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NOTES ON THE EXISTENCE OF CERTAIN UNRAMIFIED

2-EXTENSIONS

AKITO NOMURA

Abstract. We study the inverse Galois problem with restricted rami-

fication. Let K be an algebraic number field and G be a 2-group. We

consider the question whether there exists an unramified Galois exten-

sion M/K with Galois group isomorphic to G. We study this question
using the theory of embedding problems. Let L/k be a Galois extension
and (ε) : 1 → Z/2Z → E → Gal(L/k) → 1 a central extension. We
first investigate the existence of a Galois extension M/L/k such that
the Galois group Gal(M/k) is isomorphic to E and any finite prime is
unramified in M/L. As an application, we prove the existence of an
unramified extension over cyclic quintic fields with Galois group iso-

morphic to 32Γ5a2 under the condition that the class number is even.
We also consider the Fontaine-Mazur-Boston Conjecture in the case of

abelian l-extensions over Q.

1. Introduction

An interesting problem in Number Theory is the inverse Galois problem
with restricted ramification, which can be described as follows. Let K be an
algebraic number field, and G a finite group. Does there exist an unramified
Galois extension M/K with Galois group isomorphic to G? In the case when
G is abelian, by class field theory, this problem is closely related to the ideal
class group of K. In this paper, we shall study the case when G is a non-
abelian 2-group.

Bachoc-Kwon [2] and Couture-Derhem [5] studied the case where K is a
cyclic cubic field and G is the quaternion group of order 8. First we shall give
an alternative proof of their result. This proof is based on the theory of embed-
ding problems, which is applicable to more general cases. As an application,
we shall prove the existence of unramified extensions over cyclic quintic fields
with Galois group isomorphic to 32Γ5a2 under the condition that the class
number is even. Our proof is also applicable to the Fontaine-Mazur-Boston
Conjecture. This conjecture states that the pro-p group Gal(K (∞)(p)/K) is
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not powerful under the condition that it is infinite, where K (∞)(p) is the
maximal unramified p-extension of K. A pro-p group G is called powerful if
p is odd and G/Gp is abelian, or if p = 2 and G/G4 is abelian. The main
references for the Fontaine-Mazur-Boston Conjecture are [3], [4], and [8]. See
also [6] for powerful pro-p groups.

We shall also prove that the Galois group Gal(K
(∞)
+ (2)/K) is not pow-

erful under certain conditions, where K
(∞)
+ (2) is the maximal unramified 2-

extension in narrow sense.

2. Embedding problems

Let k be an algebraic number field of finite degree, and G its absolute
Galois group. Let L/k be a finite Galois extension with Galois group G, and

(ε) : 1 → A→ E
j→ G→ 1 a group extension with an abelian kernel A. Then

an embedding problem (L/k, ε) is defined by the diagram

(∗)

G

ϕ

y

(ε) : 1 −−−−→ A −−−−→ E
j−−−−→ G −−−−→ 1

where ϕ is the canonical surjection. A solution of the embedding problem
(L/k, ε) is, by definition, a continuous homomorphism ψ of G to E satisfying
the condition j ◦ ψ = ϕ. A solution ψ is called a proper solution if it is
surjective. We remark that the existence of a proper solution is equivalent to
the existence of a Galois extension M/L/k such that the canonical sequence
1 → Gal(M/L) → Gal(M/k) → Gal(L/k) → 1 coincides with (ε). A main
reference for embedding problems is [15].

In our previous papers [16], [17], [18], we studied the case when A is isomor-
phic to Z/pZ (p an odd prime), and proved the existence of certain unramified
non-abelian p-extensions. In the present paper, we shall study the case when
A is isomorphic to Z/2Z and k is the rational number field Q.

Our main theorem is the following.

Theorem 1. Let L/K/Q be a Galois extension such that L/K is an

unramified 2-extension and the degree [K : Q] is odd. Let (ε) : 1 → Z/2Z →
E → Gal(L/Q) → 1 be a non-split central extension. Then there exists a

Galois extension M/Q such that

(1) M/Q gives a proper solution of (L/Q, ε), and

(2) M/L is unramified at all finite primes.

Remark 1. There does not always exist a non-split central extension
(ε) : 1 → Z/2Z → E → Gal(L/Q) → 1. The existence of such an extension
is equivalent to the condition H2(Gal(L/Q),Z/2Z) 6= 0.
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Proof of Theorem 1. By using the local-global theory of central embedding
problems, we can prove that (L/Q, ε) has a solution and take a Galois exten-
sion M1/L/Q corresponding to a proper solution such that any prime above
2 is unramified in M1/L. This method is similar to [17, Theorem 8], so we
omit details.

Let pi (i = 1, 2, . . . , t) be all the primes of Q such that some primes of
L lying above pi are ramified in M1/L. By the choice of M1, pi is odd for
all i. Let m = ±p1p2 · · · pt, where the sign is determined by the condition
m ≡ 1 (mod 4). Then Q(

√
m)/Q is unramified outside {p1, . . . , pt}. Let M

be the field such that M1(
√
m) % M % L, M 6= L(

√
m), M 6= M1.

Q

L

M1

M

Q(
√
m)

L(
√
m)

M1(
√
m)

Since the Galois group of M1(
√
m)/L is isomorphic to Z/2Z × Z/2Z, M is

uniquely determined.
Let Pi be a prime of M1(

√
m) lying above pi, and pi the restriction of Pi

to L. Since pi is ramified in M1/L and L(
√
m)/L, the inertia field of Pi in

M1(
√
m)/L is equal to M . Therefore M/L is unramified at all finite primes.

Since (ε) is a central extension, M gives a proper solution of (L/Q, ε). We
have thus proved the theorem. �

We can easily generalize Theorem 1 to the following.

Theorem 2. Let L/K/Q be a Galois extension such that L/K is a 2-
extension and the degree [K : Q] is odd. Let (ε) : 1 → Z/2Z → E →
Gal(L/Q) → 1 be a non-split central extension and SL a finite set of primes of

L which contains all primes ramified in L/K and all infinite primes. Assume

that (L/Q, ε) has a solution. Then there exists a Galois extension M/Q such

that

(1) M/Q gives a proper solution of (L/Q, ε), and

(2) M/L is unramified outside SL.

3. Applications

As an application of Theorem 1, we study the existence of unramified non-
abelian 2-extensions.
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Proposition 3. Let l be an odd prime such that the order of 2 mod l is

even, and K an abelian l-extension over Q with even class number. Then there

exists a Galois extension M/K such that the Galois group is a non-abelian

2-group and M/K is unramified at all finite primes.

For the proof, we need some lemmas.
Let l be an odd prime and f the order of 2 mod l. For each positive integer

i, denote by fi the order of 2 mod li.

Lemma 4 ([17, Proposition 6]). Let L/K/k be a Galois extension satisfy-

ing the following conditions:

(1) K/k is an abelian l-extension;

(2) L/K is an elementary abelian 2-extension;

(3) there is no Galois extension L1/k such that L % L1 % K.

Let le be the exponent of the group Gal(K/k). Then the 2-rank of Gal(L/K)
is equal to one of 1, f1, f2, . . . , fe. If L/K is a quadratic extension, then

Gal(L/k) is isomorphic to the direct product of Gal(K/k) and Gal(L/K).

Remark 2. In [17, Proposition 6] we assumed that p is an odd prime,
but the proof is applicable to the case p = 2.

Lemma 5. Let G be a split extension of an abelian 2-group A by an l-group

B. Assume that f is even and the 2-rank of A is fn for some odd integer n.
Then the cohomology group H2(G,Z/2Z) is non-trivial.

Proof. By Hall’s theorem on the decomposition of cohomology groups,

H2(G,Z/2Z) ∼= H2(A,Z/2Z)B ⊕ H2(B, (Z/2Z)
A
)

(cf. Babakhanian [1, 55.1]). Since the order of B is odd, H2(B, (Z/2Z)
A
) = 0.

Therefore
H2(G,Z/2Z) ∼= H2(A,Z/2Z)B .

Since the 2-rank of A is fn,

H2(A,Z/2Z) ∼= (Z/2Z)fn(fn+1)/2.

By the assumption that f is even, fn(fn+ 1)/2 is not divisible by f . Hence

(∗∗) 2fn(fn+1)/2 6≡ 1 (mod l).

We consider the orbit decomposition with respect to the action of B to
H2(A,Z/2Z),

H2(A,Z/2Z) = H2(A,Z/2Z)B ∪B · t1 ∪ · · · ∪B · tm,
where the cardinality of B · ti is divisible by l.

By using (∗∗), we have H2(A,Z/2Z)B 6= 0. This completes the proof of
Lemma 5. �
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Lemma 6 ([7, Theorem 2.3]). Let A be a p′-group of automorphisms of

the abelian p-group P . Let CP (A) = {x ∈ P |xa = x for all a ∈ A}, and let

[P,A] be the subgroup of P generated by all elements xax−1(a ∈ A, x ∈ P ).
Then P = CP (A) × [P,A].

Proof of Proposition 3. Let K1/K be an unramified quadratic extension,

and K̃1 the Galois closure of K1/Q. Then K̃1/K is an elementary abelian
2-extension. We take a Galois extension L/K/Q satisfying the following con-
ditions:

(1) L/K is an elementary abelian 2-extension;
(2) there is no Galois extension L1/Q such that L % L1 % K.

By Lemma 4, the 2-rank of Gal(L/K) is equal to one of f1, f2, . . . , fe. It is
easy to see that fj = flr for some non-negative integer r. Then, by virtue of
Lemma 5, H2(Gal(L/Q),Z/2Z) is non-trivial. Hence there exists a non-split
central extension (ε) : 1 → Z/2Z → E → Gal(L/Q) → 1. By Theorem 1,
there exists a Galois extension M/L/Q such that M/L is unramified at all
finite primes and Gal(M/Q) is isomorphic to E.

We claim that M/K is a non-abelian extension. Assume that M/K is
abelian. Since Gal(K/Q) acts on Gal(M/K), we can regard Gal(K/Q) as a
group of automorphisms of Gal(M/K). By Lemma 6,

Gal(M/K) ∼= CGal(M/K)(Gal(K/Q)) × [Gal(M/K),Gal(K/Q)].

Since

1 → Gal(M/L) → Gal(M/Q) → Gal(L/Q) → 1

is a non-split central extension, Gal(M/K) ∼= Z/4Z × Z/2Z × · · · × Z/2Z
and CGal(M/K)(Gal(K/Q)) = Gal(M/L) ∼= Z/2Z. It is easy to see that
the exponent of [Gal(K/Q),Gal(M/K)] is two. Therefore the exponent of
CGal(M/K)(Gal(K/Q)) × [Gal(M/K),Gal(K/Q)] is also two. On the other
hand, the exponent of Gal(M/K) is four. This is a contradiction.

Hence M/K is non-abelian, which is a required extension. This concludes
the proof. �

In the following, we shall study the case when K is a cyclic field.
Let Q be the quaternion group given by the presentation 〈σ, τ | σ4 =

1, τ2 = σ2, τ−1στ = σ−1 〉.
The following proposition was first proved by Bachoc–Kwon [2] and Cou-

ture–Derhem [5]. The proof in [2] is more explicit, and we can find there
some numerical examples of defining equations. Here we shall give another
approach to this proposition, which is applicable to more general cases.

Proposition 7. Let K be a cyclic cubic field with even class number.

Then there exists a Galois extension M/K such that the Galois group is iso-

morphic to Q and M/K is unramified at all finite primes.
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Proof. Let K1/K be an unramified quadratic extension. Suppose that
K1/Q is Galois. Since the group of order 6 having a normal subgroup of
order 2 is abelian, there exists an unramified 2-extension over Q. This con-
tradicts the fact that the class number of Q is 1. Hence K1/Q is non-Galois.
We denote by L the Galois closure of K1/Q. By Lemma 4, Gal(L/K) is iso-
morphic to Z/2Z×Z/2Z. (See also [12] and [20].) Then Gal(L/Q) is isomor-
phic to A4

∼= PSL(2, 3). The canonical sequence 1 → Z/2Z → SL(2, 3) →
PSL(2, 3) → 1 is a non-split central extension. By Theorem 1, there exists
a Galois extension M/Q such that Gal(M/Q) is isomorphic to SL(2, 3) and
M/L is unramified at all finite primes. The unique Sylow subgroup of E is
isomorphic to Q and the fixed field of Q is equal to K. This completes the
proof of Proposition 6. �

Remark 3. The class number of Galois fields of this type was studied well
in [14]. Unramified quaternion extensions of quadratic fields were studied by
many authors; see, for example, [10] and [13].

Proposition 8. Let K be a cyclic quintic field with even class number.

Then there exists a Galois extension M/K such that the Galois group is iso-

morphic to

32Γ5a2 =
〈
a, b, c, d

d2 = 1, a2 = b2 = c2 = [b, c] = [a, d],
[a, b] = [a, c] = [b, d] = [c, d] = 1

〉

and M/K is unramified at all finite primes.

Proof. The order of 2 mod 5 is 4. Then, by Lemma 4, there exists a Galois
extension L/K/Q such that Gal(L/K) ∼= (Z/2Z)4 and L/K is unramified.
By Lemma 5, we can take a non-split central extension (ε) : 1 → Z/2Z →
E → Gal(L/Q) → 1. By virtue of Theorem 1, there exists a Galois extension
M/Q such that Gal(M/Q) ∼= E and M/K is unramified at all finite primes.
Let H be the unique 2-Sylow subgroup of E. Then H satisfies the following
conditions:

(1) the order of H is 32;
(2) the 2-rank of H is 4;
(3) H has an automorphism of order 5.

Assume that H is abelian. Then H is isomorphic to Z/4Z× (Z/2Z)3, and the
order of Aut(H) is 21504 = 210 · 3 · 7. This contradicts condition (3). Thus H
is non-abelian. The non-abelian group satisfying the above conditions (1)–(3)
is unique and isomorphic to 32Γ5a2 (cf. [9] and [19]). This completes the
proof. �
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Example. In [11], we can find a table of class numbers of quintic fields.
For example:

conductor 941 1771 3091 3931 23411 31861
class number 24 24 · 5 24 · 5 28 24 · 53 24 · 5 · 112

Corollary 9. Let l be an odd prime such that the order of 2 mod l
is even, and let K be an abelian l-extension over Q. Assume that the class

number of K is even. Then the Galois group Gal(K
(∞)
+ (2)/K) is not powerful.

Proof. By Proposition 3 and its proof, there exists a Galois extension
M/L/K satisfying the following conditions:

(1) M/K is unramified at all finite primes;
(2) Gal(M/K) is a non-abelian 2-group;
(3) Gal(L/K) is an elementary abelian 2-group;
(4) M/L is a quadratic extension.

Then the exponent of Gal(M/K) is four. Hence Gal(M/K) is not powerful.

Since quotient groups of powerful groups are also powerful, Gal(K
(∞)
+ (2)/K)

is not powerful. This completes the proof. �
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[15] J. Neukirch, Über das Einbettungsproblem der algebraischen Zahlentheorie, Invent.

Math. 21 (1973), 59–116.

[16] A. Nomura, On the existence of unramified p-extensions, Osaka J. Math. 28 (1991),

55–62.

[17] , On the class numbers of certain Hilbert class fields, Manuscripta Math. 79

(1993), 379–390.

[18] , On embedding problems with restricted ramifications, Arch. Math. 73 (1999),

199–204.

[19] T. W. Sag and J. W. Wamsley, Minimal presentations for groups of order 2n, n ≤ 6,

J. Austral. Math. Soc. 15(1973), 461–469.

[20] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152.

Department of Mathematics, Kanazawa University, Kanazawa 920-1192, Japan

E-mail address: anomura@t.kanazawa-u.ac.jp


