*}\right)=H^{i}\left(Y, \Theta_{Y} \otimes \bigwedge^{i} E^{*}\right)=0$ for $1 \leq i \leq N-n$ by Theorem 2.1, we get $H^{0}\left(\Theta_{Y}\right) \simeq H^{0}\left(\left.\Theta_{Y}\right|_{X}\right)$. Therefore, we have $h^{0}\left(\left.\Theta_{Y}\right|_{X}\right)=l(l+2)$. Furthermore, we have $h^{0}\left(N_{X}\right)=c(l(l+1) / 2-c)$, where $c=\operatorname{codim} X$. Since $h^{0}\left(\left.\Theta_{Y}\right|_{X}\right)<h^{0}\left(N_{X}\right)$ for $c \geq 3$, we have $h^{1}\left(\Theta_{X}\right) \neq 0$.
q.e.d.

By Lemmas 3.1 and 3.3, we get:
Proposition 3.4. Let X be a complete intersection of hyperplane-section type in the Grassmannian of lines in $\boldsymbol{P}^{l}, l \geq 5$. Then the Torelli theorem cannot hold in the following cases:
(1) $l=5$ and $\operatorname{codim} X=4$.
(2) l is even and $\operatorname{codim} X=3,4$.

Remark 3.5. When X is of type (1^{2}), Donagi [2, 2.2 and 2.3] showed the following: We have $h^{2 l-4}=h^{l-2, l-2}=l-1\left(l\right.$ is odd), $l / 2(l$ is even $)$. Let H and H^{\prime} be hypersurfaces of degree 1 with $X=H \cap H^{\prime}$, and consider the pencil L spanned by them. If l is odd, L depends on $(l-5) / 2$ parameters, whereas, if l is even, it has no moduli. Since X is the base locus of L, we may have $h^{1}\left(\Theta_{X}\right)=(l-5) / 2$ if l is odd, and $h^{1}\left(\Theta_{X}\right)=0$ if l is even.
4. Proof of Theorem 2.1. For irreducible Hermitian symmetric spaces of compact type, Kimura [4] gave a method to determine when the cohomology group $H^{q}\left(\Omega_{Y}^{p}(m)\right)$ vanishes, following Bott [1] and Kostant [8]. In this section, we show Theorem 2.1 using his method.

Natation 4.1. Let $\left\{e_{i}: 1 \leq i \leq l+1\right\}$ be the standard orthonormal basis of \boldsymbol{R}^{l+1} with respect to the usual inner product (\cdot, \cdot). Put $\Phi=\left\{e_{i}-e_{j}: 1 \leq i, j \leq l+1, i \neq j\right\}$. Then we can identify it with the root system of the simple Lie algebra of type A_{l}, and $\Delta=\left\{\alpha_{i}:=e_{i}-e_{i+1}: 1 \leq i \leq l\right\}$ is a basis consisting of positive simple roots. We also put

$$
\lambda_{i}=e_{1}+e_{2}+\cdots+e_{i}-(i /(l+1)) \sum_{j=1}^{l+1} e_{j}
$$

Then $\left(\lambda_{i}, \alpha_{j}\right)=\delta_{i j}$ and the λ_{i} are the fundamental weights. If δ denotes the half of the sum of all positive roots, then

$$
2 \delta=l e_{1}+(l-2) e_{2}+\cdots-(l-2) e_{l}-l e_{l+1} .
$$

The Weyl group W of Φ can be identified with the permutation group of $l+1$ letters: $\sigma e_{i}=e_{\sigma(i)}$. Therefore, we can write $\sigma \in W$ as

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & l+1 \\
\sigma(1) & \sigma(2) & \cdots & \sigma(l+1)
\end{array}\right)
$$

We set

$$
\Phi\left(n^{+}\right)=\left\{e_{1}-e_{i}(3 \leq i \leq l+1), e_{2}-e_{j}(3 \leq j \leq l+1)\right\}
$$

and

$$
W^{1}=\left\{\sigma \in W: \sigma^{-1}=\left(\begin{array}{clc}
1 & \cdots & l+1 \\
\sigma^{-1}(1) & \cdots & \sigma^{-1}(l+1)
\end{array}\right), \quad \begin{array}{c}
\sigma^{-1}(1)<\sigma^{-1}(2) \\
\sigma^{-1}(3)<\cdots<\sigma^{-1}(l+1)
\end{array}\right\} .
$$

The index $n(\sigma)$ of $\sigma \in W^{1}$ is given by

$$
n(\sigma)=\sigma^{-1}(1)+\sigma^{-1}(2)-3
$$

(cf. Takeuchi [10]) and we set $W^{1}(p)=\left\{\sigma \in W^{1} ; n(\sigma)=p\right\}$. We also remark that the following hold:

$$
\begin{aligned}
& \left(\lambda_{2}, \alpha\right)=1, \quad \forall \alpha \in \Phi\left(n^{+}\right) \\
& \left(\sigma \delta, e_{i}-e_{j}\right)=\sigma^{-1}(j)-\sigma^{-1}(i), \quad 1 \leq i, j \leq l+1, \quad \forall \sigma \in W
\end{aligned}
$$

For $\sigma \in W^{1}$, we set $s_{i}=\sigma^{-1}(i)(i=1,2)$ for simplicity. Then,

$$
\sigma^{-1}(i)=\left\{\begin{array}{lll}
i-2, & \text { if } \quad 3 \leq i \leq s_{1}+1 \\
i-1, & \text { if } \quad s_{1}+2 \leq i \leq s_{2} \\
i, & \text { if } \quad s_{2}+1 \leq i \leq l+1
\end{array}\right.
$$

If β varies in $\Phi\left(n^{+}\right)$and σ in $W^{1},(\sigma \delta, \beta)$ can take the following values:

$$
\begin{aligned}
& \left(\sigma \delta, e_{1}-e_{i}\right)=\left\{\begin{array}{lll}
i-2-s_{1} & \text { if } & 3 \leq i \leq s_{1}+1 \\
i-1-s_{1} & \text { if } & s_{1}+2 \leq i \leq s_{2} \\
i-s_{1} & \text { if } & s_{2}+1 \leq i \leq l+1
\end{array}\right. \\
& \left(\sigma \delta, e_{2}-e_{j}\right)=\left\{\begin{array}{lll}
j-2-s_{2} & \text { if } & 3 \leq j \leq s_{1}+1 \\
j-1-s_{2} & \text { if } & s_{1}+2 \leq j \leq s_{2} \\
j-s_{2} & \text { if } & s_{2}+1 \leq j \leq l+1
\end{array}\right.
\end{aligned}
$$

For the proof of the following fact, see [4, Theorems 1 and 2].
Lemma 4.2. Let Y be the Grassmannian of lines in \boldsymbol{P}^{l}. The group $H^{q}\left(\Omega_{Y}^{p}(m)\right)$ does not vanish if and only if there exists $a \sigma \in W^{1}(p)$ satisfying the following conditions.
(1) $m \neq-(\sigma \delta, \beta)$ for all $\beta \in \Phi\left(n^{+}\right)$.
(2) $q=\operatorname{card}\left\{\beta \in \Phi\left(n^{+}\right):(\sigma \delta, \beta)<-m\right\}$.
4.3. Now, using Lemma 4.2, our calculation proceeds as follows. Let $\sigma \in W^{1}(p)$. Then $p=s_{1}+s_{2}-3$. We consider the case $1<s_{1}<s_{2}-1<l$ for simplicity. If m is an
integer with $-m \leq-s_{2},-m=0$ or $-m \geq l+1-s_{1}$, then Lemma 4.2 (1) is satisfied. Therefore, $H^{0}\left(\Omega_{Y}^{p}(m)\right)\left(\right.$ resp. $H^{2 l-2}\left(\Omega_{Y}^{p}(m)\right)$) does not vanish if $m \geq s_{2}$ (resp. $m \leq s_{1}-l-1$), and $H^{p}\left(\Omega_{Y}^{p}\right) \neq 0$. Furthermore, note that it may be possible that m with $-m=s_{2}-s_{1}$, $s_{1}-s_{2}$ satisfies (1) of Lemma 4.2. The case $-m=s_{2}-s_{1}$ can occur if and only if $l+1-s_{2}<s_{2}-s_{1}$. Then, we have

$$
q=\operatorname{card}\left\{\beta \in \Phi\left(n^{+}\right):(\sigma \delta, \beta)<-m=s_{2}-s_{1}\right\}=l-3+s_{2} .
$$

Therefore, we have $s_{1}=p-q+l, s_{2}=q-l+3$ and $-m=2 q-p-2 l+3$. The condition $l+1-s_{2}<s_{2}-s_{1}$ is equivalent to $3 q-p>4 l-5$. Since we have assumed that $1<s_{1}<s_{2}-1<l$, we have $p-q+l>1$ and $q<2 l-2$ in addition. Therefore, $H^{q}\left(\Omega_{Y}^{p}(p+2 l-3-2 q)\right)$ does not vanish if $3 q-p>4 l-4, p-q+l>1, q<2 l-2$. Quite similarly, considering the case $-m=s_{1}-s_{2}$, we know that $H^{q}\left(\Omega_{\mathrm{Y}}^{p}(p+1-2 q)\right)$ does not vanish if $3 q-p<1, q>0, p-q+1<l$.

For the other types of $\sigma \in W^{1}(p)$, e.g., $s_{1}=1$, the calculation goes similarly. Then, varying $\sigma \in W^{1}(p)$, we get Theorem 2.1. The details are left to the reader.
5. Complete intersections in $E_{\text {III }}$ and $E_{\text {VII }}$. For the irreducible Hermitian symmetric space Y of type E_{III} or E_{VII}, Kimura [4] determined completely when $H^{q}\left(\Omega_{\mathrm{Y}}^{p}(m)\right)$ vanishes. Therefore, as in the case of the Grassmannian of lines, we can show the following theorems.

Theorem 5.1. Let Y be the irreducible Hermitian symmetric space of type E_{III}. The infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y, except possibly when X is one of the following types.
(1) type $\left(1^{m}\right), 2 \leq m \leq 9$,
(2) type $\left(d_{1}, 1^{m}\right), 2 \leq d_{1} \leq 4,1 \leq m \leq 10-2 d_{1}$,
(3) type $\left(2^{2}, 1^{m}\right), 1 \leq m \leq 3$,
(4) type (3, 2, 1).

Theorem 5.2. Let Y be the irreducible Hermitian symmetric space of type E_{VII}. The infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y, except possibly when X is one of the following types.
(1) type $\left(1^{m}\right), 2 \leq m \leq 10$,
(2) type $\left(d_{1}, 1^{m}\right), 2 \leq d_{1} \leq 5,1 \leq m \leq 11-2 d_{1}$,
(3) type $\left(2^{2}, 1^{m}\right), 1 \leq m \leq 4$,
(4) types $(3,2,1),\left(3,2,1^{2}\right),\left(2^{3}, 1\right)$.

Outline of the proof of Theorems 5.1 and 5.2. Since the surjectivity of μ in Theorem 1.5 can be shown as in Lemma 2.2, our task is reduced to showing the injectivity of ∂ in Theorem 1.5. Using [4, Theorems 4 and 5], one can check that the condition $(\mathrm{V})_{i, j}$ does not hold for some (i, j) only when the type of X is one of the above and the following:

$$
\begin{array}{rlr}
E_{\mathrm{III}}: & \left(1^{10}\right) & (i, j)=(2,0), \\
& \left(d_{1}, 1^{11-2 d_{1}}\right), 2 \leq d_{1} \leq 5, & (i, j)=\left(d_{1}+1,0\right), \\
& \left(2^{2}, 1^{4}\right) & (i, j)=(4,0), \\
& \left(3,2,1^{2}\right) & (i, j)=(5,0), \\
& \left(2^{3}, 1\right) & (i, j)=(5,0) \\
E_{\mathrm{VII}}: & \left(1^{11}\right) & (i, j)=(7,0), \\
& \left(d_{1}, 1^{\left.12-2 d_{1}\right), 2 \leq d_{1} \leq 5,}(i, j)=\left(d_{1}+6,0\right),\right. \\
& \left(2^{2}, 1^{5}\right) & (i, j)=(9,0), \\
& \left(3,2,1^{3}\right) & (i, j)=(10,0), \\
& \left(3^{2}, 1\right) & (i, j)=(11,0), \\
& (4,2,1) & (i, j)=(11,0) .
\end{array}
$$

In these cases, however, we can show that ∂ is injective as in the proof of Theorem 2.6.
Remark 5.3. If Y is of type E_{III}, then a nonsingular hypersurface of degree 1 is the Kähler C-space of type (F_{4}, α_{4}) (see [5] or [7]). Therefore, if X is a general complete intersection of type $\left(d_{1}, 1\right), 2 \leq d_{1} \leq 4,\left(2^{2}, 1\right)$ or $(3,2,1)$, then the infinitesimal Torelli theorem holds for X by [Part II, Main Theorem]. If Y is of type E_{VII}, a nonsingular hypersurface of degree 1 is rigid.

References

[1] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[2] R. Donagi, On the geometry of Grassmannians, Duke Math. J. 44 (1977), 795-837.
[3] H. Flenner, The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Z. 193 (1986), 307-322.
[4] Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math. 16 (1979), 97-119.
[5] Y. Kimura, A hypersurface of the irreducible Hermitian symmetric space of type EIII, Osaka J. Math. 16 (1979), 431-438.
[6] K. Konno, Infinitesimal Torelli theorem for complete intersections in certain homogeneous Kähler manifolds, Tôhoku Math. J. 38 (1986), 609-624; II, ibid. 42 (1990), 333-338, (referred to as Parts I and II).
[7] K. Konno, Homogeneous hypersurfaces in Kähler C-spaces with $b_{2}=1$, J. Math. Soc. Japan 40 (1988), 687-703.
[8] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
[9] Y. Sakane, On non-singular hyperplane sections of some Hermitian symmetric spaces, Osaka J. Math. 22 (1985), 107-121.
[10] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo 12 (1965), 81-192.

Department of Mathematics
College of General Education
Kyushu University
Ropponmatsu, Chuo-ku, Fukuoka 810
Japan

