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A MINIMAL FLABBY SHEAF AND AN ABELIAN GROUP

By

Katsuya EDA

In the cohomology theory of sheaves, we may use any flabby extension $F$ of
a sheaf $S$ to define the sheaf cohomology group $H^{1}(T, S)$ , where $T$ is a topo-

logical space. Consequently, the abelian group consisting of all global sections
of the quotient sheaf $F/S$ gives us little information about the group $H^{1}(T, S)$

in general.

In this paper we define a particular flabby extension $M_{S}$ which is minimal
in a certain sense, for a simple sheaf $S$ . We shall show that the abelian group
$H^{1}(T, S)$ and the one consisting of all global sections of the quotient $M_{S}/S$ have
common free summands, $i.e$ . a free abelian group $F$ is a summand of the former
iff an isomorphic one is a summand of the latter. We shall use the notations of
[14] and [15] for sheaves and those of [8] for $\Omega$-sets to simplify the presentations.

In \S 1 we define the flabby sheaf $M_{S}$ and investigate its property as a flabby

extension. In \S 2 we study the abelian group consisting of all global sections of
a sheaf which appears in the process to define $H^{1}(T, S)$ in use of $M_{S}$ .

\S 1. A minimal flabby sheaf.

DEFINITION 1. A complete Heyting algebra $(cHa)$ is a complete lattice $\Omega=$

$(\Omega, \wedge, )$ satisfying the infinite distributive law: $p\bigwedge_{i\check{\in}I}q_{i}=_{i\check{\in}I}p\wedge q_{i}$ for all

$ p\in\Omega$ and all systems $\{q;i\in I\}\subseteq\Omega$ .
We denote the least element of $\Omega$ by $0$ and the greatest by 1. $p\Rightarrow q=$

$\vee\{x;p\wedge x\leq q\}$ for $ p\in\Omega$, and $p\wedge q\Rightarrow r$ and $p\vee q\Rightarrow r$ mean $p\wedge(q\Rightarrow r)$ and $p\vee(q\Rightarrow r)$

respectively.

An element $p$ of $\Omega$ is called dense under $q$ , if $p\leq q$ and $q\wedge p\Rightarrow 0=0$ . In the

case $q=1,$ $p$ is called dense.
$ R:\Omega\rightarrow\Omega$ is defined by: $R(p)=(p\Rightarrow 0)\Rightarrow 0$ . An element $p$ of is called regular

if $R(p)=p$ .
$R(\Omega)$ is the complete Boolean algebra $(cBa)$ which consists of all the regular

elements of $\Omega$ .
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For a topological space $T,$ $O(T)$ is the $cHa$ which consists of all the open

subsets of $T$ .
The category of $\Omega$-sets with $\Omega$-set morphisms is equivalent to that of sheaves

over $\Omega$ with sheaf morphisms [8]. We remark that a Boolean extension of the

set theoretical universe by a $cBaB$ is the family of all B-sets.

A sheaf over a $ cHa\Omega$ is a simple generalization of a sheaf over a topo-

logical space. It is sufficient to notice that in the definition of a presheaf there

appears no element of $T$ and we only need open subsets of $T$ .

DEFINITION 2. For a sheaf $S=(S, \rho)$ over $\Omega$ , we denote all the sections of
$S$ by $|S|$ . For $s\in|S|$ , Es is the element of $\Omega$ such that $s\in S(Es),$ $i.e$ . $s$ is an
Es-section of $S$ .

Let $s$ and $t$ be elements in $|S|$ : [ $s=t\ovalbox{\tt\small REJECT}$ is the element of $\Omega$ such that $\ovalbox{\tt\small REJECT} s=t\square $

$=\vee$ { $p;\rho_{p}^{Es}(s)=\rho_{p}^{Et}(t)$ for $ p\in\Omega$ } $;t$ is an extension of $s$ if $Es\leq Et$ and $\rho_{Es}^{El}(t)=s$ ;
$s$ is dense under $p$ if $s$ is dense under $p;s$ is simply called dense if $s$ is dense

under 1; $s$ is maximal under $p$ if $Es\leq p$ and there exists no proper extension
of $s$ under $p,$ $i.e.,$ $\rho_{Es}^{Et}(t)=s$ implies $Et\wedge p=Es$ for any $t\in|S|$ ; $s$ is called maximal

if it is maximal under 1.

In this paper a sheaf $S$ is always an abelian sheaf, $i.e.,$ $S(p)$ is an abelian
group for each $ p\in\Omega$ . Hence there is at least one global section for every sheaf.
Consequently, if $s$ is a maximal section of a sheaf $S$ then $s$ is dense.

DEFINITION 3. A simple sheaf is a sheaf $S$ such that for each dense section
$s$ of $S$ there is a unique maximal section $t$ of $S$ which is an extension of $s,$ $i.e.$ ,
$t$ is an extension of $t^{\prime}$ for any extension $t^{\prime}$ of $s$ .

It is easy to see the following.
A constant sheaf is a simple sheaf. The sheaf of germs of continuous func-

tions whose ranges are a Hausdorff space is a simple sheaf.

LEMMA 1. Let $S$ be a simple sheaf. If $s$ is maximal, then $\rho_{Es\wedge p}^{Es}(s)$ is maxi-
mal under $p$ for each $ p\in\Omega$ . If $s$ is dense under $p$ , then there exists a unique
maximal extension $s^{\prime}$ of $s$ under $p$ . Cousequently, if $s$ is maximal under $p$, then
$\rho_{Es/\backslash q}^{Es}(s)$ is maximal under $q$ for each $q\leq p$ .

PROOF. Let $Et\leq p$ and $Es\wedge p\leq[s=t\ovalbox{\tt\small REJECT}$ . Then, $\rho_{Es\wedge p\Rightarrow 0}^{Es}(s)$ and $t$ are compati-

ble and hence let $t^{\prime}$ be a common extension of them. Since $Es$ is dense and $S$

is simple, there exists a unique maximal extension $\overline{t}$ of $t^{\prime}$ . Since $Es\wedge(pvp\Rightarrow 0)$
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the proof. We now prove its flabbiness. Let $s$ be a section of $S$ which is
maximal under $p$ and $\overline{s}$ be a maximal section of $S$ which extends $s$ . Then,
$\rho_{p}^{;1}(\overline{s}_{1})=(\rho_{p\Lambda E\overline{s}}^{E\overline{s}}(\overline{s}))_{p}=s_{p}$ by Lemma 1 and hence any section of $M_{S}$ can be extended
to a global section.

THEOREM 1. For a simple sheaf S $M_{S}$ is a flabby extension of S. More
precisely, there is a monomorphism is: $S\rightarrow M_{S}$ such that $i_{S}(s)=s_{Es}$ for $s\in|S|$ .

The proof is clear by Lemma 3 and Definition 4.
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LEMMA 9. The following diagram commutes.

The proof is clear by the definition.

THEOREM 2. Let $S$ be a simple sheaf and $F$ a flabby extension of it, $i.e.$ ,
$0\rightarrow S\rightarrow j$ F. Then, there exists a unique epimorphism $\psi$ such that the following
diagram commutes and moreover $\hat{\psi}:^{r}F\rightarrow\hat{M}_{S}$ is surjective, where $rF$ is the reduc-
tion of $F$ with respect to $j$ and $S$ .

PROOF. Let $t$ be a global section of $rF$ and $p=\vee\{\ovalbox{\tt\small REJECT} t=J(s)\ovalbox{\tt\small REJECT};s\in|S|\}$ . Then
$p$ is dense. Hence, there is a dense section $t^{\prime}$ of $S$ such that $[t=](t^{\prime})\ovalbox{\tt\small REJECT}$ is dense.
There uniquely exists a maximal section $\overline{t}^{\prime}$ of $S$ which extends $t^{\prime}$ .

Let $t,$ $u$ be global sections of $rF$ and $\overline{t}^{\prime},\overline{u}^{\prime}$ the maximal sections of $S$ defined
in the above manner. By Lemma 4 [ $(\overline{t}^{\prime})_{1}=(\overline{u}^{\prime})_{1}\ovalbox{\tt\small REJECT}\in R(\Omega)$ and hence $[t=u\ovalbox{\tt\small REJECT}\leq$

[ $(\overline{t}^{\prime})_{1}=(\overline{u}^{\prime})_{1}\ovalbox{\tt\small REJECT}$ . By Lemma 6 there exists a homomorphism $\psi:^{r}F\rightarrow M_{S}$ such that
[ $\psi(t)=(\overline{t}^{\prime})_{1}\ovalbox{\tt\small REJECT}=1$ for each global section $t$ of $rF$. Since [ $i_{S}(\overline{t}^{\prime})=(\overline{t}^{\prime})_{1}\ovalbox{\tt\small REJECT}$ and $[](t^{\prime})=$

$j(\overline{t}^{\prime})\ovalbox{\tt\small REJECT}$ are dense, the uniqueness of $\psi$ is followed from Lemmas 4 and 6. Let $s$

be a maximal section of $S$ and $\overline{J(s)}$ a global section of $F$ which extends $j(s)$ .
Then $\overline{J(s)}$ is a global section of $rF$. Since $Es\leq\ovalbox{\tt\small REJECT} j(s)=\overline{](s)}I$ and $Es\leq\ovalbox{\tt\small REJECT} i_{S}(s)=s_{1}\ovalbox{\tt\small REJECT}$

and $\ovalbox{\tt\small REJECT}\psi\overline{(j(s)}$ ) $=s_{1}I\in R(\Omega),$ $\ovalbox{\tt\small REJECT}\psi\overline{(](s}$)) $=s_{1}\ovalbox{\tt\small REJECT}=1$ . Hence, $\hat{\psi}$ : $\hat{F}\rightarrow\hat{M}_{S}$ is surjective. $\psi$ is
an epimorphism, since $M_{S}$ is flabby.

Next we show that Theorem 2 characterizes $M_{S}$ categorically.

THEOREM 3. Let $S$ be a simple sheaf. Suppose that a flabby extension $M$ of
$S(0\rightarrow S^{i}\rightarrow M)$ satisfies the following: if $0\rightarrow S^{j}\rightarrow F$ and $F$ is flabby, there exists an
epimorphism $\eta:^{r}F\rightarrow M$ such that the following diagram commutes, where $rF$ is the
reduction of $F$ with respect to $j$ and $S$.
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Then, $M$ and $M_{S}$ are isomorphic.

PROOF. There exists an epimorphism $\eta:^{r}M\rightarrow M$ such that $Ex\leq\ovalbox{\tt\small REJECT} i(x)=\eta\cdot i(x)J$

for $x\in|S|$ . Let $x$ be a global section of $M$. Then there exists a global section
$y$ of $rM$ such that $\ovalbox{\tt\small REJECT} i(x)=\eta(y)\ovalbox{\tt\small REJECT}$ is dense. For some dense section $z$ of $S$ ,
$\ovalbox{\tt\small REJECT} i(z)=yJ$ is dense, so $x$ is a global section of $rM$. Hence $M=^{r}M$.

Since $M_{S}=^{r}(\lrcorner ll_{S})$ , there is an epimorphism $\phi:M_{S}\rightarrow M$ making the diagram
(1) commutative. On the other hand there is an epimorphism $\psi:M\rightarrow M_{S}$ making
the diagram (2) commutative by Theorem 2.

Let $s$ and $t$ be maximal sections of $S$ . Since $Es\leq\ovalbox{\tt\small REJECT} i(s)=\phi(s_{1})I,$ $Es\leq\ovalbox{\tt\small REJECT}\psi\cdot\phi(s_{1})=s_{1}I$

and hence $1=[\psi\cdot\phi(s_{1})=s_{1}\ovalbox{\tt\small REJECT}$ . By Lemmas 4 and 5, [ $\phi(s_{1})=\phi(t_{1})\ovalbox{\tt\small REJECT}\leq\ovalbox{\tt\small REJECT} s_{1}=t_{1}\ovalbox{\tt\small REJECT}$ . There-
fore $\phi$ is a monomorphism.

Next we show some functorial properties concerning $M_{S}$ .

LEMMA 10. Let $S$ and $T$ be simple sheaves and $\phi:S\rightarrow T$ a homomorphism.
Then, there exists a unique homomorphism $\tilde{\phi}$ such that the following diagram
commutes.

$S\underline{\phi}T$

$i_{S}$
$i_{T}$

$M_{S}M_{T}\underline{\emptyset}$

PROOF. Let $s$ and $t$ be maximal sections of $S$ . Then $\phi(s)$ is a dense sec-
tion of $T$ and hence it can be uniquely extended to the maximal section $\overline{\phi(s)}$ of
$T$ . Let $p=[s=t\ovalbox{\tt\small REJECT}.$ $Es\leq\ovalbox{\tt\small REJECT} i_{T}(\phi(s))=\overline{(\phi(s}))_{1}\ovalbox{\tt\small REJECT}$ by Theorem 1 and hence $p\leq[\overline{(\phi(s}$) $)_{1}$

$=\overline{(\phi(t)})_{1}\ovalbox{\tt\small REJECT}$ by Lemma 5. By Lemma 4 and the fact that $Es\wedge Et$ is dense $\ovalbox{\tt\small REJECT} s_{1}=t_{1}J$

$=R(p)=[\overline{(\phi(s}$) $)_{1}=\overline{(\phi(t}$) $)_{1}\ovalbox{\tt\small REJECT}$ . By Theorem 1 and Lemma 6, the conclusion holds



A minimal flabby sheaf and an abelian group 163

THEOREM 4. Let $S,$ $T$ and $U$ are simple sheaves. If the upper sequence is
exact in the following diagram, then the lower is also exact.

$S\underline{\phi}TU\underline{\psi}$

$i_{S}$

$ M_{S}\rightarrow M_{l}\emptyset i_{T}\downarrow\leftrightarrow M_{U}\tilde{\psi}i_{\iota r}\downarrow$

PROOF. It is clear that $\tilde{\psi}\cdot\tilde{\phi}=0$ . Let $t$ be a maximal section of $T$ and $p=$

[ $\psi(t_{1})=0\ovalbox{\tt\small REJECT}$ . Then, $p\wedge Et\leq[\psi(i_{T}(t))=0\ovalbox{\tt\small REJECT}\leq[i_{U}(\psi(t))=0\ovalbox{\tt\small REJECT}\leq[\psi(t)=0\ovalbox{\tt\small REJECT}$ . By the exact-
ness of the upper sequence, $p\wedge Et\leq_{s\check{\in|}S|}Es\wedge[\phi(s)=t\ovalbox{\tt\small REJECT}$ . Since $Et$ is dense, there

exist a family $\{s_{\alpha};\alpha\in I\}$ of sections of $S$ and a pairwise disjoint family
$\{p_{\alpha} ; \alpha\in I\}$ of $\Omega$ such that $Et\wedge p_{\alpha}\leq Es_{\alpha}\wedge\ovalbox{\tt\small REJECT}\phi(s_{\alpha})=t\ovalbox{\tt\small REJECT}$ and $\alpha\in Ip_{\alpha}$ is dense under $p$ .
Then there exists a maximal section $s_{\infty}$ of $S$ such that $Et\wedge p_{\alpha}\leq\ovalbox{\tt\small REJECT} s_{\infty}=s_{\alpha}J$ for
each $\alpha\in I$ . Hence $Et\wedge p\leq[\phi(s_{\infty})=t\ovalbox{\tt\small REJECT}$ . Since $Et\wedge p\leq\ovalbox{\tt\small REJECT}\phi(s_{\infty})=t\ovalbox{\tt\small REJECT}\leq[i_{T}\cdot\phi(s_{\infty})=i_{T}(t)\ovalbox{\tt\small REJECT}$

$\leq\ovalbox{\tt\small REJECT}\phi(i_{S}(s_{\infty}))=i_{T}(t)\ovalbox{\tt\small REJECT}$ , $Es_{\infty}\wedge Et\wedge p\leq[\phi((s_{\infty})_{1})=t_{1}\ovalbox{\tt\small REJECT}$ by Lemma 5. Therefore, $ p\leq$

[ $\phi((s_{\infty})_{1})=t_{1}\ovalbox{\tt\small REJECT}$ by Lemma 4 and the fact that $Es_{\infty}\wedge Et$ is dense. Since $M_{s}$ is
flabby, the above shows that $\phi:M_{S}\rightarrow Ker\psi$ is an epimorphism.

COROLLARY 1. Let $S,$ $T$ and $U$ be simple sheaves. If the upper sequence of
the following diagram is exact, then the lower is also exact.

$O-S-T-U-O$
$i_{S}J$ $ i_{T}\downarrow$ $ i_{U}\downarrow$

$O-M_{S^{-}}M_{T}-M_{U^{-}}O$

PROOF. Since the zero sheaf $0$ is simple and $M_{0}=O$ , it is clear by Theorem 4.

In the rest of this section, we must show that $\hat{M_{s}}$ is the abelian group which
consists of the global sections of some abelian group $G$ in the Boolean extension
$V^{(B)}$ , where $B=R(\Omega)$ . We shall directly define $G$ and do not use the general
theory of change of base for $\Omega$-sets. Our notations are common with [3], [4]
and [5] (Ref. [13]) and consistent with the preceding ones of this paper.

For $s\in\hat{M_{S}},$
$s^{*}$ is the element of $V^{(B)}$ such that dom $s^{*}=\{\check{t};t\in\hat{M_{S}}\}$ and

$s^{*}(\check{t})=R(\{p;\rho_{p}^{Es}(s)=\rho_{p}^{Et}(t)\})$ . $G$ and $+are$ elements of $V^{(B)}$ satisfy the fol-
lowing:

(1) dom $G=\{s^{*} ; s\in M_{S}^{\wedge}\}$ ;
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(2) $dom+=\{\langle u^{*}\langle s^{*}t^{*}\rangle^{B}\rangle^{B}$ ; $u$ is the maximal extension of $\rho_{p}^{Es}(s)+p\rho_{p}^{E}(t)$ ,
where $p=Es\wedge Et$ and $s,$ $t\in M_{S}$};

(3) range $G=range+=\{1\}$ .
By Lemmas 3, 4 and 5, [ $+is$ the operation on $G\ovalbox{\tt\small REJECT}^{(B)}=1$ is assured. Hence

[ $\langle G, +\rangle$ is an abelian $group\ovalbox{\tt\small REJECT}^{(B)}=1$ . By the simplicity of S $\hat{G}\simeq\hat{M_{s}}$ as abelian
groups.

\S 2. An abelian group consisting of all the global sections of a sheaf.

First we investigate $\hat{Z_{T}}$, where $Z_{T}$ is the constant Z-sheaf over a topological
space T. $\hat{Z_{T}}$ is the abelian group which consists of all the continuous functions
from $T$ to $Z$.

PROPOSITION 1. (G.M. Bergmann [1] or [9]) If $T$ is compact, then $\hat{Z_{T}}$ is
free.

PROPOSITION 2. If $T$ is discrete, then $Hom(\hat{Z_{T}}, Z)$ is free.

PROOF. Since $\hat{Z_{T}}\simeq Z^{T}$ , it holds by Corollary 1 of [3].

PROPOSITION 3. Let $T$ be a topological space such that $auy$ countable inter-
section of open subsets is still open. Then, $Hom(\hat{Z_{T}}, Z)$ is free.(*)

PROOF. Let $CO(T)$ be the Boolean algebra consisting of all clopen subsets
of $T$ . Then, $CO(T)$ is countably complete and $n\in _{N^{C0(T)}}b_{n}=\bigcup_{n\in N}b_{n}$ for $b_{n}\in CO(T)$

by the$\wedge condition$ for $T$ . Hence, $\hat{Z_{T}}$ is isomorphic to the Boolean power $Z^{(C0(T))}$ .
$Hom(Z_{T}, Z)$ is free, by Corollary 1 of [3] and the remark at the end of Theo-
rem 1 of [3].

It should be noted that without any hypothesis for $T,$
$n\in N^{CO(T)}b_{n},$ $n\in N^{R(O(T))}b_{n}$

and $\bigcup_{n\in N}b_{n}(=_{n\check{\in}N}^{O(T)}b_{n})$ are not equal in general.

Neither $\hat{Z_{T}}$ nor $Hom(Z_{T}, Z)$ has such a simple structure in general

DEFINITION 5. ([12] or [2]) An abelian group is a Z-kernel group, if it can
be obtained from $Z$ by iterating direct products and direct sums, $i.e.$ ,

(1) $Z$ is a Z-kernel group;

$(^{*})$ We have now the following. Let $G^{0*}=G$ and $G^{(n+1)*}=Hom(G^{n*}, Z)$ . Suppose
that $X$ is a O-dimensional Hausdorff space. $(C(X, Z))^{2n*}$ is free iff $X$ is pseudo-compact.
$(C(X, Z))^{(2n+1)*}$ is free iff any compact subset of the N-compactification of $X$ is finite.
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(2)
$\prod_{\alpha\in I}G_{\alpha}$ and $\bigoplus_{\alpha\in I}G_{\alpha}$ are Z-kernel groups in the case that $G_{\alpha}$ is a Z-kernel

group for each $\alpha\in I$ ;
(3) No other group than defined in the above manner is a Z-kernel group.

PROPOSITION 4. For any Z-kernel group $G$ , there exists a topological space
$T$ such that $\hat{Z_{T}}\simeq G$ .

PROOF. If $G$ is a Z-kernel group and not isomorphic to $\bigoplus_{F}Z$ for any finite

$F,$ $G$ is isomorphic to $Z\oplus G$ .
Now let $T$ be a space with one point, then $\hat{Z_{T}}\simeq Z$.
Suppose that $\hat{Z_{\tau_{\alpha}}}\simeq G_{\alpha}$ for each $\alpha\in I$ . Let $T(=\sum_{\alpha\in I}T_{\alpha})$ be the topological

sum of the $T_{a}$ , then $\hat{Z_{T}}\simeq\prod_{\alpha\in I}G_{\alpha}$ . Next $T(=\sum_{\alpha\in I}T_{\alpha}\cup\{\infty\})$ be the extension

space of the topological sum $\sum_{\alpha\in I}T_{\alpha}$ such that the neighborhoods of $\infty$ are $\sum_{\alpha\in I-F}T_{\alpha}$

for finite subsets $F$ of $I$ . Then, $\hat{Z_{T}}\simeq Z\oplus\bigoplus_{\alpha\in I}G_{\alpha}$ . We may assume that $I$ is

infinite. In the case that $Z\oplus G_{\alpha}\simeq G_{\alpha}$ for some $\alpha\in I,$
$Z_{T}\simeq\bigoplus_{\alpha\in I}G_{\alpha}$ . 0therwise,

every $G_{\alpha}$ is isomorphic to $\bigoplus_{F}Z$ for some finite $F$. Hence $\hat{Z_{T}}\simeq\bigoplus_{I}Z\simeq\bigoplus_{a\in I}G_{\alpha}$ .

Concerning $Hom(G, Z)$ for Z-kernel group $G$ , we refer the reader to [2],

[4], [6], [7] and [9].

Next we investigate $\hat{M_{S}}$ for a simple sheaf $S$ . For a slender group and a
Fuchs-44-group, we refer the reader to [9] and [10] respectively.

A topological space $T$ satisfies $\kappa- c.c$ . if there exists no pairwise disjoint

family of non-empty open subsets of $T$ with the cardinality $\kappa$ . Therefore, $T$

satisfies $\kappa- c.c$ . iff the $cBaR(O(T))$ satisfies $\kappa- c.c.$ . If $T$ is a Hausdorff space

without an isolated point, then $R(O(T))$ is atomless, $i.e.$ , for any nonzero element
$b$ there is a nonzero element which is strictly less than $b$ .

As in [3] and [4], $M_{c}$ is the least measurable cardinal. (Ref. [11] and $[9]\rangle$

THEOREM 5. Let $T$ be a Hausdorff space which satisfies $M_{c}- c.c$ . and has no

isolated point. Let $S$ be a simple sheaf over T. If $G$ is a slender group, then
$Hom(\hat{M_{S}}, G)=0$ . In addition, $\hat{M_{S}}$ is a Fuchs-44-group.

PROOF. By the comment preceding the theorem and Lemma 2 of [3],

$R(O(T))$ has no c.c. max-filter. (Ref. [3] and [4]) Hence the conclusions follow

Theorem 1 of [4], Corollary 3 of [5] and the fact that $\hat{M_{S}}$ is isomorphic to $\hat{G}$

where $G$ is an abelian group in $V^{(R(0(T)))}$ .
In the following we say that an abelian group is a summand of $A$ , if it is
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isomorphic to a summand of $A$ .

COROLLARY 2. Let $G_{\alpha}$ be a slender group for each $\alpha\in I$ . Under the same
conditions of Theorem 5, if $\prod_{\alpha\in I}G_{\alpha}$ is a summand $cfM_{S}\hat{/S}$, then it is a summand
of $H^{1}(T, S)$ .

PROOF. Let
$0\rightarrow\hat{S}\rightarrow\hat{M}_{S}\rightarrow M_{S}\hat{/S}\hat{\pi}$

be the derived exact sequence. Let $\sigma_{G_{\alpha}}$ : $M_{s}\hat{/S}$

$\rightarrow G_{\alpha}$ be the projection for each $\alpha\in I$, then $\sigma_{G_{\alpha}}\cdot\hslash=0$ by Theorem 5. Hence,
$\prod_{a\in I}G_{\alpha}$ is a summand of $H^{1}(T, S)$ .

COROLLARY 3. Under the same condition of Theorem 1, a free abelian group
is a summand of $M_{S}\hat{/S}$ iff it is a summand of $H^{1}(T, S)$ .

PROOF. If a free abelian group is a summand of a quotient group of an
abelian group $G$ , then it is a summand of $G$ . The conclusion follows from this
and Corollary 2, since a free abelian group is slender.

COROLLARY 4. Under the same condition of Theorem 5, let $\bigoplus_{i\in I}G_{i}$ be a sum-
mand of $M_{S}\hat{/S}$ with the following:

(1) $G_{i}$ is reduced for each $i\in I$ ;
(2) For each $m$ there exists a finite subset $F$ of I such that every non-zero

element of $G_{i}$ has the order greater than $m$ for each $i\in F$.
Then, there exists a finite subset $F^{*}of$ I such that $\bigoplus_{i\in I-F}G_{i}$ is a summand of

$H^{1}(T, S)$ .

PROOF. By Corollary 3 of [5], $\hat{M_{S}}$ is a Fuchs-44-group. Hence, $\hat{\pi}(\hat{M_{S}})$ is
also a Fuchs-44-group. Let $\sigma;M_{S}\hat{/}S\rightarrow\bigoplus_{i\in I}G_{i}$ be the projection. Then, there exist

$m$ and a finite subset $F^{\prime}$ of $I$ such that $m\sigma\cdot\hat{\pi}(\hat{M_{S}})\subseteq\bigoplus_{i\in F^{l}}G_{i}$ . By the condition of

the theorem, there exists a finite subset $F^{*}$ of $I$ such that $\sigma\cdot i?(\hat{M_{S}})\subseteq\bigoplus_{i\in F}.G_{i}$ .
Hence, $\bigoplus_{i\in I-F}G_{i}$ is a summand of $H^{1}(T, S)$ .

For the next corollary we must know the structure of the quotient sheaf
$M_{S}/S$ . We use higher-order $\Omega$-sets [8]. For the intuitionistic argument, we
define ”torsion free” and “pure” explicitly. A group $G$ is torsion free if $nx=0$

implies $n=0$ or $x=0$ for any $n\in N$ and $x\in G$ . A subgroup $H$ of $G$ is pure if
$nx\in H$ implies $nx\in nH$.

LEMMA 11. For an abelian sheaf $A$ over a $cHa\Omega,$ $A(p)$ is torsion free for
each $ p\in\Omega$, iff [A is torsion free] $=1$ .
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PROOF. Suppose that $\ovalbox{\tt\small REJECT} A$ is torsion $free\ovalbox{\tt\small REJECT}\neq 1$ , then there exist $x$ and $n\neq 0$

such that $\ovalbox{\tt\small REJECT} nx=0\ovalbox{\tt\small REJECT}\wedge[x\in A\$\leq\ovalbox{\tt\small REJECT} x=0\ovalbox{\tt\small REJECT}$ does not hold. Let $p=\ovalbox{\tt\small REJECT} nx=0\emptyset\wedge[x\in AJ$ ,

then $A(p)$ is not torsion free. The other implication is obvious.

LEMMA 12. Let $S$ be a constant sheaf $A_{T}$ . Then, [ $S$ is a pure subgroup of
$M_{S}\ovalbox{\tt\small REJECT}=1$ .

PROOF. By Theorem 1, $\ovalbox{\tt\small REJECT} S$ is a subgroup of $M_{S}\ovalbox{\tt\small REJECT}=1$ . Let $h=[n(s)_{1}=i_{S}(t)J$

for $n\in N$, a maximal section $s$ of $S$ and an h-section $t$ of $S$ . Then, $ Es\wedge h\leq$

[ $ni_{s}(s)=i_{S}(t)\ovalbox{\tt\small REJECT}=\ovalbox{\tt\small REJECT} ns=t\ovalbox{\tt\small REJECT}$ . Since $S$ is a constant sheaf, there exists an h-section
$s^{\prime}$ of $S$ such that $h\leq\ovalbox{\tt\small REJECT} ns^{\prime}=t\ovalbox{\tt\small REJECT}$ . Hence, the conclusion holds.

COROLLARY 5. In addition to the condition of Theorem 5, let $S$ be a constant

sheaf $A_{T}$ , where $A$ is a torsion-free abelian group. If $D\oplus\bigoplus_{i\in I}G_{i}$ is a direct

decomposition of $\hat{M_{S}/}S$ , where $D$ is divisible and $\bigoplus_{i\in I}G_{i}$ is reduced, then there exists

a finite subset $F$ of I such that $\bigoplus_{i\in I-F}G_{i}$ is a summand of $H^{1}(T, S)$ .

PROOF. By virtue of Lemma 11, [ $M_{S}$ is torsion free] $=1$ . Since the proof

of the fact that the quotient group of a torsion-free abelian group by a pure
subgroup is torsion free can be done intuitionistically, $\ovalbox{\tt\small REJECT} M_{S}/S$ is torsion free] $=1$

by Lemma 12. Hence, $M_{S}\hat{/S}$ is torsion-free by Lemma 11. By Corollary 3 of
[5], $\hat{M_{S}}$ is a Fuchs-44-group and so $\hat{\pi}(\hat{M_{S}})$ is also a Fuchs-44-group. Hence, there
exists an integer $m>0$ and a finite subset $F$ of $I$ such that $m\hat{\pi}(M_{S})\subseteq D\oplus\bigoplus_{i\in F}G_{i}$ .

Since $M_{S}\hat{/S}$ is torsion free, $\hat{\pi}(\hat{M_{S}})\subseteq D\oplus\bigoplus_{i\in F}G_{i}$ and hence $\bigoplus_{i\in I-F}G_{i}$ is a summand of
$H^{1}(T, S)$ .

REMARK. Here we contrast the minimal flabby extension $M_{S}$ with an injec-

tive extension $I_{S}$ and the canonical flabby extension $F_{S}$ of a simple sheaf $S$ .
Let $D\oplus R$ be the direct decomposition of $I_{S}\hat{/S}$ such that $D$ is the maximal divi-

sible subgroup and $R$ is reduced. Since $\hat{I_{S}}$ is divisible, $R$ becomes a summand
of $H^{1}(T, S)$ . Hence Theorem 5, Corollaries 2, 3, 4 and 5 hold for an injective

extension $I_{S}$ , though the minimal flabby extension is seldom injective.
Suppose that $T$ is a non-trivial connected Hausdorff space which is acyclic

for a constant co-efficient sheaf and of cardinality less than $M_{c},$ $e.g.$ , the unit
$\pi^{\prime}$

interval. Let $0\rightarrow S\rightarrow F_{S}\rightarrow F_{S}/S\rightarrow 0$ .
(1) Let $S$ be the constant sheaf $Z_{T}$ . Then, $\hat{F_{S}}\simeq Z^{T}$ and $\hat{S}$ corresponds to

the subgroup of $Z^{T}$ consisting of constant functions. Hence, $\hat{\pi}^{\prime}(\hat{F_{S}})\simeq Z^{T}$ . Since
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$H^{1}(T, Z_{T})\simeq 0,$
$F_{S}\hat{/S}$ must be isomorphic to $Z^{T}$ . Compare this fact with Corollaries

2 and 3.
(2) Let $S$ be the constant sheaf $A_{T}$ where $A\simeq\oplus R_{n}$ for some non-trivial

$n\in N$

$=$
torsion free reduced groups $R_{n}$ $(n\in N)$ . Then, $F_{S}/S$ is isomorphic to $A^{T}$

$(\simeq A^{T}\oplus\bigoplus_{n\in N}R_{n})$ as above.
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