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Abstract. This paper is concerned with the final value problem for a system of semi-

linear wave equations. The main issue is to solve the problem when the nonlinearity

is of a long-range type. By assuming that the solution is spherically symmetric, we

shall show global solvability of the final value problem around a suitable final state,

and hence, the generalized wave operator and long range-scattering operator can be

constructed.
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0. Introduction

In this paper we consider the final value problem for the following system
of semilinear wave equations:

{
∂2

t u−∆u = |∂tv|p in R3 × R,

∂2
t v −∆v = |∂tu|q in R3 × R,

(0.1)

where 1 < p ≤ q, ∆ =
∑3

j=1 ∂2
j , ∂j = ∂/∂xj , and ∂t = ∂/∂t.

First of all, we shall recall known results for single wave equations with
the corresponding nonlinearity:

∂2
t u−∆u = |∂tu|p in R3 × R, (0.2)

where p > 1. If 1 < p ≤ 2, then the classical solution of the initial value
problem for (0.2) generically blows up in finite time no matter how small
the initial data are (see [6]). On the other hand, if p > 2, then there exists
globally in time a mild solution of the problem for small initial data (see
for instance, [5], [11]). Moreover, the final value problem for (0.2) has been
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treated in [5]. Namely, for a given final state which is a solution of the
homogeneous wave equation:

∂2
t u+ −∆u+ = 0 in R3 × R, (0.3)

one can find a unique solution to (0.2) satifying

‖u(t)− u+(t)‖E → 0 as t →∞,

provided ‖u+(t)‖E is small enough. Here ‖w(t)‖E stands for the energy
norm of w(x, t), i.e.,

‖w(t)‖2E =
1
2

∫

R3
(|∂tw(x, t)|2 + |∂xw(x, t)|2)dx.

As a consequence, the wave operator W+ is defined by

(u+, ∂tu
+)(x, 0) 7−→ (u, ∂tu)(x, 0).

Solving (0.2) in (−∞, 0] × R3 around a free solution, we would define W−,
similarly. Then the scattering operator S = (W+)−1W− would be con-
structed in a neighborhood of the origin in the energy space.

We shall now return to the semilinear system (0.1). It was shown by
Deng [1] that if q(p− 1) ≤ 2, then the classical solution of the initial value
problem for (0.1) blows up even for the small initial data in general. Thus
we assume in what follows that

q(p− 1) > 2. (0.4)

Then, it was shown by Kubo, Kubota, and Sunagawa [7] that there exists
globally a radially symmetric solution of the problem for small initial data,
by assuming (0.4). Moreover, the global solution tends to a solution of the
following system of homogeneous wave equations:

∂2
t w0 −∆w0 = 0, ∂2

t v0 −∆v0 = 0 in R3 × R, (0.5)

if p > 2. On the other hand, when 1 < p ≤ 2, the global solution does not
approach any solution to (0.5) of finite energy, but tends to a solution of the
following type of system with a suitably chosen F (x, t):
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∂2
t w −∆w = F (x, t), ∂2

t v −∆v = 0 in R3 × R

in the sense of the energy (see also Kubo and Takaki [8] where the case of
p = 2 was handled without assuming the radial symmetry). Hence, we may
call the nonlinearity in (0.1) a long-range type when 1 < p ≤ 2.

In order to formulate the final value problem for (0.1), we need to specify
the final state to which the solution of (0.1) tends as t → ±∞. In view of
the result about the single wave equation (0.2), a natural choice of the final
state may be the solution to (0.5). However, we meet difficulties to solve
(0.1) around it for 1 < p ≤ 2, because the nonlinearity then becomes a long-
range type. Therefore, we need to choose the final state, by making use of
the nonlinear structure. Moreover, when 1 < p < 2, a function x 7→ |x|p
is of class C1, so that the loss of derivatives would not be recovered. For
this reason, we treat only radially symmetric solutions to the system (0.1)
throughout this paper. If we write

u(x, t) = u1(|x|, t), v(x, t) = u2(|x|, t), (0.6)

then (0.1) becomes to

{
∂2

t u1 −
(
∂2

r + 2
r ∂r

)
u1 = |∂tu2|p in r > 0, t ∈ R,

∂2
t u2 −

(
∂2

r + 2
r ∂r

)
u2 = |∂tu1|q in r > 0, t ∈ R.

(0.7)

Now, the final state is chosen as in the following way. When p > 2, we
simply take the free solution (w0, v0) as the final state (see Theorem 2.2
below). When 1 < p ≤ 2, we first assume (p − 1)(q(p − 1) − 1) > 1. Then
we may choose the first iterate (w1, v0) of (w0, v0) as the final state, where
w1(r, t) is a solution of

∂2
t w1 −

(
∂2

r +
2
r
∂r

)
w1 = |∂tv0|p for r > 0, t ∈ R (0.8)

(see Theorem 2.4 below). If we drop the additional assumption, we need to
iterate (w0, v0) several times so as to gain the integrability of the right hand
member (see (2.30), (2.31) below). Then one can solve (0.7) around the `-th
iterate in a suitable metric space given by (4.36) below, provided

(p− 1)2(q − 1) > 1 (0.9)
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(see Theorem 2.5 below). We remark that this is a stronger condition than
(0.4) and that it is an open question whether (0.9) can be removed or not.
Since the initial value problem for (0.7) can be solved in the same function
space used for the final value problem (see Theorem 2.6 below), we are able
to construct a long-range scattering operator for (0.7).

We observe that this kind of modification goes back to the seminal work
of Ozawa [9] for the nonlinear Schrödinger equation (see also [2], [3], [4], [10],
for instance). To our knowledge, this paper provides the first result on the
wave equation in this direction.

This paper is organized as follows. In the next section we collect no-
tation. In the section 2 we present our main results. The section 3 is a
summary of [7, Section 4]. We refine Theorem 6 and Theorem 7 in [7] so
that one can take a parameter γ to be positive. The section 4 is devoted to
proving the main theorems.

1. Notation

First we introduce a class of initial data:

Yν(ε) =
{

~f = (f, g) ∈ C1(R)× C(R); ~f(−r) = ~f(r) (r ∈ R),

r ~f(r) ∈ C2(R)× C1(R) and sup
r>0

(1 + r)ν
∣∣∣∣∣∣~f(r)

∣∣∣∣∣∣ ≤ ε
}

,

where ν ∈ R, ε > 0 and

∣∣∣∣∣∣~f(r)
∣∣∣∣∣∣ = |f(r)|+ (1 + r)(|f ′(r)|+ |g(r)|) + r(|f ′′(r)|+ |g′(r)|).

Next we define several function spaces and norms. Let s = 1 or s = 2.
First of all, we introduce a basic space of our argument:

Xs =
{
u(r, t) ∈ Cs−1(R× [0,∞)); ru(r, t) ∈ Cs(R× [0,∞)),

u(−r, t) = u(r, t) for (r, t) ∈ R× [0,∞)
}
.

For r > 0 and t ≥ 0 we put

[u(r, t)]2 = |u(r, t)|+ (1 + r)
∑

|α|=1

|∂αu(r, t)|+ r
∑

|α|=2

|∂αu(r, t)|
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if u ∈ X2, and

[u(r, t)]1 = |u(r, t)|+ r
∑

|α|=1

|∂αu(r, t)|

if u ∈ X1, where ∂ = (∂r, ∂t) and α is a multi-index. For ν ∈ R, we define
Banach spaces:

Xs(ν) = {u(r, t) ∈ Xs; ‖u‖Xs(ν) < ∞},
Zs(ν) = {u(r, t) ∈ Xs; ‖u‖Zs(ν) < ∞},

where we have set

‖u‖Xs(ν) = sup
r>0, t≥0

[u(r, t)]s (1 + |r − t|)ν , (1.1)

‖u‖Zs(ν) = sup
r>0, t≥0

[u(r, t)]s (1 + r + t)ν−1(1 + |r − t|). (1.2)

Notice that Xs(ν) ⊂ Zs(ν) if ν ≤ 1, while Zs(ν) ⊂ Xs(ν) if ν ≥ 1. In
the application, we shall use the wider space to which a component of the
solution of (0.7) belongs. For example, when 1 < p < 2 and q(p − 1) > 2,
we look for a solution (u1, u2) of (0.7) in Z2(p− 1)×X2(q(p− 1)− 1).

For notational symplicity, we shall denote ‖w(| · |, t)‖E by ‖w(t)‖E for
a function w(r, t).

2. Main Results

2.1. Existence of wave operators
When p > 2, the evolution obeying (0.7) is well characterized by the

homogeneous wave equation. For this, we first recall known facts about the
initial value problem for the homogeneous wave equation (see e.g. [7]):

utt −
(

urr +
2
r
ur

)
= 0 in (0,∞)× (0,∞), (2.1)

(u, ∂tu)(r, 0) = ~f(r) for r > 0. (2.2)

The solution of this problem is expressed by
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K[~f ](r, t) =
1
2r

{ ∫ r+t

r−t

λg(λ)dλ +
∂

∂t

∫ r+t

r−t

λf(λ)dλ

}
. (2.3)

Moreover, we have

Proposition 2.1 Let ε > 0, ν > 0. If ~f ∈ Yν(ε), then K[~f ] ∈ X2(ν) and

∥∥K[~f ]
∥∥

X2(ν)
≤ Cε (2.4)

holds, where C is a constant depending only on ν.

We set

κ1 = p− 1, κ2 = q − 1 (2.5)

for p > 2. Our main result in this subsection is as follows.

Theorem 2.2 (Existence of a wave operator) Let 2 < p ≤ q. Then
there is a positive number ε0 (depending only on p and q) such that for
any ε ∈ (0, ε0], one can define W+ = (W (1)

+ ,W
(2)
+ ) from Yκ1(ε) × Yκ2(ε) to

Yκ1(2ε)× Yκ2(2ε) by

W
(j)
+ [~f1, ~f2](r) = (uj , ∂tuj)(r, 0) (j = 1, 2), (2.6)

where (u1, u2) ∈ X2(κ1)×X2(κ2) is a unique solution of (0.7) satisfying

∥∥u1(t)−K[~f1](t)
∥∥

E
+

∥∥u2(t)−K[~f2](t)
∥∥

E
→ 0 as t →∞ (2.7)

for each (~f1, ~f2) ∈ Yκ1(ε)× Yκ2(ε). Moreover, we have for r > 0

∣∣∣∣∣∣W (1)
+ [~f1, ~f2](r)− ~f1(r)

∣∣∣∣∣∣(1 + r)κ1 ≤ Cεp, (2.8)
∣∣∣∣∣∣W (2)

+ [~f1, ~f2](r)− ~f2(r)
∣∣∣∣∣∣(1 + r)κ2 ≤ Cεq, (2.9)

provided ~fj ∈ Yκj
(ε) (j = 1, 2) and 0 < ε ≤ ε0, where C is a constant

depending only on p and q.

Our next step is to construct the inverse of W+, based on the existence
result given in Theorem 1 of [7] about the initial value problem for (0.7)
with
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(u1, ∂tu1)(r, 0) = ~ϕ1(r), (u2, ∂tu2)(r, 0) = ~ϕ2(r) for r > 0, (2.10)

where (~ϕ1, ~ϕ2) ∈ Yκ1(ε) × Yκ2(ε). Let (u1, u2) ∈ X2(κ1) × X2(κ2) be the
unique solution of the problem satisfying

‖u1‖X2(κ1) + ‖u2‖X2(κ2) ≤ 2C0ε (2.11)

with C0 the constant in (2.4). Note that (u1, u2) satisfies the following
system of integral equations:

u1 = K[~ϕ1] + L(|∂tu2|p), u2 = K[~ϕ2] + L(|∂tu1|q). (2.12)

Using the solution (u1, u2), we define

w = u1 −R(|∂tu2|p), v = u2 −R(|∂tu1|q). (2.13)

Here, L and R are integral operators associated with the inhomogeneous
wave equation whose definition will be given in (3.3) and (3.8) below, re-
spectively. If we set

~f1(r) = (w(r, 0), ∂tw(r, 0)), ~f2(r) = (v(r, 0), ∂tv(r, 0)) (2.14)

for r > 0, then we see that

w = K[~f1], v = K[~f2]. (2.15)

Now we state the result for the inverse of W+.

Theorem 2.3 (Existence of the inverse of a wave operator) Let 2 < p ≤ q.
Then there exists a positive number ε0 (depending only on p and q) such
that for any ε ∈ (0, ε0], one can define (W+)−1 by (~ϕ1, ~ϕ2) ∈ Yκ1(ε) ×
Yκ2(ε) 7−→ (~f1, ~f2) ∈ Yκ1(2ε) × Yκ2(2ε) so that (2.7) is valid. Here (u1, u2)
is the solution of (2.12) satisfying (2.11), and (~f1, ~f2) is defined by (2.14)
for (~ϕ1, ~ϕ2) ∈ Yκ1(ε)× Yκ2(ε).

Moreover, we have for r > 0

∣∣∣∣∣∣~f1(r)− ~ϕ1(r)
∣∣∣∣∣∣(1 + r)κ1 ≤ Cεp, (2.16)

∣∣∣∣∣∣~f2(r)− ~ϕ2(r)
∣∣∣∣∣∣(1 + r)κ2 ≤ Cεq, (2.17)
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provided ~ϕj ∈ Yκj
(ε) (j = 1, 2) and 0 < ε ≤ ε0, where C is a constant

depending only on p and q.

Remark Now we are in a position to conclude the existence of a scattering
operator for (0.1). As in Theorem 2.2, there exists a positive number ε1 such
that for ε ∈ (0, ε1] one can define W− = (W (1)

− ,W
(2)
− ) : Yκ1(ε)× Yκ2(ε) −→

Yκ1(2ε)× Yκ2(2ε) by

W
(j)
− [~f1, ~f2](r) = (uj , ∂tuj)(r, 0) (j = 1, 2),

where (u1, u2) ∈ X2(κ1) × X2(κ2) is a unique solution of (0.7) satis-
fying (2.7) with t → ∞ replaced by t → −∞. Therefore, if we put
ε2 = min{ε1, ε0/2} with ε0 being from Theorem 2.3, then we are able to
define S = (W+)−1W− : Yκ1(ε2) × Yκ2(ε2) −→ Yκ1(2ε0) × Yκ2(2ε0), which
is called a scattering operator, thanks to Theorem 2.3.

2.2. Existence of generalized wave operators
In this subsection we consider the case where 1 < p ≤ 2. We set

κ1 = p− 1, κ2 = q(p− 1)− 1 (2.18)

for 1 < p < 2. While, when p = 2, we take κ1 and κ2 in such a way that

0 < κ1 < 1 < κ2 < q − 1, qκ1 = κ2 + 1. (2.19)

For instance, κ1 = (q +2)/(2q), κ2 = q/2 satisfy the above conditions. Note
that 0 < κ1 < 1 and κ2 > 1 in both cases, by the assumption (0.4).

First of all, we present a result for a special case of Theorem 2.5 below,
because it would make easy to recognize the statement for the general case.
Namely, we assume that 1 < p < 2 and the following stronger condition on
p, q than (0.9):

κ1κ2 = (p− 1)(q(p− 1)− 1) > 1. (2.20)

In order to have an analogue to Theorem 2.2, we define

K1[~f1, ~f2] = K[~f1] + L
(|∂tK[~f2]|p

)

(for the definition of L, see (3.3) below), and replace the final state
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(K[~f1],K[~f2]) by (w1, v0) = (K1[~f1, ~f2],K[~f2]) ∈ Z2(κ1) × X2(κ2) which
is a solution of the initial value problem for

{
∂2

t w1 −
(
∂2

r + 2
r ∂r

)
w1 = |∂tv0|p for r > 0, t ∈ R,

∂2
t v0 −

(
∂2

r + 2
r ∂r

)
v0 = 0 for r > 0, t ∈ R

(2.21)

with

(w1, ∂tw1)(r, 0) = ~f1(r), (v0, ∂tv0)(r, 0) = ~f2(r) for r > 0, (2.22)

where (~f1, ~f2) ∈ Yκ1(ε)× Yκ2(ε). Then, we have the following.

Theorem 2.4 (Existence of a generalized wave operator; a special case)
Let 1 < p ≤ q. Suppose that 1 < p < 2 and (2.20) holds. Then there exists a
positive number ε0 (depending only on p and q) such that for any ε ∈ (0, ε0],
one can define W̃+ = (W̃ (1)

+ , W̃
(2)
+ ) from Yκ1(ε)×Yκ2(ε) to Yκ1(2ε)×Yκ2(2ε)

by

W̃
(j)
+ [~f1, ~f2](r) = (uj , ∂tuj)(r, 0) (j = 1, 2), (2.23)

where (u1, u2) ∈ Z2(κ1)×X2(κ2) is a unique solution of (0.7) satisfying

∥∥u1(t)−K1[~f1, ~f2](t)
∥∥

E
+

∥∥u2(t)−K[~f2](t)
∥∥

E
→ 0 as t →∞ (2.24)

for each (~f1, ~f2) ∈ Yκ1(ε)× Yκ2(ε). Moreover, we have for r > 0

∣∣∣∣∣∣W̃ (1)
+ [~f1, ~f2](r)− ~f1(r)

∣∣∣∣∣∣(1 + r)κ1 ≤ Cε1+(p−1)q(1 + r)−κ1(κ2−1), (2.25)

and
∣∣∣∣∣∣W̃ (2)

+ [~f1, ~f2](r)− ~f2(r)
∣∣∣∣∣∣(1 + r)κ2 ≤ Cεq, (2.26)

provided ~fj ∈ Yκj
(ε) (j = 1, 2) and 0 < ε ≤ ε0, where C is a constant

depending only on p and q.

Remark When p = 2, we have only to assume q > 2, instead of (2.20). In
fact, if we replace the right hand side of (2.25) by Cε1+q(1+r)−(κ2−κ1), then
the conclusions of Theorem 2.4 remain valid (for the needed modification of
the proof, see the remark after the proof of Theorem 2.5).
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Next we relax the condition (2.20) to

κ1κ2 > 1 + κ2
1 − κ1, (2.27)

which is equivalent to (0.9), while we shall keep 1 < p < 2. In the previous
case, it suffices to iterate just once for getting w1 = K1[~f1, ~f2] as a final
state for u1. However, in order to treat the general case, we need to iterate
several times to obtain a suitable final state for u1.

First we define a sequence {aj}∞j=0 by a0 = 1 and

aj+1 = κ1(aj − 1) + κ2 for j ≥ 0, (2.28)

explicitly we have

aj =
κ2 − κ1

1− κ1
− (κ2 − 1)(κ1)j

1− κ1
for j ≥ 0.

Observe that {aj}∞j=0 is strictly increasing, aj < (κ2−κ1)/(1−κ1) for j ≥ 1,
and limj→∞ aj = (κ2 − κ1)/(1− κ1). Since p < 2 and (2.27) yield

a0 = 1 <
1
κ1

<
κ2 − κ1

1− κ1
= lim

j→∞
aj ,

there exists a nonnegative integer ` such that

a`+1 >
1
κ1

, a` ≤ 1
κ1

. (2.29)

Next we introduce a sequence {(wj , vj)}`+1
j=0 as follows: For (~f1, ~f2) ∈

Yκ1(ε)× Yκ2(ε) we set

w1 = w0 + L(|∂tv0|p), w0 = K[~f1],

v1 = v0 + R(|∂tw1|q), v0 = K[~f2].

Moreover, we define

wj+1 = wj + L(|∂tvj |p − |∂tvj−1|p)), (2.30)

vj+1 = vj + R(|∂twj+1|q − |∂twj |q) (2.31)
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for 1 ≤ j ≤ `. Here L and R are integral operators given by (3.3) and
(3.8), respectively. Since wj is determined by ~f1 and ~f2, we shall write
wj = Kj [~f1, ~f2]. Notice that for 1 ≤ j ≤ ` + 1, we have

{
∂2

t wj −
(
∂2

r + 2
r ∂r

)
wj = |∂tvj−1|p for r > 0, t ∈ R,

∂2
t vj −

(
∂2

r + 2
r ∂r

)
vj = |∂twj |q for r > 0, t ∈ R

(2.32)

and (wj , ∂twj)(r, 0) = ~f1(r) for r > 0.
The following theorem shows that K`+1[~f1, ~f2] is a final state for u1.

Theorem 2.5 (Existence of a generalized wave operator) Let 1 < p ≤ q.
Suppose that 1 < p < 2 and (2.27). Assume κ1a` < 1 in addition to (2.29).
Then there exists a positive number ε0 (depending only on p and q) such
that for ε ∈ (0, ε0], one can define W̃+ = (W̃ (1)

+ , W̃
(2)
+ ) from Yκ1(ε)× Yκ2(ε)

to Yκ1(2ε)×Yκ2(2ε) by (2.23), where (u1, u2) ∈ Z2(κ1)×X2(κ2) is a unique
solution of (0.7) satisfying

∥∥u1(t)−K`+1[~f1, ~f2](t)
∥∥

E
+

∥∥u2(t)−K[~f2](t)
∥∥

E
→ 0 as t →∞ (2.33)

for each (~f1, ~f2) ∈ Yκ1(ε)×Yκ2(ε). Moreover, for r > 0, we have (2.26) and

∣∣∣∣∣∣W̃ (1)
+ [~f1, ~f2](r)− ~f1(r)

∣∣∣∣∣∣(1 + r)κ1 ≤ CεB`(1 + r)−κ1(a`+1−1), (2.34)

provided ~fj ∈ Yκj
(ε) (j = 1, 2) and 0 < ε ≤ ε0, where C is a constant

depending only on p and q. Here we put

B` = 1 + (p− 1)(q + `(p + q − 2)).

Remark If 1 < p < 2 and (2.20) holds, then (2.27) is valid and κ1a` < 1
is satisfied for ` = 0. Therefore, Theorem 2.4 follows from Theorem 2.5.

On the other hand, suppose κ1a` = 1 (notice that we have ` ≥ 1 in
this case). Then we need to modify the statement of Theorem 2.5 a little.
Letting δ be a number satisfying

0 < δ < a` − a`−1, κ2
1δ < κ1a`+1 − 1, (2.35)

we define
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a′` = a` − δ, and a′`+1 = κ1(a′` − 1) + κ2 (= a`+1 − κ1δ). (2.36)

Observing that

a`−1 < a′` < a′`+1, κ1a
′
` < 1, and κ1a

′
`+1 > 1, (2.37)

we can show the statement of the theorem with a`+1 in (2.34) replaced by
a′`+1.

Our next step is to construct the inverse of W̃+, based on the existence
result in Theorem 1 of [7] for the initial value problem (0.7) and (2.10). Let
(u1, u2) ∈ Z2(κ1)×X2(κ2) be the unique solution of (2.12) satisfying

‖u1‖Z2(κ1) + ‖u2‖X2(κ2) ≤ 2C0ε (2.38)

with C0 the constant in (2.4). Using the solution, we set w∗0 = K[~ϕ1],
v∗0 = u2 −R(|∂tu1|q). Moreover, when ` ≥ 1, we define for 1 ≤ j ≤ `

w∗j = w∗0 + L
(|∂tv

∗
j−1|p

)
, (2.39)

v∗j = v∗0 + R
(|∂tw

∗
j |q

)
. (2.40)

We further define

w∗ = u1 −R(|∂tu2|p − |∂tv
∗
` |p), (2.41)

which we wish to regard as a final state for u1. If we set

~f1(r) = (w∗(r, 0), ∂tw
∗(r, 0)) for r > 0, (2.42)

~f2(r) = (v∗0(r, 0), ∂tv
∗
0(r, 0)) for r > 0, (2.43)

then we see that v∗0 and w∗ are represented as

w∗ = K[~f1] + L(|∂tv
∗
` |p), v∗0 = K[~f2]. (2.44)

Now we state the result for the inverse of W̃+.

Theorem 2.6 (Existence of the inverse of a generalized wave operator)
Let the assumptions of Theorem 2.5 be fulfilled. Then there exists a positive
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number ε0 (depending only on p and q) such that, for any ε ∈ (0, ε0], one can
define (W̃+)−1 by (~ϕ1, ~ϕ2) ∈ Yκ1(ε)×Yκ2(ε) 7−→ (~f1, ~f2) ∈ Yκ1(2ε)×Yκ2(2ε)
so that

∥∥u1(t)− (K[~f1] + L(|∂tv
∗
` |p))(t)

∥∥
E
→ 0 as t →∞, (2.45)

∥∥u2(t)−K[~f2](t)
∥∥

E
→ 0 as t →∞ (2.46)

hold. Here (u1, u2) is the solution of (2.12) satisfying (2.38), (~f1, ~f2) is
defined by (2.42), (2.43), and v∗` is given by (2.40) for (~ϕ1, ~ϕ2) ∈ Yκ1(ε) ×
Yκ2(ε).

Moreover, for r > 0, we have (2.17) and

∣∣∣∣∣∣~f1(r)− ~ϕ1(r)
∣∣∣∣∣∣(1 + r)κ1 ≤ CεB`(1 + r)−κ1(a`+1−1), (2.47)

provided ~ϕj ∈ Yκj
(ε) (j = 1, 2) and 0 < ε ≤ ε0, where C is a constant

depending only on p and q.

Remark In view of Theorems 2.5 and 2.6, we find that a long-range
scattering operator is defined by S̃ = (W̃+)−1W̃−, similarly to the remark
given in the below of Theorem 2.3.

3. Inhomogeneous wave equations

In this section we give a refinement of Theorems 6 and 7 from [7], by
assuming a = c = 1.

First we consider the following initial value problem:

utt −
(

urr +
2
r
ur

)
= F (r, t) in (0,∞)× (0,∞), (3.1)

u(r, 0) = (∂tu)(r, 0) = 0 for r > 0. (3.2)

The solution of this problem is given by

L(F )(r, t) =
1
2r

∫ t

0

ds

∫ r+(t−s)

r−(t−s)

λF (λ, s)dλ. (3.3)

In order to study the qualitative property of L(F ), we set
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M0(F ) = sup
r>0, t≥0

|F (r, t)|rα(1 + r)β(1 + r + t)γ(1 + |r − t|)δ, (3.4)

M1(F ) = M0(F ) + sup
r>0, t≥0

|∂rF (r, t)|rα+1(1+r)β−1(1+ r+t)γ(1+|r−t|)δ.

(3.5)

for α, β, γ, and δ ∈ R. Then we have

Proposition 3.1 Let F ∈ X1. Then we have L(F ) ∈ X2. Moreover, if
Ms−1(F ) with s = 1 or s = 2 is finite for α < 3 − s, β ∈ R, γ ≥ 0, and
δ > 1, then there exists a constant C depending only on α, β, γ, and δ such
that

‖L(F )‖Xs(ν) ≤ CMs−1(F ) if α + β + γ > 2, (3.6)

‖L(F )‖Zs(α+β+γ−1) ≤ CMs−1(F ) if 1 < α + β + γ < 2, (3.7)

where ν = min(α + β + γ − 1, δ).

Proof. Note that the statement follows from the case γ = 0, since (1+λ+
s)−γ ≤ (1 + λ)−γ when γ > 0. Therefore, applying Theorem 6 in [7] where
the case γ = 0 was shown, we conclude the proof. ¤

Next we study an integral operator

R(F )(r, t) =
1
2r

∫ ∞

t

ds

∫ (s−t)+r

(s−t)−r

λF (λ, s)dλ, (3.8)

related to the final value problem. Indeed, if F ∈ X1 and

sup
r≥1, t≥0

|F (r, t)|(1 + r)β(1 + r + t)γ(1 + |r − t|)δ < ∞ (3.9)

for β + γ > 2, δ ∈ R, then we have R(F ) ∈ X1 and it satisfies

(∂2
t −∆)R(F )(|x|, t) = F (|x|, t) (3.10)

in the distributional sense on R3× (0,∞). The following result will play an
essential role in this paper.

Proposition 3.2 If F ∈ X1 and Ms−1(F ) with s = 1 or s = 2 is finite
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for α < 3−s, β, γ ∈ R, and δ > 1 satisfying α+β+γ > 2, then R(F ) ∈ Xs

and there exists a constant C depending only on α, β, γ, and δ such that

‖R(F )‖Zs(µ+γ) ≤ CMs−1(F ), (3.11)

where µ = min(α + β − 1, δ).

Proof. Since the statement for γ ≤ 0 was shown in Theorem 7 in [7], it
suffices to prove it for γ > 0. The argument in [7] imply that R(F ) ∈ Xs is
valid also for γ > 0. Hence it remains to show (3.11).

It follows from (3.8) that

R(F )(r, t) =
1
2r

∫ ∞

t

ds

∫ (s−t)+r

|(s−t)−r|
λF (λ, s)dλ,

since λF (λ, s) is odd in λ. Observe that if λ ≥ |(s− t)− r| and s ≥ t, then
we have λ + s ≥ r + t, so that (1 + λ + s)−γ ≤ (1 + r + t)−γ when γ > 0.
Therefore, if α + β > 2, one can reduce the proof to the case γ = 0 which
was already shown in [7].

Suppose, on the contrary, that α + β ≤ 2. We take a positive number
ρ > 0 satisfying

2− (α + β) < ρ ≤ δ + 1− (α + β), ρ < γ (3.12)

and set β′ = β + ρ, γ′ = γ − ρ. Then we have α + β′ > 2, γ′ > 0 and δ > 1.
Applying the result in the preceding case with β and γ replaced by β′ and γ′

respectively, we obtain the needed conclusion, because min(α + β′ − 1, δ) =
min(α+β− 1+ ρ, δ) = α+β− 1+ ρ and µ = min(α+β− 1, δ) = α+β− 1.
This completes the proof. ¤

4. Proof of Main Results

4.1. Proof of Theorems 2.2 and 2.3
First we prove Theorem 2.2. Suppose p > 2. Let (~f1, ~f2) ∈ Yκ1(ε) ×

Yκ2(ε) with 0 < ε ≤ 1, and set w0 = K[~f1], v0 = K[~f2]. Then it follows
from (2.4) that

‖w0‖X2(κ1) + ‖v0‖X2(κ2) ≤ Cε. (4.1)
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Recall that κ1 = p− 1 > 1 and κ2 = q − 1 > 1.
We shall solve the following system of integral equations:

u1 = w0 + R(|∂tu2|p), u2 = v0 + R(|∂tu1|q), (4.2)

where R is defined by (3.8). To this end, we define T (u1, u2) = (T (1)(u2),
T (2)(u1)) by

T (1)(u2) = w0 + R(|∂tu2|p), T (2)(u1) = v0 + R(|∂tu1|q). (4.3)

For ε > 0 we introduce a metric space

Dε = {(u1, u2) ∈ X2 ×X2; d((u1, u2), (w0, v0)) ≤ ε}, (4.4)

where we have set

d((u1, u2), (u∗1, u
∗
2)) = ‖u1 − u∗1‖Z2(κ1) + ‖u2 − u∗2‖Z2(κ2).

First we prepare the following.

Lemma 4.1 Let (u1, u2) ∈ Dε. Then we have

∥∥T (1)(u2)− w0

∥∥
Z2(κ1)

≤ Cεp, (4.5)
∥∥T (2)(u1)− v0

∥∥
Z2(κ2)

≤ Cεq. (4.6)

Moreover we have
∥∥T (1)(u2)− T (1)(u∗2)

∥∥
Z2(κ1)

≤ Cεp−1‖u2 − u∗2‖Z2(κ2), (4.7)
∥∥T (2)(u1)− T (2)(u∗1)

∥∥
Z2(κ2)

≤ Cεq−1‖u1 − u∗1‖Z2(κ1) (4.8)

for (u1, u2), (u∗1, u
∗
2) ∈ Dε.

Proof. First we observe that if (u1, u2) ∈ Dε, then we have

‖u1‖X2(κ1) + ‖u2‖X2(κ2) ≤ Cε, (4.9)

due to κ1, κ2 > 1 and (4.1).
We start with the proof of (4.5). In view of (4.3), it suffices to show
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‖R(|∂tu2|p)‖Z2(κ1) ≤ Cεp. (4.10)

We see from (4.9) that M1(|∂tu2|p) ≤ Cεp holds for α = γ = 0, β = p and
δ = pκ2, where M1(F ) is defined by (3.4) and (3.5). Since α + β + γ − 1 =
κ1 > 1, by (3.11) with s = 2 we get (4.10), which implies (4.5). Analogously
we obtain (4.6), because κ2 > 1.

Next we show (4.7). It follows from (4.3) that

T (1)(u2)− T (1)(u∗2) = R(|∂tu2|p − |∂tu
∗
2|p). (4.11)

Since p > 2, we see from (4.9) that

M1(|∂tu2|p − |∂tu
∗
2|p) ≤ Cεp−1‖u2 − u∗2‖Z2(κ2)

for α = 0, β = p, γ = κ2 − 1, and δ = 1 + (p− 1)κ2. Since α + β + γ − 1 =
κ1 + κ2 − 1 > 1, by (3.11) with s = 2 we obtain

∥∥R(|∂tu2|p − |∂tu
∗
2|p)

∥∥
Z2(κ1+κ2−1)

≤ Cεp−1‖u2 − u∗2‖Z2(κ2).

In view of (4.11), we get (4.7), since κ2 > 1. Analogously we have (4.8),
because q ≥ p > 2. This completes the proof. ¤

End of the proof of Theorem 2.2. We see from Lemma 4.1 that there ex-
ists a positive number ε0 depending only on p and q such that if 0 < ε ≤ ε0,
then we have T (u1, u2) ∈ Dε and

d(T (u1, u2), T (u∗1, u
∗
2)) ≤ 2−1d((u1, u2), (u∗1, u

∗
2))

for (u1, u2), (u∗1, u
∗
2) ∈ Dε, namely, T is a contraction on Dε. Hence we

find a unique solution (u1, u2) ∈ Dε of (4.2). Here and in what follows, we
suppose that 0 < ε ≤ ε0 and (u1, u2) is the solution.

Since T (1)(u2) = u1 and w0 = K[~f1], it follows from (4.5) that

[
(u1 −K[~f1])(r, t)

]
2
≤ Cεp(1 + r + t)−(κ1−1)(1 + |r − t|)−1. (4.12)

Therefore we have
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∥∥(u1 −K[~f1])(t)
∥∥

E
≤ Cεp(1 + t)−(κ1−1)

( ∫ ∞

0

(1 + |r − t|)−2dr

)1/2

≤ Cεp(1 + t)−(κ1−1) (4.13)

for t ≥ 0. Analogously by (4.6) we get

∥∥(u2 −K[~f2])(t)
∥∥

E
≤ Cεq(1 + t)−(κ2−1) (4.14)

for t ≥ 0. Hence we obtain (2.7).
Moreover, we easily get (2.8) by taking t = 0 in (4.12). Analogously,

(2.9) follows from (4.6). Thus we prove Theorem 2.2. ¤

Next we show Theorem 2.3. Let (u1, u2) ∈ X2(κ1) × X2(κ2) be the
unique solution of (2.12) satisfying (2.11). Then we see from (2.13) and
(2.15) that (2.7), (2.16) and (2.17) follows from (4.10) and

‖R(|∂tu1|q)‖Z2(κ2) ≤ Cεq. (4.15)

By virtue of (2.11), (4.10) can be shown as before. In the same way we
obtain (4.15). Thus we prove Theorem 2.3. ¤

4.2. Proof of Theorems 2.5 and 2.6
Throughout this subsection, we assume the assumptions of Theorem 2.5

are valid. In particular, κ1 and κ2 are then defined by (2.18). We start by
showing the following basic estimates.

Lemma 4.2 Let v ∈ X2(κ2). Then L(|∂tv|p) ∈ Z2(κ1) and we have

‖L(|∂tv|p)‖Z2(κ1) ≤ C‖v‖p
X2(κ2)

. (4.16)

While, let w ∈ Z2(κ1). Then R(|∂tw|q) ∈ Z2(κ2) and we have

‖R(|∂tw|q)‖Z2(κ2) ≤ C‖w‖q
Z2(κ1)

. (4.17)

Proof. For v ∈ X2(κ2), we have

[v(r, t)]2 ≤ ‖v‖X2(κ2)(1 + |r − t|)−κ2 ,

so that M1(|∂tv|p) ≤ p‖v‖p
X2(κ2)

holds for α = 0, β = p, γ = 0, and δ = pκ2.
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By Proposition 3.1 with s = 2 we get L(|∂tv|p) ∈ Z2(κ1) and (4.16), since
α + β + γ − 1 = κ1 < 1 and δ = pκ2 > 1.

On the other hand, for w ∈ Z2(κ1), we have

[w(r, t)]2 ≤ ‖w‖Z2(κ1)(1 + r + t)1−κ1(1 + |r − t|)−1,

so that M1(|∂tw|q) ≤ q‖w‖q
Z2(κ1)

holds for α = 0, β = δ = q, and γ =
qκ1−q = κ2+1−q. By Proposition 3.2 with s = 2 we get R(|∂tw|q) ∈ Z2(κ2)
and (4.17), since α + β + γ − 1 = κ2 > 1. This completes the proof. ¤

Next we examine the qualitative property of {wj}`+1
j=0 and {vj}`+1

j=0 de-
fined by (2.30) and (2.31). As a corollary of Lemma 4.2, we derive the
following estimates.

Corollary 4.3 Let 0 ≤ j ≤ ` + 1, 0 < ε ≤ 1 and ~fi ∈ Yκi
(ε) with i = 1, 2.

Then wj ∈ Z2(κ1), vj ∈ X2(κ2), and we have

‖wj‖Z2(κ1) ≤ Cε, (4.18)

‖vj‖X2(κ2) ≤ Cε. (4.19)

Besides, we have

‖w1 − w0‖Z2(κ1) ≤ Cεp, (4.20)

‖v1 − v0‖Z2(κ2) ≤ Cεq. (4.21)

Proof. Since ~f2 ∈ Yκ2(ε), by Proposition 2.1 we get v0 ∈ X2(κ2) and (4.19)
for j = 0. Analogously we have w0 ∈ X2(κ1) and ‖w0‖X2(κ1) ≤ Cε. Since
0 < κ1 < 1, we find w0 ∈ Z2(κ1) and (4.18) for j = 0.

Next suppose that (4.18) and (4.19) hold for some j with 0 ≤ j ≤ `.
Since wj+1 − w0 = L(|∂tvj |p) by (2.30), we have wj+1 − w0 ∈ Z2(κ1)
and ‖wj+1 − w0‖Z2(κ1) ≤ Cεp, using (4.16) and (4.19). Hence we get
‖wj+1‖Z2(κ1) ≤ Cε for 0 < ε ≤ 1 and (4.20) by taking j = 0 in the
above. Analogously we obtain ‖vj+1 − v0‖Z2(κ2) ≤ Cεq by (2.31), (4.17)
and (4.18). Therefore, ‖vj+1‖X2(κ2) ≤ Cε for 0 < ε ≤ 1 and (4.21) holds,
because κ2 > 1. The proof is complete. ¤

The following estimates are crucial in the proof of Theorem 2.5 for ` ≥ 1.
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Lemma 4.4 Let 1 ≤ j ≤ `, 0 < ε ≤ 1 and ~fi ∈ Yκi
(ε) with i = 1, 2. Then

wj+1 − wj ∈ Z2(κ1aj), vj+1 − vj ∈ Z2(aj+1), and we have

‖wj+1 − wj‖Z1(κ1aj) ≤ Cεbj−1+p−1, (4.22)

‖vj+1 − vj‖Z1(aj+1) ≤ Cεbj , (4.23)

where we put bk = q + k(p + q − 2) for a nonnegative integer k, and

‖wj+1 − wj‖Z2(κ1aj) ≤ CεBj−1 , (4.24)

‖vj+1 − vj‖Z2(aj+1) ≤ CεBj−1+q−1, (4.25)

where we put Bk = 1 + (p− 1)bk for a nonnegative integer k.

Proof. Observe that (4.21) implies (4.23) for j = 0, since b0 = q and
a1 = κ2.

First we show that if (4.23) holds for some j with 0 ≤ j ≤ ` − 1, then
(4.22) with j replaced by j + 1 holds. It follows from (2.30) that

wj+2 − wj+1 = L(G(vj+1, vj)), G(v, v∗) = |∂tv|p − |∂tv
∗|p (4.26)

for 0 ≤ j ≤ `− 1. Note that if v, v∗ ∈ X2(κ2) and v − v∗ ∈ Z1(aj+1), then
we have

|G(v, v∗)(r, t)|
≤ p|∂t(v − v∗)|(|∂tv|+ |∂tv

∗|)p−1

≤ p‖v − v∗‖Z1(aj+1)(‖v‖X2(κ2) + ‖v∗‖X2(κ2))
p−1

× r−1(1 + r)−(p−1)(1 + r + t)−(aj+1−1)(1 + |r − t|)−1−κ1κ2 . (4.27)

In addition, we have

(1 + r + t)−(aj+1−1)(1 + |r − t|)−1−κ1κ2

≤ (1 + r + t)−κ1(aj+1−1)(1 + |r − t|)−κ1−κ2 , (4.28)

since 0 < κ1 < 1 and aj+1 ≥ κ2.
Applying (4.27) to G(vj+1, vj) and using (4.19), (4.23) and (4.28), we
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obtain

M0(G(vj+1, vj)) ≤ Cεbj+p−1

for α = 1, β = κ1, γ = κ1aj+1 − κ1 (> 0), and δ = κ1 + κ2. Since
α + β + γ − 1 = κ1aj+1 ≤ κ1a` and κ1a` < 1 from the assumption in
Theorem 2.5, if we apply (3.7) with s = 1 to the right hand side on (4.26),
then the desired estimate holds. In particular, we have (4.22) with j = 1,
since (4.23) is valid for j = 0.

Next we show that if (4.22) holds for some j with 1 ≤ j ≤ `, then (4.23)
is valid for the same j. It follows from (2.31) that

vj+1 − vj = R(H(wj+1, wj)), H(w, w∗) = |∂tw|q − |∂tw
∗|q (4.29)

for 1 ≤ j ≤ `. Note that if w, w∗ ∈ Z2(κ1) and w−w∗ ∈ Z1(κ1aj), then we
have

|H(w, w∗)(r, t)|
≤ q|∂t(w − w∗)|(|∂tw|+ |∂tw

∗|)q−1

≤ q‖w − w∗‖Z1(κ1aj)(‖w‖Z2(κ1) + ‖w∗‖Z2(κ1))
q−1

× r−1(1 + r)−(q−1)(1 + r + t)−(q−1)(κ1−1)−(κ1aj−1)(1 + |r − t|)−q.

(4.30)

Applying (4.30) to H(wj+1, wj) and using (4.18), (4.22), we obtain

M0(H(wj+1, wj)) ≤ Cεbj

for α = 1, β = q − 1, γ = aj+1 + 1 − q, and δ = q. Since α + β + γ − 1 =
aj+1 > 1, if we apply (3.11) with s = 1 to the right hand side on (4.29),
then the desired estimate holds. In conclusion, we have proven (4.22) and
(4.23) for 1 ≤ j ≤ `.

Next we show (4.24) and (4.25). Observe that if we put B−1 = 1, then
(4.25) with j = 0 follows from (4.21).

First we show that if (4.25) holds for some j with 0 ≤ j ≤ ` − 1, then
it, in combination with (4.23), implies (4.24) with j replaced by j +1. Note
that if v, v∗ ∈ X2(κ2) and v − v∗ ∈ Z2(aj+1), then we have



102 H. Kubo and K. Kubota

{(1 + r)|G(v, v∗)(r, t)|+ r|∂rG(v, v∗)(r, t)|}
× rp−1(1 + r + t)κ1(aj+1−1)(1 + |r − t|)κ1+κ2

≤ 2p
{‖v − v∗‖p−1

Z1(aj+1)
‖v‖X2(κ2)

+ ‖v − v∗‖Z2(aj+1)(‖v‖X2(κ2) + ‖v∗‖X2(κ2))
p−1

}
. (4.31)

In fact, similarly to (4.27), we have

|G(v, v∗)(r, t)| ≤ p‖v − v∗‖Z2(aj+1)

(‖v‖X2(κ2) + ‖v∗‖X2(κ2)

)p−1

× (1 + r)−p(1 + r + t)−(aj+1−1)(1 + |r − t|)−1−κ1κ2 .

Since 1 < p < 2, we obtain

|∂rG(v, v∗)(r, t)|
≤ 2p|∂t(v − v∗)|p−1|∂r∂tv|+ p|∂r∂t(v − v∗)||∂tv

∗|p−1

≤ 2p‖v − v∗‖p−1
Z1(aj+1)

‖v‖X2(κ2)

× r−p(1 + r + t)−κ1(aj+1−1)(1 + |r − t|)−κ1−κ2

+ p‖v − v∗‖Z2(aj+1)‖v∗‖p−1
X2(κ2)

× r−1(1 + r)−(p−1)(1 + r + t)−(aj+1−1)(1 + |r − t|)−1−κ1κ2 .

By (4.28) we get (4.31).
Applying (4.31) to G(vj+1, vj) and using (4.19), (4.23) and (4.25), we

obtain

M1(G(vj+1, vj)) ≤ Cε(p−1)bj+1 + CεBj−1+p+q−2

for α = p − 1 (< 1), β = 1, γ = κ1aj+1 − κ1, and δ = κ1 + κ2. It is not
difficult to see that

Bj ≤ Bj−1 + p + q − 2 (4.32)

for 0 ≤ j ≤ ` (recall B−1 = 1). Therefore we have M1(G(vj+1, vj)) ≤ CεBj .
Since α+β +γ−1 = κ1aj+1 ≤ κ1a` < 1, if we apply (3.7) with s = 2 to the
right hand side on (4.26), then the desired estimate holds. In particular, we
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have (4.24) with j = 1, since (4.25) is valid for j = 0.
Finally we show that if (4.24) holds for some j with 1 ≤ j ≤ `, then

(4.25) is valid for the same j. Note that if w, w∗ ∈ Z2(κ1) and w − w∗ ∈
Z2(κ1aj), then we have

{(1 + r)|H(w, w∗)(r, t)|+ r|∂rH(w, w∗)(r, t)|}
× (1 + r)q−1(1 + r + t)(q−1)(κ1−1)+κ1aj−1(1 + |r − t|)q

≤ q2‖w − w∗‖Z2(κ1aj)(‖w‖Z2(κ1) + ‖w∗‖Z2(κ1))
q−1, (4.33)

since q > 2. Applying (4.33) to H(wj+1, wj) and using (4.18), (4.24), we
obtain

M1(H(wj+1, wj)) ≤ CεBj−1+q−1

for α = 0, β = δ = q and γ = aj+1 +1−q. Since α+β +γ−1 = aj+1 > 1, if
we apply (3.11) with s = 2 to the right hand side on (4.29), then the desired
estimate holds. In conclusion, all the asserion of the lemma is proven. ¤

Our next step is to solve the following system:

u1 = w`+1 + R(G(u2, v`)), u2 = v`+1 + R(H(u1, w`+1)), (4.34)

where G(v, v∗) and H(w, w∗) are the notations from (4.26) and (4.29), re-
spectively. We define T (u1, u2) = (T (1)(u2), T (2)(u1)) by

T (1)(u2) = w`+1 + R(G(u2, v`)),

T (2)(u1) = v`+1 + R(H(u1, w`+1)).
(4.35)

For ε > 0 we introduce a metric space

Dε =
{
(u1, u2) ∈ X2 ×X2 ; d((u1, u2), (w`+1, v`+1)) ≤ ε(p−1)b`

}
, (4.36)

where b` = q+`(p+q−2) and we have set d((u1, u2), (u∗1, u
∗
2)) = d1(u1, u

∗
1)+

d2(u2, u
∗
2) with

d1(u1, u
∗
1) = ‖u1 − u∗1‖Z2(κ1a`+1) + ‖u1 − u∗1‖p−1

Z1(κ1a`+1)
,

d2(u2, u
∗
2) = ‖u2 − u∗2‖Z2(a`+1) + ‖u2 − u∗2‖p−1

Z1(a`+1)
.



104 H. Kubo and K. Kubota

We shall show that T is a contraction on Dε, provided ε is small enough.
First of all, we prepare the following.

Lemma 4.5 Let (u1, u2) ∈ Dε with 0 < ε ≤ 1. Then we have

‖u1‖Z2(κ1) + ‖u2‖X2(κ2) ≤ Cε (4.37)

and

d1(u1, w`+1) ≤ ε(p−1)b` , d2(u2, v`) ≤ Cε(p−1)b` . (4.38)

Proof. First we prove (4.37). Notice that a`+1 ≥ κ2 > 1 and (p − 1)b` ≥
(p−1)q = κ2 +1. Then (4.37) follows from (4.18) and (4.19) with j = `+1.

Next we prove (4.38). The first inequality is apparent. On the other
hand, in order to get the second one, it suffices to show d2(v`+1, v`) ≤
Cε(p−1)b` . When ` = 0, it follows from (4.21) that

d2(v1, v0) ≤ C(εq + ε(p−1)q) ≤ Cε(p−1)q

for 0 < ε ≤ 1. While, when ` ≥ 1, it follows from (4.23) and (4.25) with
j = ` that

d2(v`+1, v`) ≤ C(εB`−1+q−1 + ε(p−1)b`).

Since

B`−1 + q − 1 = (p− 1)b` + (2− p)(p + q − 1) > (p− 1)b`

for ` ≥ 1, we obtain the needed estimate. This completes the proof. ¤

The following estimate will play a basic role in proving that T is a
contraction on Dε.

Lemma 4.6 Let u2, u∗2 ∈ X2(κ2) satisfy u2 − u∗2 ∈ Z2(a`+1) and

‖u2‖X2(κ2) + ‖u∗2‖X2(κ2) ≤ Cε. (4.39)

Then we have

‖R(G(u2, u
∗
2))‖Z1(κ1a`+1) ≤ Cεp−1‖u2 − u∗2‖Z1(a`+1) (4.40)

‖R(G(u2, u
∗
2))‖Z2(κ1a`+1) ≤ Cεp−1d2(u2, u

∗
2). (4.41)
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While, let u1, u∗1 ∈ Z2(κ1) satisfy u1 − u∗1 ∈ Z2(κ1a`+1) and

‖u1‖Z2(κ1) + ‖u∗1‖Z2(κ1) ≤ Cε. (4.42)

Then we have

‖R(H(u1, u
∗
1))‖Z1(a`+2) ≤ Cεq−1‖u1 − u∗1‖Z1(κ1a`+1), (4.43)

‖R(H(u1, u
∗
1))‖Z2(a`+2) ≤ Cεq−1‖u1 − u∗1‖Z2(κ1a`+1). (4.44)

Proof. First we prove (4.40). It follows from (4.27) with j = `, (4.28) and
(4.39) that

M0(G(u2, u
∗
2)) ≤ Cεp−1‖u2 − u∗2‖Z1(a`+1)

for α = 1, β = κ1, γ = κ1a`+1 − κ1, and δ = κ1 + κ2. Applying (3.11) with
s = 1 to G(u2, u

∗
2), we get (4.40), because

α + β + γ − 1 = κ1a`+1 > 1, (4.45)

by virtue of (2.29).
Next we prove (4.41). It follows from (4.31) with j = `, (4.39) that

M1(G(u2, u
∗
2)) ≤ Cεp−1d2(u2, u

∗
2)

for α = p− 1, β = 1, γ = κ1a`+1 − κ1, and δ = κ1 + κ2. Since (4.45) holds
for these α, β and γ, we obtain (4.41) by (3.11) with s = 2.

Next we prove (4.43). It follows from (4.30) with j = ` + 1 and (4.42)
that

M0(H(u1, u
∗
1)) ≤ Cεq−1‖u1 − u∗1‖Z1(κ1a`+1)

for α = 1, β = q − 1, γ = a`+2 + 1 − q, and δ = q. Since α + β + γ − 1 =
a`+2 > 1, by (3.11) with s = 1, we get (4.43).

Finally we prove (4.44). It follows from (4.33) with j = `+1 and (4.42)
that

M1(H(u1, u
∗
1)) ≤ Cεq−1‖u1 − u∗1‖Z2(κ1a`+1)

for α = 0, β = δ = q and γ = a`+2 + 1− q. Since α + β + γ − 1 = a`+2 > 1,
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(3.11) with s = 2 yields (4.44). The proof is complete. ¤

Corollary 4.7 Let (u1, u2) ∈ Dε with 0 < ε ≤ 1. Then we have

d1(T (1)(u2), w`+1) ≤ Cε(p−1)b`+(p−1)2 , (4.46)

d2(T (2)(u1), v`+1) ≤ Cε(p−1)b`+(p−1)(q−1). (4.47)

Moreover, we have

d1(T (1)(u2), T (1)(u∗2)) ≤ Cε(p−1)2d2(u2, u
∗
2), (4.48)

d2(T (2)(u1), T (2)(u∗1)) ≤ Cε(p−1)(q−1)d1(u1, u
∗
1) (4.49)

for (u1, u2), (u∗1, u
∗
2) ∈ Dε with 0 < ε ≤ 1.

Proof. It follows from Lemma 4.5 that if (u1, u2) ∈ Dε and 0 < ε ≤ 1,
then we have (4.37) and

‖u1 − w`+1‖Z2(κ1a`+1) + ‖u2 − v`‖Z2(a`+1) ≤ Cε(p−1)b` , (4.50)

‖u1 − w`+1‖Z1(κ1a`+1) + ‖u2 − v`‖Z1(a`+1) ≤ Cεb` . (4.51)

We start with the proof of (4.46). By (4.35) we have T (1)(u2)−w`+1 =
R(G(u2, v`)). Therefore, applying the preceding lemma, we get (4.46). Sim-
ilarly, since T (2)(u1)− v`+1 = R(H(u1, w`+1)), we obtain (4.47).

Next we prove (4.48). By (4.35) we have T (1)(u2) − T (1)(u∗2) =
R(G(u2, u

∗
2)). Since d2(u2, u

∗
2) ≤ 2ε(p−1)b` for (u1, u2), (u∗1, u

∗
2) ∈ Dε, the

preceding lemma shows (4.48). Similarly, we obtain (4.49). This completes
the proof. ¤

End of the proof of Theorem 2.5. We see from Corollary 4.7 that there ex-
ists a positive number ε0 depending only on p and q such that if 0 < ε ≤ ε0,
then we have T (u1, u2) ∈ Dε and

d(T (u1, u2), T (u∗1, u
∗
2)) ≤ 2−1d((u1, u2), (u∗1, u

∗
2))

for (u1, u2), (u∗1, u
∗
2) ∈ Dε, namely, T is a contraction on Dε. Hence we

find a unique solution (u1, u2) ∈ Dε of (4.34). Here and in what follows, we
suppose that 0 < ε ≤ ε0 and (u1, u2) is the solution.
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Next we prove (2.33). Since (4.19), (4.37) and (4.51) yield

‖u2‖X2(κ2) + ‖v`‖X2(κ2) ≤ Cε, ‖u2 − v`‖Z1(a`+1) ≤ Cεb` , (4.52)

applying (4.40), we obtain

[R(G(u2, v`))(r, t)]1 ≤ Cεp−1+b`(1 + r + t)−(κ1a`+1−1)(1 + |r− t|)−1. (4.53)

In view of (4.34), we have

‖(u1 − w`+1)(t)‖E ≤ Cεp−1+b`(1 + t)−(κ1a`+1−1) (4.54)

for t ≥ 0. Similarly, by (4.18), (4.37), (4.51), and (4.43), we get

‖(u2 − v`+1)(t)‖E ≤ Cεq−1+b`(1 + t)−(a`+2−1) (4.55)

for t ≥ 0. Moreover, it follows from (4.21) and (4.23) that

[(v`+1 − v0)(r, t)]1 ≤ Cεq(1 + r + t)−(κ2−1)(1 + |r − t|)−1, (4.56)

so that

‖(v`+1 − v0)(t)‖E ≤ Cεq(1 + t)−(κ2−1). (4.57)

Thus we obtain (2.33) from (4.54), (4.55) and (4.57).
Next we prove (2.34). Since (w`+1, ∂tw`+1)(r, 0) = ~f1(r), it suffices to

prove

[R(G(u2, v`))(r, t)]2 ≤ CεB`(1 + r + t)−(κ1a`+1−1)(1 + |r − t|)−1. (4.58)

Using (4.31) and (4.52), we have

M1(G(u2, v`)) ≤ C(εB` + εp−1‖u2 − v`‖Z2(a`+1))

for α = κ1, β = 1, γ = κ1a`+1 − κ1, and δ = κ1 + κ2. It follows from (4.25)
and (4.32) that

εp−1‖v`+1 − v`‖Z2(a`+1) ≤ CεB`
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for 0 < ε ≤ 1. We see from (4.34), (4.35) and (4.47) that

εp−1‖u2 − v`+1‖Z2(a`+1) ≤ Cε(p−1)b`+(p−1)q.

Since (p− 1)q = κ2 + 1 > 2, we therefore obtain

M1(G(u2, v`)) ≤ CεB`

for 0 < ε ≤ 1. Since (4.45) is satisfied for those α, β, γ, and δ, applying
(3.11) with s = 2, we get (4.58).

Finally we show (2.26), which follows from

‖u2 − v0‖Z2(κ2) ≤ Cεq. (4.59)

Let 0 < ε ≤ 1. By (4.33), (4.18) and (4.50) we have

M1(H(u1, w`+1)) ≤ Cεq−1+(p−1)b` ≤ Cεq

for α = 0, β = δ = q and γ = a`+2 + 1 − q, since (p − 1)b` ≥ (p − 1)q > 2.
Noting α + β + γ − 1 = a`+2 > 1 and applying (3.11) with s = 2, we get

‖u2 − v`+1‖Z2(a`+2) ≤ Cεq,

in view of (4.34). While, we see from (4.21) and (4.25) that

‖v`+1 − v0‖Z2(κ2) ≤ Cεq,

since aj+1 ≥ κ2 and Bj−1 ≥ 1 for j ≥ 1. Therefore we obtain (4.59). Thus
we complete the proof of Theorem 2.5. ¤

Remark When p = 2, Lemma 4.2 and Corollary 4.3 with ` = 0 remain
valid, in view of (2.19). We replace (4.36) by

Dε = {(u1, u2) ∈ X2 ×X2 ; ‖u1 − w1‖Z2(κ2) + ‖u2 − v1‖Z2(κ2) ≤ εq}.

Notice that we have

‖R(G(u2, u
∗
2))‖Z2(κ2) ≤ Cε‖u2 − u∗2‖Z2(κ2),
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instead of (4.41), because M1(G(u2, u
∗
2)) ≤ Cε‖u2 − u∗2‖Z2(κ2) for α = 0,

β = 2, γ = κ2 − 1, and δ = 1 + κ2 (remark that α + β + γ − 1 = κ2 > 1).
Proceeding as in the proof of Theorem 2.5, we find the desired conclusion
stated after Theorem 2.4.

Next we prove Theorem 2.6. Similarly to the proofs of Corollary 4.3
and Lemma 4.4, one can establish the following lemma.

Lemma 4.8 Let 0 < ε ≤ 1 and ~ϕi ∈ Yκi
(ε) with i = 1, 2. Then w∗j ∈

Z2(κ1), v∗j ∈ X2(κ2), and we have

‖w∗j ‖Z2(κ1) + ‖v∗j ‖X2(κ2) ≤ Cε (4.60)

for 0 ≤ j ≤ `. Moreover, u1 − w∗j ∈ Z2(κ1aj), u2 − v∗j ∈ Z2(aj+1), and we
have

‖u1 − w∗j ‖Z1(κ1aj) ≤ Cεbj−1+p−1, ‖u2 − v∗j ‖Z1(aj+1) ≤ Cεbj , (4.61)

‖u1 − w∗j ‖Z2(κ1aj) ≤ CεBj−1 , ‖u2 − v∗j ‖Z2(aj+1) ≤ CεBj−1+q−1

(4.62)

for 1 ≤ j ≤ `, together with

‖u2 − v∗0‖Z2(κ2) ≤ Cεq. (4.63)

Here bk and Bk are defined in Lemma 4.4.

End of the proof of Theorem 2.6. Let (u1, u2) ∈ Z2(κ1) × X2(κ2) be the
unique solution of (2.12) satisfying (2.38).

In order to prove (2.45), it suffices to show

[R(G(u2, v
∗
` ))(r, t)]1 ≤ Cεp−1+b`(1 + r + t)−(κ1a`+1−1)(1 + |r − t|)−1,

in view of (2.41) and (2.44). The needed estimate can be deduced from
(2.38), (4.60), (4.61), and (4.63), similarly to (4.53).

Next we show (2.47). By (2.41) and (2.42), it is enough to prove

[R(G(u2, v
∗
` ))(r, t)]2 ≤ CεB`(1 + r + t)−(κ1a`+1−1)(1 + |r − t|)−1.

Similarly to (4.58), we obtain the desired estimate from (2.38), (4.60), (4.62),
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and (4.63).
Finally we show (2.46) and (2.17). Since it follows from (2.44) that

u2 − K[~f2] = u2 − v∗0 , we see that (2.46) and (2.17) are consequences of
(4.63). This completes the proof of Theorem 2.6. ¤
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