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TRANSPORTATION COST INEQUALITIES ON PATH
SPACES OVER RIEMANNIAN MANIFOLDS

FENG-YU WANG

Abstract. Some transportation cost inequalities are established on the
path space over a connected complete Riemannian manifold with Ricci

curvature bounded from below. The reference distance on the path
space is the L2-norm of the Riemannian distance along paths.

1. Introduction

Let M be a connected complete Riemannian manifold either with convex
boundary ∂M or without boundary. Assume that there is a nonnegative
constant K such that

(1.1) Ric(X,X) ≥ −K|X|2, X ∈ TM.

Then it is well-known that the (reflecting if ∂M 6= ∅) Brownian motion on M
is nonexplosive.

For fixed p ∈ M and T > 0, let µT denote the distribution of the (reflect-
ing) Brownian motion starting from p before time T . Then µT is a probability
measure on M [0,T ] := {x� : [0, T ]→M} with σ-field AT induced by cylindri-
cally measurable functions. Since the diffusion process is continuous, µT has
full measure on the path space

MT
p := {x� ∈ C([0, T ];M) : x0 = p}

with σ-algebra ATp := MT
p ∩ AT . Our aim is to establish Talagrand’s trans-

portation cost inequality for the measure µT . This inequality was first intro-
duced in [13] for the standard Gaussian measure on Rd.

Before we state our main results, let us recall the known results in finite
dimensions. Let ρ(x, y) be the Riemannian distance between x and y for
x, y ∈M . Let µ := eV (x)dx be a probability measure on M , where dx denotes
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the Riemannian volume element. For any probability measure ν on M , let
W2(ν, µ) be the L2-Wasserstein distance of ν and µ induced by ρ, i.e.,

W2(ν, µ)2 := inf
π∈C(ν,µ)

∫
M×M

ρ(x, y)2π(dx, dy),

where C(ν, µ) stands for the set of probability measures on M × M with
marginal distributions ν and µ. In 1996, Talagrand [13] proved for M = R

d

and µ the standard Gaussian measure that

W2(fµ, µ)2 ≤ 2µ(f log f), f ≥ 0, µ(f) = 1.

This inequality was subsequently established by Otto and Villani [11] for
general M under a curvature condition: If Ric−HessV is bounded below,
then the log-Sobolev inequality implies the transportation cost inequality.
Recently, Otto and Villani’s result was proved by Bobkov, Gentil and Ledoux
[4] for measurable V without any curvature condition; see Section 2.3 and the
equivalence of (1.12) and (1.13) therein. This result is a starting point of our
present work, and we therefore state it explicitly:

Theorem 1.1 ([11] and [4]). Let µ := eV dx be a probability measure on
M . If there is a constant C > 0 such that

(1.2) µ(f2 log f2) ≤ 2Cµ(|∇f |2), f ∈ C1
b (M), µ(f2) = 1,

then

(1.3) W2(fµ, µ)2 ≤ 2Cµ(f log f), f ≥ 0, µ(f) = 1.

In view of Theorem 1.1 we may ask for transportation cost inequalities
on the path space as the log-Sobolev inequality holds for the O-U Dirichlet
form on MT

p provided Ric is bounded; see, e.g., [1], [8], [5]. For this purpose
one may take the intrinsic distance of this Dirichlet form. Indeed, such a
transportation cost inequality has been established recently by Gentil [6] for
M = R

d and by the author [16] for compact M . In this paper, we work
with the following simple but natural distance and establish a transport cost
inequality depending only on the lower bound of the curvature.

For any T > 0, let

ρT (x�, y�) :=
{∫ T

0

ρ(xs, ys)2ds

}1/2

, x�, y� ∈MT
p .

Let WT
2 be the corresponding L2-Wasserstein distance. Moreover, for I =

{s1, · · · , sn} with 0 < s1 < · · · < sn < T define the distance on M I := {xI =
(xs1 , · · · , xsn) : xsi ∈M, 1 ≤ i ≤ n} by

ρI(xI , yI) :=
{ n∑
i=1

(si+1 − si)ρ(xsi , ysi)
2

}1/2

, xI , yI ∈M I , sn+1 := T.
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Let W I
2 be the corresponding probability distance. For a probability measure

ν on MT
p , let νI denote its projection onto M I . For two probability measures

µ1, µ2 on MT
p , define

W̃T
2 (µ1, µ2) := sup

{
W I

2 (µI1, µ
I
2) : I ⊂ (0, T ) is finite

}
.

We have the following result where only the lower bound of Ric is involved.

Theorem 1.2. Assume (1.1). For any nonnegative measurable function
f on MT

p with µT (f) = 1, we have

(1.4) WT
2 (fµT , µT )2 ≤ W̃T

2 (fµT , µT )2 ≤ 2
K2

(eKT − 1−KT )µT (f log f).

Among other applications, the transportation cost inequality can be applied
to obtain exponential convergence of a Markov semigroup in the Wasserstein
distance. For instance, let P̃t be a symmetric Markov semigroup on L2(µT )
whose Dirichlet form satisfies a log-Sobolev inequality. Then it is well-known
that for nonnegative f with µT (f) = 1 and µT (f log f) <∞, µT (P̃tf log P̃tf)
converges to zero exponentially fast as t→∞. Thus, by Theorem 1.2, so does
WT

2 ((P̃tf)µT , µT )2.
Note that (1.4) does not make sense when T → ∞. To establish a trans-

portation cost inequality which holds also for T = ∞, we introduce below a
modified distance. For K ≥ 0, T > 0 and h ∈ C[0,∞) with h(r) > 0 for r > 0
such that

∫ 1

0
s−1h(s)ds <∞, define

ρTh (x�, y�) :=
{∫ T

0

h(s)ρ(xs, ys)2∫ s
0
dr
∫ T
r
h(t)eK(t−r)dt

ds

}1/2

.

Let WT,h
2 be the corresponding L2-Wasserstein distance. Let W̃T,h

2 be defined
in the same way as W̃T

2 with ρI replaced by

ρIh(xI , yI) :=
{ n∑
j=1

ρ(xsj , ysj )
2
∫ sj+1

sj
h(s)ds∫ sj

0
ds
∫ T
s
eK(t−s)h(t)dt

}1/2

, sn+1 := T.

Theorem 1.3. Assume (1.1). For any T > 0 and any h ∈ C(0,∞) with
h(r) > 0 for r > 0 such that

∫ 1

0
s−1h(s)ds <∞, we have

WT,h
2 (fµT , µT )2 ≤ W̃T,h

2 (fµT , µT )2 ≤ 2µT (f log f), f ≥ 0, µT (f) = 1.

In particular, if
∫∞

0
h(t)etKdt <∞, then

W∞,h2 (fµ∞, µ∞)2 ≤ W̃∞,h2 (fµ∞, µ∞)2 ≤ 2µ∞(f log f), f ≥ 0, µ∞(f) = 1.

Remark. Theorems 1.2 and 1.3 can be extended to diffusion processes
with time-dependent drifts. Consider, for instance, the process generated by
L(·, t) := 1

2 (∆ + Zt), where Zt is a C1-vector field for each t ∈ [0, T ). In
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particular, let pt(x, y) be the transition density of the Brownian motion and
let

Zt := 2∇ log pT−t(·, q), t ∈ [0, T )

for a fixed point q. Then the distribution of the diffusion process starting
from p is the Brownian bridge measure on the pinned path space {x� ∈MT

p :
xT = q}.

Assume that K� ∈ C([0, T ); [0,∞)) is such that

Ric(X,X)− 〈∇XZt, X〉 ≥ −Kt|X|2, t ∈ [0, T ), X ∈ TM.

Then

WT
2 (fµT , µT )2 ≤ W̃T

2 (fµT , µT )2 ≤ 2µT (f log f)
∫ T

0

ds

∫ T

s

eKt(t−s)dt

for all f ≥ 0 with µT (f) = 1. Moreover, Theorem 1.3 remains true with K
replaced by Kt in the definitions of ρTh and ρIh.

2. Proofs of Theorem 1.2 and 1.3

To apply Theorem 1.1, we first prove a log-Sobolev inequality for cylindrical
functions.

Lemma 2.1. Assume (1.1). Let f be a cylindrically smooth function with
f(x�) = f(xs1 , · · · , xsn), 0 < s1 < · · · sn ≤ T . If µT (f2) = 1 then
(2.1)

µT (f2 log f2) ≤ 2
n∑
i=1

∫ ( n∑
j=i

|∇jf |
(eK(sj−si−1) − eK(sj−si)

K

)1/2
)2

dµT ,

where s0 := 0 and ∇j denotes the gradient w.r.t. xsj .

Proof. Let Pt be the semigroup of the (reflecting) Brownian motion. By
(1.1) we have (see, e.g., [12], [9], [15])

(2.2) |∇Ptξ(x)| ≤ eKt/2Pt|∇ξ|(x), t ≥ 0, ξ ∈ C1
b (M), x ∈M.

By Bakry’s semigroup argument, (2.2) implies that (see, e.g., [3], [8])

(2.3) Pt(ξ2 log ξ2) ≤ 2(eKt − 1)
K

Pt|∇ξ|2 + (Ptξ2) logPtξ2

for any t ≥ 0, ξ ∈ C1
b (M). Hence (2.1) holds for n = 1 since in this case

µT (f2 log f2) = Ps1(f2 log f2)(p). Assume that (2.1) holds for n ≤ k for some
k ≥ 1. It remains to prove (2.1) for n = k + 1. Let

µ{s1,··· ,sn}(dxs1 , . . . , dxsn) = P (s1, p, dxs1)P (s2 − s1, xs1 , dxs2)

· · ·P (sk − sk−1, xsk−1 , dxsk),
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where P (t, x, dy) is the transition kernel of the (reflecting) Brownian motion.
Note that for fixed y ∈Mk, it follows from (2.2) with t = sk+1 − sk that∣∣∣∣∇ ∫

M

f2(y, xsk+1)P (sk+1 − sk, ·, dxsk+1)
∣∣∣∣(2.4)

≤ 2eK(sk+1−sk)/2

∫
M

(|f | · |∇k+1f |)(y, xsk+1)P (sk+1 − sk, ·, dxsk+1).

Applying (2.3) with t = sk+1 − sk, (2.1) with n = k, and taking (2.4) into
account, we obtain

µT (f2 log f2) =
∫
Mk

dµ{s1,··· ,sk}
∫
M

(f2 log f2)P (sk+1 − sk, xsk , dxsk+1)

≤ 2(eK(sk+1−sk) − 1)
K

µT (|∇k+1f |2)

+ 2
∫
Mk

k∑
i=1

µ{s1,··· ,sk}(dxs1 , · · · , dxsk)∫
M
f2P (sk+1 − sk, xsk , dxsk+1)

·

·
{∫

M

|f |
( k+1∑
j=i

|∇jf |
(eK(sj−si−1) − eK(sj−si)

K

)1/2
)
·

· P (sk+1 − sk, xsk , dxsk+1)
}2

≤ 2
k+1∑
i=1

∫ ( k+1∑
j=i

|∇jf |
(eK(sj−si−1) − eK(sj−si)

K

)1/2
)2

dµT . �

Corollary 2.2. In the situation of Lemma 2.1, let I = {s1, · · · , sn} with
0 < s1 < · · · < sn ≤ T and let µI denote the projection of µT onto M I . For
any sn+1 > sn and any function h : (0, T ]→ (0,∞), we have

µI(f2 log f2) ≤ 2
n∑
j=1

µI(|∇jf |2)∫ sj+1

sj
h(s)ds

∫ sj

0

ds

∫ sn+1

s

eK(t−s)h(t)dt.

Proof. Note that{ n∑
j=i

|∇jf |
(∫ si

si−1

eK(sj−s)ds

)1/2}2

≤
( n∑
j=i

|∇jf |2∫ sj+1

sj
h(s)ds

) n∑
k=i

∫ si

si−1

eK(sk−s)ds

∫ sk+1

sk

h(t)dt

≤
( n∑
j=i

|∇jf |2∫ sj+1

sj
h(s)ds

)∫ si

si−1

ds

∫ sn+1

s

eK(t−s)h(t)dt.

Then the desired result follows from Lemma 2.1. �
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Lemma 2.3. Let ρt(x�, y�) := ρ(xt, yt). We have

(µT × µT )(ρ2
t ) ≤

1
K

(eKt − 1), t ∈ [0, T ].

Proof. Let (xt)t≥0 and (yt)t≥0 be two independent (reflecting) Brownian
motions with x0 = y0 = p. Since ∂M is either empty or convex, we have (see
[10], [14])

dρ(xt, yt) =
√

2dbt +
1
2

(∆ρ(xt, ·)(yt) + ∆ρ(·, yt)(xt))dt− dLt,

where bt is the one-dimensional Brownian motion and Lt is an increasing
process. By (1.1) and the Laplacian comparison theorem we have

1
2

(∆ρ(x, ·)(y) + ∆ρ(·, y)(x)) ≤
√
K(d− 1) coth

(√
K(d− 1)ρ(x, y)

)
≤ d− 1
ρ(x, y)

+
√
K(d− 1).

Therefore, by Ito’s formula we obtain

dρ(xt, yt)2 ≤ 2
√

2ρ(xt, yt)dbt + (2d+ 2
√
K(d− 1)ρ(xt, yt))dt

≤ 2
√

2ρ(xt, yt)dbt + (3d− 1 +Kρ(xt, yt)2)dt.

Since ρ(x0, y0) = 0, this implies that

Eρ(xt, yt)2 ≤ 1
K

(3d− 1)(eKt − 1), t > 0.

Hence the proof is finished. �

Lemma 2.4. Assume (1.1). Let ct = (etKt − 1)/K. We have

[µT×µT ](eαρ(xt,yt)
2
) ≤ exp[α(3d− 1)ct/(1− 4αct)]√

1− 4αct
, t ∈ [0, T ], α ∈ (0, 1/4ct).

Proof. By (2.3) and the additivity of the log-Sobolev inequality (see [7])
we have

(Pt×Pt)(ξ2 log ξ2) ≤ 2ct(Pt×Pt)(|∇M×Mξ|2) + (Pt×Pt)(ξ2) log(Pt×Pt)(ξ2)

for any t > 0, ξ ∈ C1
b (M ×M). Since |∇M×Mρ|2 = 2, according to [2] this

implies that

(2.5) (Pt × Pt)(eαρ
2
) ≤ exp[α((Pt × Pt)(ρ))2/(1− 4αct)]√

1− 4αct
, t > 0.

Applying Lemma 2.3 completes the proof. �

Proof of Theorem 1.2. For I = {si : 1 ≤ i ≤ n} with 0 < s1 < · · · < sn <
T , let f I(xs1 , · · · , xsn) = µT (f |xs1 , · · · , xsn) and let µI be the projection of
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µT onto M I . It is easy to check that ρI is the Riemannian distance on M I

with metric
〈X,Y 〉I :=

∑
i

(si+1 − si)〈Xsi , Ysi〉M ,

where Xsi (resp. Ysi) is the i-th component of X (resp. Y ) which is tangent
to M{si}. Moreover, let ∇I denote the corresponding gradient operator. For
g ∈ C∞(M I) one has

〈∇Ig,∇Ig〉I =
n∑
j=1

(sj+1 − sj)−1|∇jg|2.

Thus, by Theorem 1.1 and Corollary 2.2 with h ≡ 1, we obtain

W I
2 (f IµIp, µ

I)2 ≤ 2µI(f I log f I)
∫ sn

0

ds

∫ sn+1

s

eK(t−s)dt(2.6)

≤ 2µT (f log f)
∫ T

0

ds

∫ T

s

eK(t−s)dt.

It remains to prove the first inequality in (1.4). Since (MT
p , ρ

T
∞) is a Pol-

ish space with Borel σ-algebra ATp , where ρT∞(x�, y�) := supt∈[0,T ] ρ(xt, yt),
{µT , fµT } is tight. Moreover, for any compact set D ⊂ MT

p and any π ∈
C(fµT , µT ) one has

π((D ×D)c) ≤ µT (Dc) + (fµT )(Dc).

Thus C(fµT , µT ) is tight too. Let {In} be increasing such that δ(In) ↓ 0 as
n ↑ ∞, where δ(In) := max1≤i≤kn+1(si−si−1) for In := {0 = s0 < s1 < · · · <
skn < T = skn+1}. For each n ≥ 1 let πIn ∈ C(f InµIn , µIn) be such that

πIn((ρIn)2) ≤W In
2 (f InµIn , µIn)2 +

1
n
.

Let
πn(·) :=

∫
πIn(dxIn , dyIn)[(fµT )× µT ](·|xIn , yIn);

i.e., for any set A ⊂ ATp ×ATp ,

πn(A) :=
∫
MIn×MIn

[(fµT )× µT ](A|xIn , yIn)πIn(dxIn , dyIn).

Then {πn} ⊂ C(fµT , µT ). Let {πn′} be a subsequence such that πn′ → π
weakly for a probability measure π on MT

p × MT
p . Then π ∈ C(fµT , µT ).

Thus for any n ≥ 1 and any N > 0, if we let ρInN be defined in the same way
as ρIn , but with ρ replaced by ρ ∧N , we have

π((ρInN )2) = lim
n′→∞

πIn′ ((ρInN )2)(2.7)

≤ (1 + ε)W̃T
2 (fµT , µT )2 + (1 + ε−1) sup

n′>n
πIn′ (|ρInN − ρ

In′
N |

2)
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for any ε > 0. Noting that |ρ(xs, ys) − ρ(xt, yt)| ≤ ρ(xs, xt) + ρ(ys, yt), we
have

sup
n′>n

πIn′ (|ρInN − ρ
In′
N |

2)

≤ 2
∫
MT
p

{
N ∧ sup

0<s<t<T,t−s≤δ(In)

ρ(xs, xt)
}2

(fµT + µT )(dx�),

which converges to zero as n → ∞ according to the dominated convergence
theorem. Letting first n ↑ ∞, then N ↑ ∞, and finally ε ↓ 0 in (2.7), we
complete the proof. �

Proof of Theorem 1.3. We simply note that the argument in the proof of
Theorem 1.2 yields

W I,h
2 (f IµT , µT )2 ≤ 2µT (f log f);

hence the first assertion follows. It remains to prove the second assertion,
where

∫∞
0
etKth(t)dt <∞. To this end, it suffices to show

(2.8) W∞,h2 (fµ∞, µ∞) ≤ lim sup
T→∞

WT,h
2 (fµT , µT ).

For nonnegative f with µ∞(f) = 1 and µ∞(f log f) <∞, by Lemma 2.4 with
αt = 1/8ct for each t > 0 we obtain

[(fµ∞)× µ∞]((ρ∞h )2) =
∫ ∞

0

h(t)[(fµ∞)× µ∞](ρ(xt, yt)2)dt∫ t
0
ds
∫∞
s
eK(r−s)h(r)dr

≤
∫ ∞

0

h(t)µ∞(f log f)dt

αt
∫ t

0
ds
∫∞
s
eK(r−s)h(r)dr

+
∫ ∞

0

h(t)[µ∞ × µ∞](exp[αtρ(xt, yt)2])dt∫ t
0
ds
∫∞
s
eK(r−s)h(r)dr

<∞.

Therefore

(2.9) µ∞
(
(1 + f)(ρ∞h (·, z�)2

)
<∞

for µ∞-a.s. z� ∈ M∞p . Let us fix z� ∈ M∞p such that (2.9) holds. For any
coupling πT for fTµT and µT , where fT (x[0,T ]) := µ∞(f |x[0,T ]), we have

π(·) :=
∫
MT
p ×MT

p

πT (dx[0,T ], dy[0,T ])[(fµ∞)× µ∞](·
∣∣x[0,T ], y[0,T ])

∈ C(fµ∞, µ∞).



TRANSPORTATION COST INEQUALITIES 1205

Then

W∞,h2 (fµ∞, µ∞)2 ≤
∫
MT
p ×MT

p

(ρTh )2dπT

+ 2
∫ ∞
T

h(s)[ρ(xs, zs)2 + ρ(ys, zs)2]π(dx�, dy�)∫ s
0
dr
∫∞
r
eK(t−r)h(t)dt

ds

=
∫
MT
p ×MT

p

(ρTh )2dπT + 2
∫ ∞
T

h(s)
∫
ρ(xs, zs)2[(1 + f)µ∞](dx�)∫ s
0
dr
∫∞
r
eK(t−r)h(t)dt

ds

=:
∫
MT
p ×MT

p

(ρTh )2dπT + ε(T ).

Combining this with the first assertion, we arrive at

W∞,h2 (fµ∞, µ∞)2 ≤WT,h
2 (fTµT , µT )2 + ε(T ).

Then (2.8) follows by noting that limT→∞ ε(T ) = 0 according to (2.9). �
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