CORRECTION TO "ON CONJUGATE LOCI AND CUT LOCI OF COMPACT SYMMETRIC SPACES I"

By

Masaru TAKEUCHI

In our previous paper [3], Lemma 3.1 was incomplete. The correct statement is as follows.

LEMMA 3.1. Let $H \in \widetilde{C} \cap \overline{S}$. If $H \notin \widetilde{Q}$, we have $\overline{S} \cap \Gamma - \{0\} \neq \emptyset$ and $m_{\overline{S} \cap \Gamma}(H) = |H|$.

PROOF. By Theorem 3.1 there exists $A \in \Gamma - \{0\}$ such that |H| = |H - A|and $|H| \leq |H - A'|$ for any $A' \in \Gamma$. Put H' = H - A. Then the argument in the proof of Theorem 2.7 in Sakai [2] shows

 $|2(\gamma, H')| \leq 1$ for any $\gamma \in \Sigma$.

On the other hand, $H \in \overline{S} - \widetilde{Q}$ implies

 $0 \leq 2(\gamma, H) < 1$ for any $\gamma \in \Sigma_+$.

Thus, recalling that $2(\gamma, A) = 2(\gamma, H) - 2(\gamma, H') \in \mathbb{Z}$ for any $\gamma \in \Sigma$, we get $2(\gamma, A) = 0$, 1 or -1 for any $\gamma \in \Sigma$, and hence we have

(*)
$$\gamma \in \Sigma, (\gamma, A) > 0 \Longrightarrow (\gamma, H) \ge 0.$$

Now we define

$$\mathfrak{B} = \{\gamma \in \Sigma; (\gamma, A) > 0 \text{ or } (\gamma, A) = 0, (\gamma, H) \ge 0\}$$

Then \mathfrak{B} is a closed system of roots containing γ or $-\gamma$ for each $\gamma \in \Sigma$. Thus by a characterization of Borel-Hirzebruch ([1], Corollary 4.10) for systems of positive roots, which is valid also for a general (not necessarily reduced) root system, there exists an order >' on a' such that \mathfrak{B} contains the set Σ'_+ of all positive roots with respect to >'. By (*) we have then

 $0 \leq 2(\gamma, A) \leq 1$, $0 \leq 2(\gamma, H) < 1$ for any $\gamma \in \Sigma'_+$.

Therefore

$$S' = \{h \in \mathfrak{a}; 0 < 2(\gamma, h) < 1 \text{ for any } \gamma \in \Sigma'_+\}$$

Received July 30, 1982.

Masaru TAKEUCHI

is a fundamental cell whose closure \overline{S}' contains 0, A and H. Since $H \in \overline{S} \cap \overline{S}'$, we can find $s \in W$ such that sS' = S and sH = H. Put B = sA. Then $B \in \overline{S} \cap \Gamma - \{0\}$ and

$$|H-B| = |s(H-A)| = |H-A| = |H|.$$

This completes the proof.

References

- [1] Borel, A. and Hirzebruch, F., Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 459-538.
- [2] Sakai, T., On cut loci of compact symmetric spaces, Hokkaido Math. J. 6 (1977), 136-161.
- [3] Takeuchi, M., On conjugate loci and cut loci of compact symmetric spaces I, Tsukuba J. Math. 2 (1978), 35-68.

Osaka University