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Abstract. We define that a ring extension S/R is weakly separable or weakly quasi-

separable by using R-derivations of S, and give the necessary and sufficient condition

that the extension R[X]/(Xn − aX − b) of a commutative ring R is weakly separable.

Since the notions of weakly separability and weakly quasi-separability coincide for

commutative ring extensions, we treat a quotient ring R[x; ∗] = R[X; ∗]/f(X)R[X; ∗]
of a skew polynomial ring R[X; ∗], and show that if R is a commutative domain,

then the extension R[x; ∗]/R is always weakly quasi-separable, where ∗ is either a ring

automorphism or a derivation of R. We also treat the weakly separability of R[x; ∗]/R

and give various types of examples of these extensions.

Key words: Separable extension, separable polynomial, quasi-separable extension,

derivation, discriminant, skew polynomial ring.

1. Introduction

Let S/R be a ring extension, M an S-bimodule and x, y arbitrary
elements in S. An additive map D : S → M is called an R-derivation if
D(xy) = D(x)y + xD(y) and D(r) = 0 for any r ∈ R. D is called central if
D(x)y = yD(x), and D is called inner if D(x) = mx − xm for some fixed
element m ∈ M . The R-derivations of S to M deeply relate to a separable
extension S/R.

In this paper, we generalize the notions of a separable extension and
a quasi-separable extension. Since a good example of a ring extension is a
quotient ring of a polynomial ring, we treat a polynomial ring and a skew
polynomial ring, and characterize weakly separable polynomials and weakly
quasi-separable polynomials.

In Section 2, we define the notions of a weakly separable extension and a
weakly quasi-separable extension, and give an example of a weakly separable
and a weakly quasi-separable extension which is not a separable extension.
In Section 3, we discuss the condition of the weakly separability for the ex-
tension R[X]/(Xn−aX−b) of a commutative ring R. Since the notions of a
weakly separability and a weakly quasi-separability coincide for a commuta-
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tive ring extension, we treat a quotient ring R[x; ∗] = R[X; ∗]/f(X)R[X; ∗]
of a skew polynomial ring R[X; ∗] in Section 4, and show that if R is a com-
mutative domain, then the extension R[x; ∗]/R is weakly quasi-separable
for any polynomial f(X) in R[X; ∗]. We also treat the weakly separability
of R[x; ∗]/R and give various types of examples of skew polynomials which
relate to these extensions.

Throughout the following all rings have an identity, all modules are
unitary and every subring contains the identity of a ring.

2. Definitions and an example

A ring extension S/R is called separable if the S-bimodule map

µ : S ⊗R S 3 x⊗ y 7→ xy ∈ S

splits. If R is a commutative ring and S is an R-algebra, then it is well
known that S/R is separable if and only if for any S-bimodule M , every
R-derivation of S to M is inner (cf. [1, pp. 75–76]). This result is also true
for a noncommutative ring extension (cf. [2, Satz 4.2]). In [11], Y. Nakai
introduced the notion of a quasi-separable commutative ring extension by
using the module of differentials, and in the noncommutative case, it was
characterized by H. Komatsu [8, Lemma 2.1] as follows:

S/R is quasi-separable if and only if for any S-bimodule M , every central
R-derivation of S to M is zero.

Under these circumstances, we define several types of separability as
follows:

Definition 2.1 Let S/R be a ring extension.
(1) S/R is called separable if for any S-bimodule M , every R-derivation of

S to M is inner.
(2) S/R is called weakly separable if every R-derivation of S to S is inner.
(3) S/R is called quasi-separable if for any S-bimodule M , every central

R-derivation of S to M is zero.
(4) S/R is called weakly quasi-separable if every central R-derivation of S

to S is zero.

A separable extension is weakly separable and a quasi-separable exten-
sion is weakly quasi-separable. Moreover, in [8, Theorem 2.1], Komatsu
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proved that a separable extension is quasi-separable.
First, we give an example of a weakly separable and a weakly quasi-

separable extension which is not separable.

Example 2.2 Let A be a commutative ring with identity 1 and M2(A)
the 2× 2-matrix ring over A. Consider the following subsets of M2(A):

T2 =
{[

r s
0 t

]
| r, s, t ∈ A

}
and R2 =

{[
r 0
0 r

]
| r ∈ A

}
.

Then T2 is a ring extension of R2 with identity I2 =
[

1 0
0 1

]
. Let D : T2 → T2

be an R2-derivation and {Eij} (1 5 i, j 5 2) the matrix units. Since an
element x ∈ T2 is represented by {E11, E12, E22}, D is determined by the
image of Eij . So we have

D(E11) =
[
0 a
0 0

]
, D(E12) =

[
0 b
0 0

]
and D(E22) =

[
0 −a
0 0

]

for some a, b ∈ A. Therefore, for any x =
[

r s
0 t

] ∈ T2, every R2-derivation D

of T2 is given by the following form:

D(x) =
[
0 ra + sb− ta
0 0

]
.

And by

D

([
r s
0 t

])
=

[
0 ra + sb− ta
0 0

]
=

[
b −a
0 0

] [
r s
0 t

]
−

[
r s
0 t

] [
b −a
0 0

]
,

D is inner. Thus T2/R2 is a weakly separable extension. If D is central, then
for any x =

[
r s
0 t

]
and y =

[
u v
0 w

]
in T2, we see u(ra+sb−ta) = (ra+sb−ta)w

for all r, s, t, u, w ∈ A, which shows a = b = 0. Therefore, the central R2-
derivation of T2 is zero and so T2/R2 is a weakly quasi-separable extension.

Next we show that T2/R2 is not a separable extension. Define a map
ϕ : T2 → R2 as follows:

ϕ : T2 3 x =
[
r s
0 t

]
7→

[
r 0
0 r

]
∈ R2.
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Then ϕ is a ring epimorphism with ϕ
([

r 0
0 r

])
=

[
r 0
0 r

]
. If T2/R2 is separable,

then by [13, Proposition 1], there exists a central idempotent e ∈ T2 such
that ϕ(x)e = ex for all x ∈ T2 and ϕ(e) = 1. Since a central idempotent of
T2 is of the form

e =
[
ξ 0
0 ξ

]
, where ξ is an idempotent of A,

then by ϕ(x)e = ex, we have e = 0. This contradicts ϕ(e) = 1 and thus
T2/R2 is not a separable extension.

3. Weakly separable polynomials

For a commutative ring extension S/R, the notions of the weakly sep-
arablity and the weakly quasi-separablity coincide by Definition 2.1. It is
equivalent to that every R-derivation of S to S is zero.

Let R be a commutative ring, R[X] a polynomial ring and f(X) a monic
polynomial in R[X]. We set R[x] = R[X]/(f(X)), where x = X + (f(X)).
According to the extension R[x]/R is weakly separable (resp. weakly quasi-
separable), f(X) is said to be weakly separable (resp. weakly quasi-separable)
in R[X].

Let f(X) = Xn − aX − b be in R[X] and f ′(X) = nXn−1 − a. It is
well known that f(X) is separable in R[X] if and only if f ′(x) = nxn−1 − a

is invertible in R[x], and it is equivalent to the discriminant of f(X) is
invertible in R. In this section, we show that the “invertibility” of a separable
case substitutes the “nonzero-divisor” of a weakly separable case.

For f(X) = Xn−aX−b and f ′(X) = nXn−1−a, the resultant Res(f, f ′)
is the determinant of the following (2n− 1)× (2n− 1) matrix

DRes =




1 0 0 · · · 0 −a −b 0 · · · 0
0 1 0 · · · 0 0 −a −b · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 1 · · · · · · 0 −a −b

n 0 0 · · · 0 −a 0 · · · 0 0
0 n 0 · · · 0 0 −a 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 0 n 0 · · · 0 −a
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and the discriminant of Xn−aX−b is (−1)(n(n−1))/2 Res(f, f ′). As is easily
seen, the determinant det(DRes) of DRes is −(n−1)n−1an+(−1)n−1nnbn−1.
Under these preparations, we prove the following

Theorem 3.1 Let f(X) = Xn−aX− b be in R[X]. Then f(X) is weakly
separable in R[X] if and only if the discriminant

(−1)(n(n−1))/2{−(n− 1)n−1an + (−1)n−1nnbn−1}

of f(X) is a nonzero-divisor in R.

Proof. Let D : R[x] → R[x] be an R-derivation and we set

D(x) = αn−1x
n−1 + αn−2x

n−2 + · · ·+ α1x + α0 (αi ∈ R). (1)

Then by

D(xn) = nxn−1
(
αn−1x

n−1 + αn−2x
n−2 + · · ·+ α1x + α0

)

= n
(
αn−1x

n · xn−2 + αn−2x
n · xn−3 + · · ·+ α1x

n + α0x
n−1

)

= n
{
αn−1(ax + b) · xn−2 + αn−2(ax + b) · xn−3

+ · · ·+ α1(ax + b) + α0x
n−1

}

= n
(
aαn−1x

n−1 + bαn−1x
n−2 + · · ·+ aα1x + bα1 + α0x

n−1
)

= D(ax + b)

= a
(
αn−1x

n−1 + αn−2x
n−2 + · · ·αn−ix

n−i + · · ·+ α1x + α0

)
,

we have

{(n− 1)aαn−1 + nα0}xn−1 + {(n− 1)aαn−2 + nbαn−1}xn−2

+ · · ·+ {(n− 1)aα1 + nbα2}x + nbα1 − aα0 = 0.

Therefore we have the following linear equations for αn−1, · · · , α1, α0:
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(n− 1)aαn−1 + nα0 = 0
nbαn−1 + (n− 1)aαn−2 = 0

· · · · · · · · · · · ·
nbα2 + (n− 1)aα1 = 0

nbα1 − aα0 = 0.





(2)

It is easy to see that D is an R-derivation if and only if there exist {αi}n−1
i=0

which satisfy the equation (2). Since the coefficient matrix of the linear
equation (2) with indeterminate αn−1, αn−2, · · · , α0 is

M =




(n− 1)a 0 0 0 · · · 0 0 n

nb (n− 1)a 0 0 · · · 0 0 0
0 nb (n− 1)a 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · nb (n− 1)a 0
0 0 0 0 · · · 0 nb −a




= [mij ],

we see

det(M) = det(DRes) = −(n− 1)n−1an + (−1)n−1nnbn−1.

Then by [9, I. 30 Corollary], the equation (2) has a nontrivial solution if and
only if det(M) is a zero divisor. Thus the discriminant of Xn − aX − b is a
nonzero-divisor if and only if R[x]/R is a weakly separable extension. ¤

Corollary 3.2 f(X) = Xn − aX − b in R[X] is weakly separable if and
only if f ′(x) = nxn−1 − a is a nonzero-divisor in R[x] = R[X]/(f(X)).

Proof. For g(x) =
∑n−1

i=0 αix
i in R[x], we set f ′(x)g(x) = 0. Then we

have the same linear equation (2) for αi in the proof of Theorem 3.1. Since
f ′(x) is a nonzero-divisor if and only if the equation (2) has the trivial
solution, this condition is equivalent to that det(M) is a nonzero-divisor.
Therefore f ′(x) is a nonzero-divisor if and only if the discriminant of f(X)
is a nonzero-divisor. ¤

By Theorem 3.1, X2−aX− b is weakly separable in R[X] if and only if
a2 + 4b is a nonzero-divisor in R and so there are a lot of weakly separable
polynomials in R[X] which is not separable. For the quadratic polynomials
in Z[X] are classified as follows:
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Example 3.3 Let R = Z be the ring of integers and n, m ∈ Z. Then

( i ) X2− 2nX −m is not separable in Z[X]. It is weakly separable if and
only if m 6= −n2.

( ii ) X2−(2n+1)X−m is always weakly separable in Z[X]. It is separable
if and only if n2 + n + m = 0.

4. Weakly separability of skew polynomials

Let ∗ : R → R be a ring automorphism or a derivation and R[X; ∗] the
skew polynomial ring. If ∗ is an automorphism ρ of R, then rX = Xρ(r),
and if ∗ is a derivation D of R, then rX = Xr + D(r) for any r ∈ R.

By R[X; ∗](0), we denote the set of all monic polynomials f(X) in
R[X; ∗] such that R[X; ∗]f(X) = f(X)R[X; ∗], and we set

R[x; ∗] = R[X; ∗]/f(X)R[X; ∗], where x = X + f(X)R[X; ∗].

As same as the commutative case, f(X) ∈ R[X; ∗](0) is called weakly sepa-
rable (resp. weakly quasi-separable) in R[X; ∗] if the corresponding extension
R[x; ∗]/R is weakly separable (resp. weakly quasi-separable).

Although the several conditions that f(X) is contained in R[X; ∗](0)
were given in [3], [4], [5], [6], [7], [10] and [12], but for the sake of convenience
to the reader, we show some essential part of these calculations.

4.1. Automorphism type
Let ρ : R → R be a non-trivial ring automorphism. Then we have the

following

Theorem 4.1.1 If R is a commutative domain, then every polynomial in
R[X; ρ](0) is weakly quasi-separable.

Proof. For any f(X) ∈ R[X; ρ](0), we set R[x; ρ] = R[X; ρ]/f(X)R[X; ρ].
Let δ be an R-derivation of R[x; ρ] defined by δ(x) =

∑n−1
i=0 xibi ∈ R[x; ρ],

where n is the degree of f(X). If δ is central, then by δ(x)r = rδ(x) =
δ(rx) = δ(xρ(r)) = δ(x)ρ(r), we see δ(x)(ρ(r)− r) = 0 for any r ∈ R. Since
R is a domain and ρ is non-trivial, we have δ = 0. Thus f(X) is weakly
quasi-separable. ¤

The above theorem is true if (ρ − 1)R = {ρ(r) − r | r ∈ R} contains
a nonzero-divisor. If R has a zero divisor, then there are many non-weakly
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quasi-separable polynomials over R as follows.

Example 4.1.2 Let Z be the ring of integers and A = Z/6Z =
{0, 1, · · · , 5}. Let A[Y ] be a polynomial ring with indeterminate Y and
R = A[Y ]/(Y 6) = A[y], where y = Y + (Y 6). Using an A-ring automor-
phism ρ : R 3 r = r(y) 7→ r(5y) ∈ R, we have the skew polynomial ring
R[X; ρ]. For any r =

∑5
i=0 αiy

i ∈ R, we see

( i ) r = ρ(r) ⇐⇒ r =
∑2

i=0(α2iy
2i + 3α2i+1y

2i+1).
( ii ) ρ(r) + r = 2(α0 + α2y

2 + α4y
4).

(iii) ρ(r)− r = 4(α1y + α3y
3 + α5y

5).

Take a =
∑2

i=0(a2iy
2i + 3a2i+1y

2i+1) ∈ R and set f(X) = X2 − a.
Then f(X) ∈ R[X; ρ](0), and so we have the quotient ring R[x; ρ] =
R[X; ρ]/f(X)R[X; ρ].

Let δ : R[x; ρ] → R[x; ρ] be an R-linear map such that δ(x) = c and
δ(1) = 0. It is easy to see that δ is an R-derivation if and only if δ(x2) =
δ(x)x + xδ(x) = 0 and rδ(x) = δ(x)ρ(r) for any r ∈ R. This conditions are
equivalent to the following:

ρ(c) + c = c(ρ(r)− r) = 0. (∗)

If we take a nonzero element c = 3
∑5

i=0 ciy
i ∈ R, then by (ii) and (iii),

c satisfies the condition (∗) and thus δ is an R-derivation. Moreover, by
ρ(c) = c and (iii), we have δ(xs)(xr) − (xr)δ(xs) = xc(ρ(s) − s)r = 0 for
any r, s ∈ R. Therefore δ is a nonzero central derivation, which shows that
X2 − a is not weakly quasi-separable. And X2 − a is not weakly separable,
because δ is inner if and only if there exists r ∈ R such that a(ρ(r)− r) = c.
This is impossible by (iii) and c 6= 0.

Now, by Theorem 4.1.1, our problem is to obtain some conditions for
the weakly separability of f(X) ∈ R[X; ρ](0) over a commutative domain R.
First, we classify the polynomials in R[X; ρ](0).

Lemma 4.1.3 (cf. [3]) Let R be a commutative domain and k 6= 1 the
order of ρ and n = tk + `, where 0 5 ` < k. For f(X) = Xn−Xn−1an−1−
· · · −Xa1 − a0 in R[X; ρ](0), we have the following :

( i ) If n < k, then f(X) = Xn.
( ii ) If n = k, then f(X) = Xn − a0 with ρ(a0) = a0.
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(iii) If n = tk + `, then f(X) = Xn − Xn−kan−k − Xn−2kan−2k − · · · −
Xn−tkan−tk with ρ(an−jk) = an−jk (1 5 j 5 t).

Proof. Using Xf(X) = f(X)X, rf(X) = f(X)ρn(r) and R is commuta-
tive, we have

ρ(an−i) = an−i and an−i(ρn − ρn−i)(r) = 0
for any r ∈ R (1 5 i 5 n).

Since ρjk+` = ρ` (0 5 j 5 t) and R is a domain, the results are easily seen.
¤

For the polynomials in Lemma 4.1.3, we only have the following

Theorem 4.1.4 Let R be a commutative domain and k 6= 1 the order of ρ,
R[x; ρ] = R[X; ρ]/f(X)R[X; ρ] for f(X) ∈ R[X; ρ](0) and δ an R-derivation
of R[x; ρ].

( i ) Assume that n 5 k and f(X) = Xn. Then δ(x) = xb for some b ∈ R.
In this case, f(X) is weakly separable if and only if R = (ρ− 1)R.

( ii ) Assume that n = k and f(X) = Xn − a0 (a0 6= 0). Then δ(x) = xb1

such that Tr(b1) = 0, where Tr = ρn−1 + · · · + ρ + 1. In this case,
f(X) is weakly separable if and only if R1 = {b1 ∈ R | Tr(b1) = 0} =
(ρ− 1)R.

Proof. We set δ(x) =
∑n−1

i=0 xibi ∈ R[x; ρ]. Since rδ(x) = δ(x)ρ(r), we
note that (ρi(r)− ρ(r))bi = 0 (0 5 i 5 n− 1) for any r ∈ R.

(i) Let n 5 k and f(X) = Xn. Then δ(x) = xb1 for some b1 ∈ R and

δ(xn) =
n−1∑

i=0

xiδ(x)xn−i−1 = xn(ρn−1 + · · ·+ ρ + 1)(b1)

= xnTr(b1) = 0. (∗∗)

If δ is inner, then δ(x) = xg(x)−g(x)x for some g(x) ∈ R[x; ρ], which means
δ(x) = xb1 = x(c− ρ(c)) for some c ∈ R. Since b1 is arbitrary, Xn is weakly
separable if and only if R = (ρ− 1)R.

(ii) Similarly, for f(X) = Xn−a0 (a0 6= 0), δ is also given by δ(x) = xb1.
In this case, Tr(b1) = 0 by (∗∗). This shows (ii). ¤
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For the case (iii) of Lemma 4.1.3, by using of rδ(x) = δ(x)ρ(r) (r ∈ R),
we see that an R-derivation δ is of the form

δ(x) =
t∑

i=0

xik+1bik+1 where btk+1 = 0 for n = tk, tk + 1 (3)

which satisfies the condition δ(xn) = xn
∑t

i=0 xik Tr(bik+1). Thus if all bik+1

are contained in (ρ− 1)(R), then by

δ(x) =
t∑

i=0

xik+1bik+1 =
t∑

i=0

xik+1(ρ(cik)− cik)

=
t∑

i=0

xikcik · x−
t∑

i=0

x · xikcik,

δ is inner and thus f(X) is weakly separable. But it seems that the necessary
conditions of weakly separability of f(X) is very complicated, and we can
not give this conditions.

Remark 4.1.5 In [10, Lemma 2.3], Nagahara showed that X2 − b ∈
R[X; ρ](0) is separable if and only if b is invertible and there exists z ∈ R

such that z + ρ(z) = 1. In our case, if there exists such a z, then, X2 − b ∈
R[X; ρ](0) (b 6= 0) is weakly separable. Because, an R-derivation δ of R[x; ρ]
is given by δ(x) = xb1. Then we see δ(x2) = 0 = b(ρ(b1) + b1) and so
ρ(b1) = −b1. This shows that δ is an inner derivation by −zb1.

In Theorem 4.1.4, we give some conditions such that f(X) is weakly
separable. So we give examples of skew polynomials which are not weakly
separable.

Example 4.1.6 Let A be a commutative domain with characteristic not
2 and R = A[Y ] a polynomial ring. Let ρ : R → R be an A-automorphism
defined by ρ(Y ) = −Y . Then we have the skew polynomial ring R[X; ρ].
Assume that 2 is not invertible.

(1) Quadratic polynomials: If n = k = 2, Then by Lemma 4.1.3, a
quadratic polynomial f(X) ∈ R[X; ρ](0) is of the form f(X) = X2 − b(Y 2)
for some b(Y ) ∈ R and by Theorem 4.1.4(ii), an R-derivation δ of R[x; ρ] is
given by δ(x) = xY b1(Y 2) for some b1(Y ) ∈ R. In this case,
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R1 = {r ∈ R | (ρ + 1)(r) = 0} = {Y g1(Y 2) | g1(Y ) ∈ R}

and

(ρ− 1)R = {2Y g2(Y 2) | g2(Y ) ∈ R},

we see that R1 is not contained in (ρ− 1)R. Thus X2− b(Y 2) is not weakly
separable by Theorem 4.1.4 (ii). In fact, δ is inner if and only if for any
b1(Y ), there exists g(Y ) ∈ R such that b1(Y 2) = 2g(Y 2).

(2) Cubic polynomials: Let n = 3 and k = 2. Then by Lemma 4.1.3,
the cubic polynomial f(X) ∈ R[X; ρ](0) is of the form f(X) = X3−Xa(Y 2)
for some a(Y ) ∈ R. Assume that a(Y 2) 6= 0. Since an R-derivation δ of
R[x; ρ] is given by δ(x) = xb1 for some b1 ∈ R, and by

δ(x3) = x3(ρ2 + ρ + 1)(b1) = xa(Y 2)(1 + ρ + 1)(b1)

= δ(x)a(Y 2) = xb1a(Y 2),

we have (ρ + 1)(b1) = 0 and so b1 = Y b2(Y 2) for some b2(Y ) ∈ R. In this
case, δ is inner if and only if there exist a2, a0 ∈ R such that

δ(x) = xb1 = (x2a2 + a0)x− x(x2a2 + a0)

= x{a(Y 2)(ρ(a2)− a2) + ρ(a0)− a0}.

Therefore δ is inner if and only if, for any b2(Y 2) ∈ R, there exist h1(Y ),
h2(Y ) ∈ R such that b2(Y 2) = 2{a(Y 2)h1(Y 2) + h2(Y 2)}. Since 2 is not
invertible, f(X) is not weakly separable.

In each case, if 2 is invertible, then f(X) is weakly separable.

4.2. Derivation type
Let D : R → R be a non-trivial derivation and R[X;D] the skew poly-

nomial ring of derivation type. For a derivation type, we can easily prove
that the same result as to the Theorem 4.1.1 for the automorphism type:

Theorem 4.2.1 If R is a commutative domain, then every polynomial in
R[X;D](0) is weakly quasi-separable.

Proof. For any f(X)∈R[X;D](0), we set R[x;D]=R[X;D]/f(X)R[X;D].
Let δ be an R-derivation of R[x;D] defined by δ(x) =

∑n−1
i=0 xibi ∈ R[x;D],
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where n is the degree of f(X). If δ is central, then for any r, s ∈ R, there
holds

δ(xr)(xs) = δ(x)r(xs) = δ(x)(xr + D(r))s = δ(x)(xs)r + δ(x)D(r)s

= (xs)δ(xr) + δ(x)D(r)s.

Thus we have δ(x)D(r)s = 0. Since R is a domain and D is non-trivial, we
see δ(x) = 0. Therefore f(X) is weakly quasi-separable. ¤

As same as the automorphism type, if D(R) = {D(r) | r ∈ R} contains
a nonzero-divisor, then the above theorem is true. If R has a zero divisor,
then there are many non-weakly quasi-separable polynomials as follows.

Example 4.2.2 Let A = Z/4Z = {0, 1, 2, 3} and R = A[Y ]/(Y 4) = A[y],
where y = Y + (Y 4). Define an A-derivation D of R by D(y) = 2 and
consider R[X;D]. Then 2D(r) = D2(r) = 0 for any r =

∑3
i=0 αiy

i ∈ R.
Thus for a = 2

∑3
i=0 aiy

i ∈ R and f(X) = X2 − a, we have the quotient
ring R[x;D] = R[X;D]/f(X)R[X;D].

For fixed bi = 2
∑3

j=0 bijy
j ∈ R (i = 0, 1), we define an R-linear map δ of

R[x;D] by δ(x) = xb1+b0 and δ(1) = 0. By 2bi = D(bi) = 0 and D(r)b1 = 0
(r ∈ R), δ is an R-derivation. Moreover, using D(bi) = D(r)bi = 0 again,
we see (xr)δ(xs) = δ(xs)(xr) for any r, s ∈ R. Thus there exists a nonzero
central derivation, which shows that X2 − a is not weakly quasi-separable.

Note that X2 − a is not weakly separable. Because, if δ is inner, then
there exists xr + s ∈ R[x;D] such that δ(x) = (xr + s)x − x(xr + s) =
xb1 + b0. This condition is equivalent to b1 = D(r) and b0 = D(s). Take
b1 = 2

∑3
i=0 b1iy

i such that b11 6= 0. Then by D(r) = 2(α1 + α3y
2), b1 is

not contained in D(R). Therefore there exists a non-inner R-derivation δ.

Now by Theorem 4.2.1, our problem is the weakly separability of f(X).
Let f(X) =

∑n
i=0 Xiai be in R[X;D](0). Then by rXn =

∑n
i=0 Xn−i

(
n
i

)·
Di(r), we have 0 = rf(X) − f(X)r = Xn−1nD(r) + · · · and so n = 0 by
our assumption. Therefore we may assume that the characteristic of R is p.
In this case, we can only prove the following weakly separability:

Theorem 4.2.3 Let R be a commutative domain of characteristic p, and
f(X) a polynomial in R[X;D](0) of degree p. Then f(X) is of the form
Xp−Xa1− a0 with D(ai) = 0 (i = 0, 1) and Dp(r) = D(r)a1 for all r ∈ R.
Moreover, an R-derivation δ of R[x;D] = R[X;D]/f(X)R[X;D] is given
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by δ(x) = b such that δ(xp) = Dp−1(b) = ba1. Therefore f(X) is weakly
separable if and only if {b ∈ R | Dp−1(b) = ba1} = D(R).

Proof. Let f(X) = Xp − Xp−1ap−1 − · · · − Xa1 − a0 be in R[X;D](0).
Then by Xf(X) = f(X)X, we see D(ai) = 0 for any 0 5 i < p− 1. Since

rf(X) = rXp −
p∑

i=1

rXp−iap−i

=
p∑

j=0

Xp−j

(
p

j

)
Dj(r)−

p∑

i=1

p−i∑

j=0

Xp−i−j

(
p− i

j

)
Dj(r)ap−i

= {Xpr + Dp(r)} − {Xp−1r + Xp−2(p− 1)D(r) + · · · }ap−1

− {Xp−2r + Xp−3(p− 2)D(r)) + · · · }ap−2 − · · · ,

then, by rf(X) = f(X)r, we have ap−1 = 0 and inductively ap−2 = · · · =
a2 = 0. Thus f(X) = Xp −Xa1 − a0 and Dp(r) = D(r)a1.

Now, for the above f(X), let δ be an R-derivation of R[x;D] defined
by δ(x) =

∑p−1
i=0 xibi ∈ R[x;D]. Then by rδ(x) = δ(x)r and rxi =∑i

j=0 xi−j
(

i
j

)
Dj(r), we easily see δ(x) = b0. Moreover by xp = xa1 +a0, we

have

δ(xp) =
p−1∑

i=0

xp−i−1δ(x)xi =
p−1∑

i=0

xp−i−1b0x
i

=
p−1∑

i=0

xp−i−1

{ i∑

j=0

xi−j

(
i

j

)
Dj(b0)

}

= pxp−1b0 + xp−2D(b0)
{(

1
1

)
+

(
2
1

)
+ · · ·+

(
p− 1

1

)}

+ · · ·+ xp−i−1Di(b0)
{(

i

i

)
+

(
i + 1

i

)
+ · · ·+

(
p− 1

i

)}

+ · · ·+ xDp−2(b0)
{(

p− 2
p− 2

)
+

(
p− 1
p− 2

)}
+ Dp−1(b0)

= Dp−1(b0) = δ(xa1 + a0) = b0a1,
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because

p−1∑

i=j

(
i

j

)
=

(
j

j

)
+

(
j + 1

j

)
+ · · ·+

(
p− 1

j

)
=

(
p

j + 1

)
= 0

(1 5 j 5 p− 2).

Therefore δ(x) = b0 such that Dp−1(b0) = b0a1. And δ is inner if and only
if there exists g ∈ R[x;D] such that δ(x) = b0 = gx− xg and rg = gr for all
r ∈ R. Then by the similar calculation to rδ(x) = δ(x)r, we see g = c0 and
thus δ(x) = b0 = D(c0), completing the proof. ¤

Note that for the p-polynomial f(X) = Xpe −Xpe−1
ae − · · · −Xpa2 −

Xa1 − a0 in R[X;D](0), it was proved in [6, Lemma 1] that f(X) is a
separable if and only if there exists c ∈ R such that

Dpe−1(c) + aeD
pe−1−1(c) + · · ·+ a2D

p−1(c) + a1c = 1. (6)

Now we give various types of weakly separable or not weakly separable
polynomials of derivation type.

Example 4.2.4 Let R be a commutative ring of characteristic 2, D :
R → R a nonzero derivation such that D2 = 0 and for f(X) ∈ R[X;D](0),
δ an R-derivation of R[x;D] = R[X;D]/f(X)R[X;D]. In this example, we
assume that D(R) contains a nonzero-divisor and thus every polynomial in
R[X;D](0) is weakly quasi-separable by Theorem 4.2.1.

(1) Let f(X) = X2−Xa1−a0 be in R[X;D](0). Since D(R) contains a
nonzero-divisor, then f(X) = X2−a0 with D(a0) = 0. We set δ(x) = xb1 +
b0 ∈ R[x;D]. Then by rδ(x) = δ(x)r (r ∈ R) and δ(x2) = δ(x)x+xδ(x) = 0,
δ is an R-derivation if and only if δ(x) = b0 such that D(b0) = 0. And δ

is inner if and only if there exists g ∈ R[x;D] such that δ(x) = gx − xg

and rg = gr for any r ∈ R. This is equivalent to that there exists c0 ∈ R

such that b0 = D(c0). If f(X) is weakly separable, then every R-derivation
is inner and so KerD = Im D. Since 1 ∈ KerD, f(X) is separable by (6).
Thus f(X) is weakly separable if and only if f(X) is separable.

(2) By rf(X) = f(X)r, the characteristic of R is 2 and D(R) contains
a nonzero-divisor, a cubic polynomial in R[X;D](0) does not exist. Let
f(X) = X4−X3a3−X2a2−Xa1− a0 be in R[X;D](0). We can not apply
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Theorem 4.2.3, but by easy calculations, f(X) = X4−X2a2− a0 such that
D(ai) = 0 (i = 0, 2) and δ is given by δ(x) = x2b2 + b0 ∈ R[x;D]. Since
δ(x4) = 0 = δ(x2a2 + a0), δ is an R-derivation if and only if D(b2)a2 =
D(b0)a2 = 0. So we divide the following cases:

Case (i). f(X) = X4 − a0.
Case (ii). f(X) = X4 −X2a2 − a0 (a2 6= 0) such that a2 is a nonzero-

divisor.
Case (iii). f(X) = X4 − X2a2 − a0 (a2 6= 0) such that a2 is a zero

divisor.
In these cases, as same as (1), δ is inner if and only if there exist ci ∈ R

such that bi = D(ci) (i = 0, 2).
In Case (i), since b2 and b0 are arbitrary, f(X) = X4 − a0 is weakly

separable if and only if D(R) = R. This is impossible by D2 = 0. Thus
f(X) is not weakly separable. In Case (ii), since a2 is a nonzero-divisor,
we have D(b2) = D(b0) = 0 and so f(X) = X4 − X2a2 − a0 is weakly
separable if and only if ImD = Ker D. In this case, if a2 is not invertible,
then f(X) is not separable by (6). This shows that there exists a weakly
separable p-polynomial which is not separable. For a commutative domain A

of characteristic 2, the polynomial ring R = A[Y ] and the usual A-derivation
D satisfies these conditions. In Case (iii), since a2 is a zero divisor, f(X)
is not separable by (6) and if {b ∈ R | D(b)a2 = 0} ⊆ Im D, then f(X) is
weakly separable. But this condition is not so clear.

These examples in this section show us that to determine the types of
weakly separable or weakly quasi-separable polynomials in the skew poly-
nomial ring R[X; ∗] is not so easy. And we can not find a skew polynomial
f(X) ∈ R[X; ∗] such that f(X) is weakly separable but not weakly quasi-
separable. Does there exist such a polynomial?
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