A MINIMAL FLABBY SHEAF AND AN ABELIAN GROUP

By

Katsuya EDA

In the cohomology theory of sheaves, we may use any flabby extension F of a sheaf S to define the sheaf cohomology group $H^1(T, S)$, where T is a topological space. Consequently, the abelian group consisting of all global sections of the quotient sheaf F/S gives us little information about the group $H^1(T, S)$ in general.

In this paper we define a particular flabby extension M_s which is minimal in a certain sense, for a simple sheaf S. We shall show that the abelian group $H^1(T, S)$ and the one consisting of all global sections of the quotient M_s/S have common free summands, i.e. a free abelian group F is a summand of the former iff an isomorphic one is a summand of the latter. We shall use the notations of [14] and [15] for sheaves and those of [8] for Ω -sets to simplify the presentations. In §1 we define the flabby sheaf M_s and investigate its property as a flabby extension. In §2 we study the abelian group consisting of all global sections of a sheaf which appears in the process to define $H^1(T, S)$ in use of M_s .

§1. A minimal flabby sheaf.

DEFINITION 1. A complete Heyting algebra (cHa) is a complete lattice $\Omega = (\Omega, \wedge, \vee)$ satisfying the infinite distributive law: $p \wedge \bigvee_{i \in I} q_i = \bigvee_{i \in I} p \wedge q_i$ for all $p \in \Omega$ and all systems $\{q; i \in I\} \subseteq \Omega$.

We denote the least element of Ω by 0 and the greatest by 1. $p \Rightarrow q = \bigvee \{x; p \land x \leq q\}$ for $p \in \Omega$, and $p \land q \Rightarrow r$ and $p \lor q \Rightarrow r$ mean $p \land (q \Rightarrow r)$ and $p \lor (q \Rightarrow r)$ respectively.

An element p of Q is called dense under q, if $p \le q$ and $q \land p \Rightarrow 0=0$. In the case q=1, p is called dense.

 $R: \Omega \rightarrow \Omega$ is defined by: $R(p) = (p \Rightarrow 0) \Rightarrow 0$. An element p of is called regular if R(p) = p.

 $R(\Omega)$ is the complete Boolean algebra (cBa) which consists of all the regular elements of Ω .

Received June 21, 1982. Revised October 29, 1982.

For a topological space T, O(T) is the cHa which consists of all the open subsets of T.

The category of Ω -sets with Ω -set morphisms is equivalent to that of sheaves over Ω with sheaf morphisms [8]. We remark that a Boolean extension of the set theoretical universe by a cBa B is the family of all B-sets.

A sheaf over a $cHa \ \Omega$ is a simple generalization of a sheaf over a topological space. It is sufficient to notice that in the definition of a presheaf there appears no element of T and we only need open subsets of T.

DEFINITION 2. For a sheaf $S=(S, \rho)$ over Ω , we denote all the sections of S by |S|. For $s \in |S|$, Es is the element of Ω such that $s \in S(Es)$, i.e. s is an Es-section of S.

Let s and t be elements in |S|: [s=t] is the element of Ω such that [s=t]= $\bigvee \{p; \rho_p^{Es}(s) = \rho_p^{Et}(t) \text{ for } p \in \Omega\}$; t is an extension of s if $Es \leq Et$ and $\rho_{Es}^{Et}(t) = s$; s is dense under p if s is dense under p; s is simply called dense if s is dense under 1; s is maximal under p if $Es \leq p$ and there exists no proper extension of s under p, i.e., $\rho_{Es}^{Et}(t) = s$ implies $Et \wedge p = Es$ for any $t \in |S|$; s is called maximal if it is maximal under 1.

In this paper a sheaf S is always an abelian sheaf, i.e., S(p) is an abelian group for each $p \in \Omega$. Hence there is at least one global section for every sheaf. Consequently, if s is a maximal section of a sheaf S then s is dense.

DEFINITION 3. A simple sheaf is a sheaf S such that for each dense section s of S there is a unique maximal section t of S which is an extension of s, i.e., t is an extension of t' for any extension t' of s.

It is easy to see the following.

A constant sheaf is a simple sheaf. The sheaf of germs of continuous functions whose ranges are a Hausdorff space is a simple sheaf.

LEMMA 1. Let S be a simple sheaf. If s is maximal, then $\rho_{E_s \wedge p}^{E_s}(s)$ is maximal under p for each $p \in \Omega$. If s is dense under p, then there exists a unique maximal extension s' of s under p. Cousequently, if s is maximal under p, then $\rho_{E_s \wedge q}^{E_s}(s)$ is maximal under q for each $q \leq p$.

PROOF. Let $Et \le p$ and $Es \land p \le [s=t]$. Then, $\rho_{Es \land p \ge 0}^{Es}(s)$ and t are compatible and hence let t' be a common extension of them. Since Es is dense and S is simple, there exists a unique maximal extension \tilde{t} of t'. Since $Es \land (p \lor p \Rightarrow 0)$

A minimal flabby sheaf and an abelian group

is dense and s and \bar{t} are extensions of $\rho_{Es \wedge (p \vee p \Rightarrow 0)}^{Es}(s)$, $\bar{t}=s$. Hence $Et=Es \wedge p$. Now the first assertion of the lemma has been proved.

Let 0 be the zero element of the abelian group S(1). Since s is dense under p, a common extension of s and $\rho_{p \to 0}^1(0)$ is a dense section and hence there exists a unique maximal extension \bar{s} of them. By the first assertion of the lemma, $\rho_{E\bar{s}\wedge p}^{E\bar{s}}(\bar{s})$ is maximal under p. Let $\rho_{E\bar{s}}^{Et}(t)=s$ and $Et \leq p$. Then, the maximal section which extends t and $\rho_{p \to 0}^1(0)$ must be \bar{s} . Hence, $Et \leq E\bar{s} \wedge p$. The second assertion has been proved.

Think of the cHa $\{q; q \le p \& q \in \Omega\}$ $(=\Omega_p)$ and the restriction of S to Ω_p . By the second assertion, the restriction of S is also a simple sheaf. Now the third assertion is followed from the first.

In the following s_p means the pair (s, p) where s is a section and $p \in \Omega$.

DEFINITION 4. For a simple sheaf $S=(S, \rho, +)$, let $(M_S, \rho', +')$ be the following:

(1) $M_{S}(p) = \{s_{p}; s \text{ is a section of } S \text{ which is maximal under } p\};$

(2) $\rho'_{q}^{p}(s_{p}) = (\rho_{q \wedge Es}^{Es}(s))_{q};$

(3) For s_p , $t_p \in M_s(p)$, $s_p + p_p t_p = u_p$, where u is the maximal extension of $\rho_r^{Es}(s) + \rho_r^{Et}(t)$ under $p(r = Es \wedge Et)$.

 M_S turns out to be a flabby sheaf which extends S for a simple sheaf S. If a flabby sheaf F is an extension of S, any maximal section of S can be extended to a global section. If F is the canonical flabby extension of S, it has many global sections which extend a maximal section of S in general. Since M_S has only one global section extends a maximal section of S, M_S is made tightly. According to the terminology of [8], M_S turns out to be the direct image $R_* \cdot R(S)$ of the inverse image R(S), where $R: \Omega \to R(\Omega)$. Under this point of view, the following two lemmas are rather trivial.

We denote S(1), $\phi(1)$ and $\phi(Es)(s)$ by \hat{S} , $\hat{\phi}$ and $\phi(s)$ respectively, where ϕ is a sheaf homomorphism. In the following, S always stands for a simple sheaf.

LEMMA 2. $\rho'_p^{R(p)}: M_s(R(p)) \rightarrow M_s(p)$ is an isomorphism.

PROOF. Suppose that a section s of S is maximal under p, then it is de under R(p) and hence there is a unique extension \bar{s} of s that is maximal u R(p) by Lemma 1.

LEMMA 3. M_s is a flabby sheaf.

PROOF. By Lemma 1 it is a routine to show that M_s is a sheaf, so

the proof. We now prove its flabbiness. Let s be a section of S which is maximal under p and \bar{s} be a maximal section of S which extends s. Then, $\rho'_p(\bar{s}_1) = (\rho_{p \wedge E\bar{s}}^{E\bar{s}}(\bar{s}))_p = s_p$ by Lemma 1 and hence any section of M_s can be extended to a global section.

THEOREM 1. For a simple sheaf $S M_s$ is a flabby extension of S. More precisely, there is a monomorphism $i_s: S \to M_s$ such that $i_s(s) = s_{Es}$ for $s \in |S|$.

The proof is clear by Lemma 3 and Definition 4. Next we show that M_s is minimal in certain sense.

LEMMA 4. For $x, y \in \hat{M}_S$, $[x = y] \in R(\Omega)$.

The proof is clear by Lemma 2.

LEMMA 5. For maximal sections s and t of S, $[s=t]=Es \wedge Et \wedge [s_1=t_1]$.

The proof is clear by Definition 4.

LEMMA 6. Let F be a flabby sheaf and T a sheaf. If a homomorphism $h: \hat{F} \rightarrow \hat{T}$ satisfies $[x=y] \leq [h(x)=h(y)]$ for $x, y \in \hat{F}$, then there exists a unique homomorphism $\phi: F \rightarrow T$ such that $\hat{\phi} = h$.

PROOF. Let $\phi(s) = \rho_{Es}^1(h(\bar{s}))$ for some global section \bar{s} which extends s. Then ϕ is well-defined and satisfies the property.

DEFINITION 5. Let T and $U (=U, \rho)$ be sheaves and $\phi: T \rightarrow U$ a homomorphism. The reduction $^{r}U (=(^{r}U, ^{r}\rho))$ of U with respect to ϕ and T is the following system:

x∈^rU(p) iff x∈U(p) and p≤R(∨{[[x=φ(y)]]; y∈|T|});
 rρ and r+ are the restrictions of ρ and + respectively.

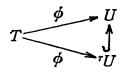
LEMMA 7. ^{r}U is a subsheaf of U.

The proof is a routine.

LEMMA 8. If U is a flabby sheaf, then "U is also flabby.

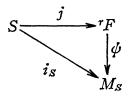
PROOF. Let s belong to ${}^{r}U(p)$ and s' be a common extension of ${}^{r}\rho_{p \Rightarrow 0}^{1}(0)$ and hen s' is a dense section of ${}^{r}U$. Hence $R(\bigvee \{[s'=\phi(y)]; y \in |S|\})=1$. is a global section \bar{s} of U such that \bar{s} extends s'. By the definition of s a global section of ${}^{r}U$.

LEMMA 9. The following diagram commutes.



The proof is clear by the definition.

THEOREM 2. Let S be a simple sheaf and F a flabby extension of it, i.e., $0 \rightarrow S \xrightarrow{j} F$. Then, there exists a unique epimorphism ψ such that the following diagram commutes and moreover $\hat{\psi}: {}^{r}\hat{F} \rightarrow \hat{M}_{S}$ is surjective, where ${}^{r}F$ is the reduction of F with respect to j and S.

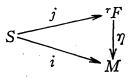


PROOF. Let t be a global section of ${}^{r}F$ and $p = \bigvee \{ [t=j(s)]; s \in |S| \}$. Then p is dense. Hence, there is a dense section t' of S such that [t=j(t')] is dense. There uniquely exists a maximal section \tilde{t}' of S which extends t'.

Let t, u be global sections of ${}^{r}F$ and \overline{t}' , \overline{u}' the maximal sections of S defined in the above manner. By Lemma 4 $\llbracket(\overline{t}')_1 = (\overline{u}')_1 \rrbracket \in R(\Omega)$ and hence $\llbracket t = u \rrbracket \leq \llbracket(\overline{t}')_1 = (\overline{u}')_1 \rrbracket$. By Lemma 6 there exists a homomorphism $\psi : {}^{r}F \to M_S$ such that $\llbracket \psi(t) = (\overline{t}')_1 \rrbracket = 1$ for each global section t of ${}^{r}F$. Since $\llbracket i_S(\overline{t}') = (\overline{t}')_1 \rrbracket$ and $\llbracket j(t') = j(\overline{t}') \rrbracket$ are dense, the uniqueness of ψ is followed from Lemmas 4 and 6. Let sbe a maximal section of S and $\overline{j(s)}$ a global section of F which extends j(s). Then $\overline{j(s)}$ is a global section of ${}^{r}F$. Since $Es \leq \llbracket j(s) = \overline{j(s)} \rrbracket$ and $Es \leq \llbracket i_S(s) = s_1 \rrbracket$ and $\llbracket \psi(\overline{j(s)}) = s_1 \rrbracket \in R(\Omega)$, $\llbracket \psi(\overline{j(s)}) = s_1 \rrbracket = 1$. Hence, $\psi : \widehat{F} \to \widehat{M}_S$ is surjective. ψ is an epimorphism, since M_S is flabby.

Next we show that Theorem 2 characterizes M_s categorically.

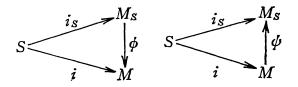
THEOREM 3. Let S be a simple sheaf. Suppose that a flabby extension M of $S \ (0 \rightarrow S \xrightarrow{i} M)$ satisfies the following: if $0 \rightarrow S \xrightarrow{j} F$ and F is flabby, there exists an epimorphism $\eta: {}^{r}F \rightarrow M$ such that the following diagram commutes, where ${}^{r}F$ is the reduction of F with respect to j and S.



Then, M and M_s are isomorphic.

PROOF. There exists an epimorphism $\eta: {}^{r}M \to M$ such that $Ex \leq [[i(x) = \eta \cdot i(x)]]$ for $x \in |S|$. Let x be a global section of M. Then there exists a global section y of ${}^{r}M$ such that $[[i(x) = \eta(y)]]$ is dense. For some dense section z of S, [[i(z) = y]] is dense, so x is a global section of ${}^{r}M$. Hence $M = {}^{r}M$.

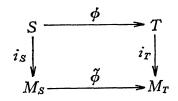
Since $M_s = {}^r(M_s)$, there is an epimorphism $\phi: M_s \to M$ making the diagram (1) commutative. On the other hand there is an epimorphism $\psi: M \to M_s$ making the diagram (2) commutative by Theorem 2.



Let s and t be maximal sections of S. Since $Es \leq [[i(s)=\phi(s_1)]]$, $Es \leq [[\psi \cdot \phi(s_1)=s_1]]$ and hence $\mathbf{1}=[[\psi \cdot \phi(s_1)=s_1]]$. By Lemmas 4 and 5, $[[\phi(s_1)=\phi(t_1)]] \leq [[s_1=t_1]]$. Therefore ϕ is a monomorphism.

Next we show some functorial properties concerning M_s .

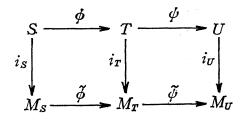
LEMMA 10. Let S and T be simple sheaves and $\phi: S \rightarrow T$ a homomorphism. Then, there exists a unique homomorphism $\tilde{\phi}$ such that the following diagram commutes.



PROOF. Let s and t be maximal sections of S. Then $\phi(s)$ is a dense section of T and hence it can be uniquely extended to the maximal section $\overline{\phi(s)}$ of T. Let p = [s=t]. $Es \leq [i_T(\phi(s))=(\overline{\phi(s)})_1]$ by Theorem 1 and hence $p \leq [(\overline{\phi(s)})_1] = (\overline{\phi(t)})_1]$ by Lemma 5. By Lemma 4 and the fact that $Es \wedge Et$ is dense $[s_1=t_1]$ $= R(p) = [(\overline{\phi(s)})_1 = (\overline{\phi(t)})_1]$. By Theorem 1 and Lemma 6, the conclusion holds

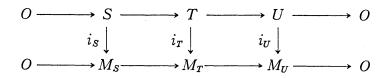
A minimal flabby sheaf and an abelian group

THEOREM 4. Let S, T and U are simple sheaves. If the upper sequence is exact in the following diagram, then the lower is also exact.



PROOF. It is clear that $\tilde{\psi} \cdot \tilde{\phi} = 0$. Let t be a maximal section of T and $p = \llbracket \psi(t_1) = 0 \rrbracket$. Then, $p \wedge Et \leq \llbracket \psi(i_T(t)) = 0 \rrbracket \leq \llbracket i_U(\psi(t)) = 0 \rrbracket \leq \llbracket \psi(t) = 0 \rrbracket$. By the exactness of the upper sequence, $p \wedge Et \leq \bigvee_{s \in [S]} Es \wedge \llbracket \phi(s) = t \rrbracket$. Since Et is dense, there exist a family $\{s_{\alpha}; \alpha \in I\}$ of sections of S and a pairwise disjoint family $\{p_{\alpha}; \alpha \in I\}$ of Ω such that $Et \wedge p_{\alpha} \leq Es_{\alpha} \wedge \llbracket \phi(s_{\alpha}) = t \rrbracket$ and $\bigvee_{\alpha \in I} p_{\alpha}$ is dense under p. Then there exists a maximal section s_{∞} of S such that $Et \wedge p_{\alpha} \leq \llbracket s_{\infty} = s_{\alpha} \rrbracket$ for each $\alpha \in I$. Hence $Et \wedge p \leq \llbracket \phi(s_{\infty}) = t \rrbracket$. Since $Et \wedge p \leq \llbracket \phi(s_{\infty}) = i_T(t) \rrbracket \leq \llbracket \phi(i_S(s_{\infty})) = i_T(t) \rrbracket$, $Es_{\infty} \wedge Et \wedge p \leq \llbracket \phi((s_{\infty})_1) = t_1 \rrbracket$ by Lemma 5. Therefore, $p \leq \llbracket \phi((s_{\infty})_1) = t_1 \rrbracket$ by Lemma 4 and the fact that $Es_{\infty} \wedge Et$ is dense. Since M_s is flabby, the above shows that $\phi: M_s \rightarrow \text{Ker } \phi$ is an epimorphism.

COROLLARY 1. Let S, T and U be simple sheaves. If the upper sequence of the following diagram is exact, then the lower is also exact.



PROOF. Since the zero sheaf O is simple and $M_0 = O$, it is clear by Theorem 4.

In the rest of this section, we must show that $\widehat{M_S}$ is the abelian group which consists of the global sections of some abelian group G in the Boolean extension $V^{(B)}$, where $B = R(\Omega)$. We shall directly define G and do not use the general theory of change of base for Ω -sets. Our notations are common with [3], [4] and [5] (Ref. [13]) and consistent with the preceding ones of this paper.

For $s \in \widehat{M_s}$, s^* is the element of $V^{(B)}$ such that dom $s^* = \{\check{t}; t \in \widehat{M_s}\}$ and $s^*(\check{t}) = R(\bigvee \{p; \rho_p^{Es}(s) = \rho_p^{Et}(t)\})$. G and + are elements of $V^{(B)}$ satisfy the following:

(1) dom $G = \{s^*; s \in \widehat{M_s}\}$;

(2) dom += {
$$\langle u^* \langle s^*t^* \rangle^B \rangle^B$$
; *u* is the maximal extension of $\rho_p^{Es}(s) + \rho_p^E(t)$,
where $p = Es \wedge Et$ and $s, t \in M_s$ }:

(3) range $G = \operatorname{range} + = \{1\}$.

By Lemmas 3, 4 and 5, [+] is the operation on $G]^{(B)}=1$ is assured. Hence $[\langle G, + \rangle]$ is an abelian group $]^{(B)}=1$. By the simplicity of $S \ \widehat{G} \simeq \widehat{M_S}$ as abelian groups.

$\S 2$. An abelian group consisting of all the global sections of a sheaf.

First we investigate \hat{Z}_T , where Z_T is the constant Z-sheaf over a topological space T. \hat{Z}_T is the abelian group which consists of all the continuous functions from T to Z.

PROPOSITION 1. (G.M. Bergmann [1] or [9]) If T is compact, then \hat{Z}_T is free.

PROPOSITION 2. If T is discrete, then Hom $(\widehat{Z_T}, Z)$ is free.

PROOF. Since $\widehat{Z_T} \simeq Z^T$, it holds by Corollary 1 of [3].

PROPOSITION 3. Let T be a topological space such that any countable intersection of open subsets is still open. Then, $\operatorname{Hom}(\widehat{Z_T}, Z)$ is free.^(*)

PROOF. Let CO(T) be the Boolean algebra consisting of all clopen subsets of T. Then, CO(T) is countably complete and $\bigvee_{n \in N} {}^{CO(T)} b_n = \bigcup_{n \in N} b_n$ for $b_n \in CO(T)$ by the condition for T. Hence, \widehat{Z}_T is isomorphic to the Boolean power $Z^{(CO(T))}$. Hom (\widehat{Z}_T, Z) is free, by Corollary 1 of [3] and the remark at the end of Theorem 1 of [3].

It should be noted that without any hypothesis for T, $\bigvee_{n \in N} {}^{CO(T)}b_n$, $\bigvee_{n \in N} {}^{R(O(T))}b_n$ and $\bigcup_{n \in N} b_n (= \bigvee_{n \in N} {}^{O(T)}b_n)$ are not equal in general.

Neither \widehat{Z}_{T} nor Hom (Z_{T}, Z) has such a simple structure in general

DEFINITION 5. ([12] or [2]) An abelian group is a Z-kernel group, if it can be obtained from Z by iterating direct products and direct sums, i.e.,

(1) Z is a Z-kernel group;

164

^(*) We have now the following. Let $G^{0*}=G$ and $G^{(n+1)*}=\text{Hom}(G^{n*}, \mathbb{Z})$. Suppose that X is a 0-dimensional Hausdorff space. $(C(X, \mathbb{Z}))^{2n*}$ is free iff X is pseudo-compact. $(C(X, \mathbb{Z}))^{(2n+1)*}$ is free iff any compact subset of the N-compactification of X is finite.

- (2) $\prod_{\alpha \in I} G_{\alpha}$ and $\bigoplus_{\alpha \in I} G_{\alpha}$ are Z-kernel groups in the case that G_{α} is a Z-kernel group for each $\alpha \in I$;
- (3) No other group than defined in the above manner is a Z-kernel group.

PROPOSITION 4. For any Z-kernel group G, there exists a topological space T such that $\widehat{Z_T} \simeq G$.

PROOF. If G is a Z-kernel group and not isomorphic to $\bigoplus_{F} Z$ for any finite F, G is isomorphic to $Z \oplus G$.

Now let T be a space with one point, then $\widehat{Z_T} \simeq Z$.

Suppose that $\widehat{Z}_{T_{\alpha}} \simeq G_{\alpha}$ for each $\alpha \in I$. Let $T (= \sum_{\alpha \in I} T_{\alpha})$ be the topological sum of the T_{α} , then $\widehat{Z}_{T} \simeq \prod_{\alpha \in I} G_{\alpha}$. Next $T (= \sum_{\alpha \in I} T_{\alpha} \cup \{\infty\})$ be the extension space of the topological sum $\sum_{\alpha \in I} T_{\alpha}$ such that the neighborhoods of ∞ are $\sum_{\alpha \in I-F} T_{\alpha}$ for finite subsets F of I. Then, $\widehat{Z}_{T} \simeq Z \oplus \bigoplus_{\alpha \in I} G_{\alpha}$. We may assume that I is infinite. In the case that $Z \oplus G_{\alpha} \simeq G_{\alpha}$ for some $\alpha \in I$, $Z_{T} \simeq \bigoplus_{\alpha \in I} G_{\alpha}$. Otherwise, every G_{α} is isomorphic to $\bigoplus_{F} Z$ for some finite F. Hence $\widehat{Z}_{T} \simeq \bigoplus_{\alpha \in I} G_{\alpha}$.

Concerning Hom (G, \mathbb{Z}) for \mathbb{Z} -kernel group G, we refer the reader to [2], [4], [6], [7] and [9].

Next we investigate $\widehat{M_s}$ for a simple sheaf S. For a slender group and a Fuchs-44-group, we refer the reader to [9] and [10] respectively.

A topological space T satisfies κ -c.c. if there exists no pairwise disjoint family of non-empty open subsets of T with the cardinality κ . Therefore, Tsatisfies κ -c.c. iff the *cBa* R(O(T)) satisfies κ -c.c.. If T is a Hausdorff space without an isolated point, then R(O(T)) is atomless, i.e., for any nonzero element b there is a nonzero element which is strictly less than b.

As in [3] and [4], M_c is the least measurable cardinal. (Ref. [11] and [9])

THEOREM 5. Let T be a Hausdorff space which satisfies M_c -c.c. and has no isolated point. Let S be a simple sheaf over T. If G is a slender group, then Hom $(\widehat{M_s}, G)=0$. In addition, $\widehat{M_s}$ is a Fuchs-44-group.

PROOF. By the comment preceding the theorem and Lemma 2 of [3], R(O(T)) has no c.c. max-filter. (Ref. [3] and [4]) Hence the conclusions follow Theorem 1 of [4], Corollary 3 of [5] and the fact that \widehat{M}_S is isomorphic to \widehat{G} where G is an abelian group in $V^{(R(O(T)))}$.

In the following we say that an abelian group is a summand of A, if it is

isomorphic to a summand of A.

COROLLARY 2. Let G_{α} be a slender group for each $\alpha \in I$. Under the same conditions of Theorem 5, if $\prod_{\alpha \in I} G_{\alpha}$ is a summand of M_s/S , then it is a summand of $H^1(T, S)$.

PROOF. Let $0 \to \widehat{S} \to \widehat{M_S} \xrightarrow{\hat{\pi}} \widehat{M_S/S}$ be the derived exact sequence. Let $\sigma_{G_{\alpha}} : \widehat{M_S/S} \to G_{\alpha}$ be the projection for each $\alpha \in I$, then $\sigma_{G_{\alpha}} \cdot \hat{\pi} = 0$ by Theorem 5. Hence, $\prod_{\alpha \in I} G_{\alpha}$ is a summand of $H^1(T, S)$.

COROLLARY 3. Under the same condition of Theorem 1, a free abelian group is a summand of M_s/S iff it is a summand of $H^1(T, S)$.

PROOF. If a free abelian group is a summand of a quotient group of an abelian group G, then it is a summand of G. The conclusion follows from this and Corollary 2, since a free abelian group is slender.

COROLLARY 4. Under the same condition of Theorem 5, let $\bigoplus_{i \in I} G_i$ be a summand of M_S/S with the following:

- (1) G_i is reduced for each $i \in I$;
- (2) For each m there exists a finite subset F of I such that every non-zero element of G_i has the order greater than m for each $i \in F$.

Then, there exists a finite subset F^* of I such that $\bigoplus_{i\in I-F^*} G_i$ is a summand of $H^1(T, S)$.

PROOF. By Corollary 3 of [5], $\widehat{M_S}$ is a Fuchs-44-group. Hence, $\widehat{\pi}(\widehat{M_S})$ is also a Fuchs-44-group. Let $\sigma: \widehat{M_S/S} \to \bigoplus_{i \in I} G_i$ be the projection. Then, there exist m and a finite subset F' of I such that $m\sigma \cdot \widehat{\pi}(\widehat{M_S}) \subseteq \bigoplus_{i \in F'} G_i$. By the condition of the theorem, there exists a finite subset F^* of I such that $\sigma \cdot \widehat{\pi}(\widehat{M_S}) \subseteq \bigoplus_{i \in F^*} G_i$. Hence, $\bigoplus_{i \in I - F^*} G_i$ is a summand of $H^1(T, S)$.

For the next corollary we must know the structure of the quotient sheaf M_S/S . We use higher-order Ω -sets [8]. For the intuitionistic argument, we define "torsion free" and "pure" explicitly. A group G is torsion free if nx=0 implies n=0 or x=0 for any $n \in N$ and $x \in G$. A subgroup H of G is pure if $nx \in H$ implies $nx \in nH$.

LEMMA 11. For an abelian sheaf A over a cHa Ω , A(p) is torsion free for each $p \in \Omega$, iff [A is torsion free] = 1.

PROOF. Suppose that [A] is torsion free $]\neq 1$, then there exist x and $n\neq 0$ such that $[nx=0] \land [x \in A] \leq [x=0]$ does not hold. Let $p=[nx=0] \land [x \in A]$, then A(p) is not torsion free. The other implication is obvious.

LEMMA 12. Let S be a constant sheaf A_T . Then, $[S is a pure subgroup of <math>M_S]=1$.

PROOF. By Theorem 1, $[S ext{ is a subgroup of } M_S]=1$. Let $h=[n(s)_1=i_S(t)]$ for $n \in N$, a maximal section s of S and an h-section t of S. Then, $Es \wedge h \leq [ni_S(s)=i_S(t)]=[ns=t]$. Since S is a constant sheaf, there exists an h-section s' of S such that $h\leq [ns'=t]$. Hence, the conclusion holds.

COROLLARY 5. In addition to the condition of Theorem 5, let S be a constant sheaf A_T , where A is a torsion-free abelian group. If $D \bigoplus \bigoplus_{i \in I} G_i$ is a direct decomposition of $\widehat{M_S/S}$, where D is divisible and $\bigoplus_{i \in I} G_i$ is reduced, then there exists a finite subset F of I such that $\bigoplus_{i \in I-F} G_i$ is a summand of $H^1(T, S)$.

PROOF. By virtue of Lemma 11, $\llbracket M_S$ is torsion free $\rrbracket = 1$. Since the proof of the fact that the quotient group of a torsion-free abelian group by a pure subgroup is torsion free can be done intuitionistically, $\llbracket M_S/S$ is torsion free $\rrbracket = 1$ by Lemma 12. Hence, $\widehat{M_S/S}$ is torsion-free by Lemma 11. By Corollary 3 of $\llbracket 5 \rrbracket$, $\widehat{M_S}$ is a Fuchs-44-group and so $\widehat{\pi}(\widehat{M_S})$ is also a Fuchs-44-group. Hence, there exists an integer m > 0 and a finite subset F of I such that $m\widehat{\pi}(\widehat{M_S}) \subseteq D \bigoplus \bigoplus_{i \in F} G_i$. Since $\widehat{M_S/S}$ is torsion free, $\widehat{\pi}(\widehat{M_S}) \subseteq D \bigoplus \bigoplus_{i \in F} G_i$ and hence $\bigoplus_{i \in I-F} G_i$ is a summand of $H^1(T, S)$.

REMARK. Here we contrast the minimal flabby extension M_s with an injective extension I_s and the canonical flabby extension F_s of a simple sheaf S. Let $D \oplus R$ be the direct decomposition of $\widehat{I_s/S}$ such that D is the maximal divisible subgroup and R is reduced. Since $\widehat{I_s}$ is divisible, R becomes a summand of $H^1(T, S)$. Hence Theorem 5, Corollaries 2, 3, 4 and 5 hold for an injective extension I_s , though the minimal flabby extension is seldom injective.

Suppose that T is a non-trivial connected Hausdorff space which is acyclic for a constant co-efficient sheaf and of cardinality less than M_c , e.g., the unit interval. Let $0 \rightarrow S \rightarrow F_S \xrightarrow{\pi'} F_S / S \rightarrow 0$.

(1) Let S be the constant sheaf Z_T . Then, $\widehat{F_s} \simeq Z^T$ and \widehat{S} corresponds to the subgroup of Z^T consisting of constant functions. Hence, $\widehat{\pi}'(\widehat{F_s}) \simeq Z^T$. Since

 $H^{1}(T, \mathbb{Z}_{T}) \simeq 0$, $\widetilde{F_{s}/S}$ must be isomorphic to \mathbb{Z}^{T} . Compare this fact with Corollaries 2 and 3.

(2) Let S be the constant sheaf A_T where $A \simeq \bigoplus_{n \in N} R_n$ for some non-trivial torsion free reduced groups R_n $(n \in N)$. Then, F_S/S is isomorphic to A^T $(\simeq A^T \bigoplus_{n \in N} R_n)$ as above.

Acknowledgement

The author would like to express his deep gratitude to Prof. Y. Kodama. Without his initial indication the series of this study ([3]-[7]) would not exist. He would also like to thank K. Sakai, K. Tamano, H. Kato, other Topologists and Algebraists in Institute of Mathematics of Tsukuba University.

References

- [1] Bergman, G.M., Boolean rings of projection maps, J. London Math. Soc. 4 (1972), 593-598.
- [2] Dugas, M. and Zimmerman-Huisgen, B., Iterated direct sums and products of modules, Lecture Notes in Math., Springer-Verlag, 874 (1981), 179-193.
- [3] Eda, K., On a Boolean power of a torsion-free abelian group, J. Algebra, to appear.
- [4] Eda, K., A Boolean power and a direct product of abelian groups, Tsukuba J. Math.
 6 (1982), 187-193.
- [5] Eda, K., Almost-slender groups and Fuchs-44-groups, Comment. Math. Univ. Sancti Pauli, to appear.
- [6] Eda, K., On Z-kernel groups, Archiv Math., to appear.
- [7] Eda, K., A generalized direct product of abelian groups and a measurable cardininal, to appear.
- [8] Fourman, MP. and Scott, D.S., Sheaves and Logic, Lecture Notes in Math. Springer-Verlag, 753 (1981), 302-401.
- [9] Fuchs, L., Infinite abelian groups, Vol. II, Academic Press, New York, 1973.
- [10] Ivanov, A.V., A problem on abelian groups, Math. USSR, Sbornik, 34 (1978), 461-474.
- [11] Jech, T., Set Theory, Academic Press, New York, 1978.
- [12] Reed, G.A., Almost free abelian groups, Lecture Notes, Tulane University, 1966-67.
- [13] Solovay, R. M., and Tennembaum, S., Iterated Cohen extensions and Souslin's Problem, Ann. Math., 94 (1971), 201-245.
- [14] Swan, R.G., The Theory of Sheaves, The University of Chicago Press, Chicago, 1968.
- [15] Tennison, B. R., Sheaf Theory, London Mathematical Society Lecture Notes Series 20, Cambridge University Press, London, 1975.

Institute of Mathematics University of Tsukuba Sakuramura, Ibaraki, 305 Japan

168