TRANSPORTATION COST INEQUALITIES ON PATH SPACES OVER RIEMANNIAN MANIFOLDS

FENG-YU WANG

Abstract

Some transportation cost inequalities are established on the path space over a connected complete Riemannian manifold with Ricci curvature bounded from below. The reference distance on the path space is the L^{2}-norm of the Riemannian distance along paths.

1. Introduction

Let M be a connected complete Riemannian manifold either with convex boundary ∂M or without boundary. Assume that there is a nonnegative constant K such that

$$
\begin{equation*}
\operatorname{Ric}(X, X) \geq-K|X|^{2}, \quad X \in T M \tag{1.1}
\end{equation*}
$$

Then it is well-known that the (reflecting if $\partial M \neq \emptyset$) Brownian motion on M is nonexplosive.

For fixed $p \in M$ and $T>0$, let μ^{T} denote the distribution of the (reflecting) Brownian motion starting from p before time T. Then μ^{T} is a probability measure on $M^{[0, T]}:=\{x .:[0, T] \rightarrow M\}$ with σ-field \mathcal{A}^{T} induced by cylindrically measurable functions. Since the diffusion process is continuous, μ^{T} has full measure on the path space

$$
M_{p}^{T}:=\left\{x . \in C([0, T] ; M): x_{0}=p\right\}
$$

with σ-algebra $\mathcal{A}_{p}^{T}:=M_{p}^{T} \cap \mathcal{A}^{T}$. Our aim is to establish Talagrand's transportation cost inequality for the measure μ^{T}. This inequality was first introduced in [13] for the standard Gaussian measure on \mathbb{R}^{d}.

Before we state our main results, let us recall the known results in finite dimensions. Let $\rho(x, y)$ be the Riemannian distance between x and y for $x, y \in M$. Let $\mu:=e^{V(x)} d x$ be a probability measure on M, where $d x$ denotes

[^0]the Riemannian volume element. For any probability measure ν on M, let $W_{2}(\nu, \mu)$ be the L^{2}-Wasserstein distance of ν and μ induced by ρ, i.e.,
$$
W_{2}(\nu, \mu)^{2}:=\inf _{\pi \in \mathcal{C}(\nu, \mu)} \int_{M \times M} \rho(x, y)^{2} \pi(d x, d y)
$$
where $\mathcal{C}(\nu, \mu)$ stands for the set of probability measures on $M \times M$ with marginal distributions ν and μ. In 1996, Talagrand [13] proved for $M=\mathbb{R}^{d}$ and μ the standard Gaussian measure that
$$
W_{2}(f \mu, \mu)^{2} \leq 2 \mu(f \log f), \quad f \geq 0, \mu(f)=1
$$

This inequality was subsequently established by Otto and Villani [11] for general M under a curvature condition: If Ric - Hess_{V} is bounded below, then the log-Sobolev inequality implies the transportation cost inequality. Recently, Otto and Villani's result was proved by Bobkov, Gentil and Ledoux [4] for measurable V without any curvature condition; see Section 2.3 and the equivalence of (1.12) and (1.13) therein. This result is a starting point of our present work, and we therefore state it explicitly:

Theorem 1.1 ([11] and [4]). Let $\mu:=e^{V} d x$ be a probability measure on M. If there is a constant $C>0$ such that

$$
\begin{equation*}
\mu\left(f^{2} \log f^{2}\right) \leq 2 C \mu\left(|\nabla f|^{2}\right), \quad f \in C_{b}^{1}(M), \mu\left(f^{2}\right)=1 \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
W_{2}(f \mu, \mu)^{2} \leq 2 C \mu(f \log f), \quad f \geq 0, \mu(f)=1 \tag{then}
\end{equation*}
$$

In view of Theorem 1.1 we may ask for transportation cost inequalities on the path space as the log-Sobolev inequality holds for the O-U Dirichlet form on M_{p}^{T} provided Ric is bounded; see, e.g., [1], [8], [5]. For this purpose one may take the intrinsic distance of this Dirichlet form. Indeed, such a transportation cost inequality has been established recently by Gentil [6] for $M=\mathbb{R}^{d}$ and by the author [16] for compact M. In this paper, we work with the following simple but natural distance and establish a transport cost inequality depending only on the lower bound of the curvature.

For any $T>0$, let

$$
\rho^{T}\left(x_{.}, y_{.}\right):=\left\{\int_{0}^{T} \rho\left(x_{s}, y_{s}\right)^{2} d s\right\}^{1 / 2}, \quad x ., y . \in M_{p}^{T}
$$

Let W_{2}^{T} be the corresponding L^{2}-Wasserstein distance. Moreover, for $I=$ $\left\{s_{1}, \cdots, s_{n}\right\}$ with $0<s_{1}<\cdots<s_{n}<T$ define the distance on $M^{I}:=\left\{x_{I}=\right.$ $\left.\left(x_{s_{1}}, \cdots, x_{s_{n}}\right): x_{s_{i}} \in M, 1 \leq i \leq n\right\}$ by

$$
\rho^{I}\left(x_{I}, y_{I}\right):=\left\{\sum_{i=1}^{n}\left(s_{i+1}-s_{i}\right) \rho\left(x_{s_{i}}, y_{s_{i}}\right)^{2}\right\}^{1 / 2}, \quad x_{I}, y_{I} \in M^{I}, s_{n+1}:=T
$$

Let W_{2}^{I} be the corresponding probability distance. For a probability measure ν on M_{p}^{T}, let ν^{I} denote its projection onto M^{I}. For two probability measures μ_{1}, μ_{2} on M_{p}^{T}, define

$$
\widetilde{W}_{2}^{T}\left(\mu_{1}, \mu_{2}\right):=\sup \left\{W_{2}^{I}\left(\mu_{1}^{I}, \mu_{2}^{I}\right): I \subset(0, T) \text { is finite }\right\}
$$

We have the following result where only the lower bound of Ric is involved.
Theorem 1.2. Assume (1.1). For any nonnegative measurable function f on M_{p}^{T} with $\mu^{T}(f)=1$, we have

$$
\begin{equation*}
W_{2}^{T}\left(f \mu^{T}, \mu^{T}\right)^{2} \leq \widetilde{W}_{2}^{T}\left(f \mu^{T}, \mu^{T}\right)^{2} \leq \frac{2}{K^{2}}\left(e^{K T}-1-K T\right) \mu^{T}(f \log f) \tag{1.4}
\end{equation*}
$$

Among other applications, the transportation cost inequality can be applied to obtain exponential convergence of a Markov semigroup in the Wasserstein distance. For instance, let \widetilde{P}_{t} be a symmetric Markov semigroup on $L^{2}\left(\mu^{T}\right)$ whose Dirichlet form satisfies a log-Sobolev inequality. Then it is well-known that for nonnegative f with $\mu^{T}(f)=1$ and $\mu^{T}(f \log f)<\infty, \mu^{T}\left(\widetilde{P}_{t} f \log \widetilde{P}_{t} f\right)$ converges to zero exponentially fast as $t \rightarrow \infty$. Thus, by Theorem 1.2, so does $W_{2}^{T}\left(\left(\widetilde{P}_{t} f\right) \mu^{T}, \mu^{T}\right)^{2}$.

Note that (1.4) does not make sense when $T \rightarrow \infty$. To establish a transportation cost inequality which holds also for $T=\infty$, we introduce below a modified distance. For $K \geq 0, T>0$ and $h \in C[0, \infty)$ with $h(r)>0$ for $r>0$ such that $\int_{0}^{1} s^{-1} h(s) d s<\infty$, define

$$
\rho_{h}^{T}\left(x_{.}, y_{.}\right):=\left\{\int_{0}^{T} \frac{h(s) \rho\left(x_{s}, y_{s}\right)^{2}}{\int_{0}^{s} d r \int_{r}^{T} h(t) e^{K(t-r)} d t} d s\right\}^{1 / 2}
$$

Let $W_{2}^{T, h}$ be the corresponding L^{2}-Wasserstein distance. Let $\widetilde{W}_{2}^{T, h}$ be defined in the same way as \widetilde{W}_{2}^{T} with ρ^{I} replaced by

$$
\rho_{h}^{I}\left(x_{I}, y_{I}\right):=\left\{\sum_{j=1}^{n} \frac{\rho\left(x_{s_{j}}, y_{s_{j}}\right)^{\int_{s_{j}}^{s_{j+1}} h(s) d s}}{\int_{0}^{s_{j}} d s \int_{s}^{T} e^{K(t-s)} h(t) d t}\right\}^{1 / 2}, \quad s_{n+1}:=T
$$

Theorem 1.3. Assume (1.1). For any $T>0$ and any $h \in C(0, \infty)$ with $h(r)>0$ for $r>0$ such that $\int_{0}^{1} s^{-1} h(s) d s<\infty$, we have

$$
W_{2}^{T, h}\left(f \mu^{T}, \mu^{T}\right)^{2} \leq \widetilde{W}_{2}^{T, h}\left(f \mu^{T}, \mu^{T}\right)^{2} \leq 2 \mu^{T}(f \log f), \quad f \geq 0, \mu^{T}(f)=1
$$

In particular, if $\int_{0}^{\infty} h(t) e^{t K} d t<\infty$, then
$W_{2}^{\infty, h}\left(f \mu^{\infty}, \mu^{\infty}\right)^{2} \leq \widetilde{W}_{2}^{\infty, h}\left(f \mu^{\infty}, \mu^{\infty}\right)^{2} \leq 2 \mu^{\infty}(f \log f), \quad f \geq 0, \mu^{\infty}(f)=1$.
Remark. Theorems 1.2 and 1.3 can be extended to diffusion processes with time-dependent drifts. Consider, for instance, the process generated by $L(\cdot, t):=\frac{1}{2}\left(\Delta+Z_{t}\right)$, where Z_{t} is a C^{1}-vector field for each $t \in[0, T)$. In
particular, let $p_{t}(x, y)$ be the transition density of the Brownian motion and let

$$
Z_{t}:=2 \nabla \log p_{T-t}(\cdot, q), \quad t \in[0, T)
$$

for a fixed point q. Then the distribution of the diffusion process starting from p is the Brownian bridge measure on the pinned path space $\left\{x . \in M_{p}^{T}\right.$: $\left.x_{T}=q\right\}$.

Assume that $K . \in C([0, T) ;[0, \infty))$ is such that

$$
\operatorname{Ric}(X, X)-\left\langle\nabla_{X} Z_{t}, X\right\rangle \geq-K_{t}|X|^{2}, \quad t \in[0, T), X \in T M
$$

Then

$$
W_{2}^{T}\left(f \mu^{T}, \mu^{T}\right)^{2} \leq \widetilde{W}_{2}^{T}\left(f \mu^{T}, \mu^{T}\right)^{2} \leq 2 \mu^{T}(f \log f) \int_{0}^{T} d s \int_{s}^{T} e^{K_{t}(t-s)} d t
$$

for all $f \geq 0$ with $\mu^{T}(f)=1$. Moreover, Theorem 1.3 remains true with K replaced by K_{t} in the definitions of ρ_{h}^{T} and ρ_{h}^{I}.

2. Proofs of Theorem 1.2 and 1.3

To apply Theorem 1.1, we first prove a log-Sobolev inequality for cylindrical functions.

Lemma 2.1. Assume (1.1). Let f be a cylindrically smooth function with $f(x)=.f\left(x_{s_{1}}, \cdots, x_{s_{n}}\right), 0<s_{1}<\cdots s_{n} \leq T$. If $\mu^{T}\left(f^{2}\right)=1$ then

$$
\begin{equation*}
\mu^{T}\left(f^{2} \log f^{2}\right) \leq 2 \sum_{i=1}^{n} \int\left(\sum_{j=i}^{n}\left|\nabla_{j} f\right|\left(\frac{e^{K\left(s_{j}-s_{i-1}\right)}-e^{K\left(s_{j}-s_{i}\right)}}{K}\right)^{1 / 2}\right)^{2} d \mu^{T} \tag{2.1}
\end{equation*}
$$

where $s_{0}:=0$ and ∇_{j} denotes the gradient w.r.t. $x_{s_{j}}$.
Proof. Let P_{t} be the semigroup of the (reflecting) Brownian motion. By (1.1) we have (see, e.g., [12], [9], [15])

$$
\begin{equation*}
\left|\nabla P_{t} \xi(x)\right| \leq e^{K t / 2} P_{t}|\nabla \xi|(x), \quad t \geq 0, \quad \xi \in C_{b}^{1}(M), x \in M \tag{2.2}
\end{equation*}
$$

By Bakry's semigroup argument, (2.2) implies that (see, e.g., [3], [8])

$$
\begin{equation*}
P_{t}\left(\xi^{2} \log \xi^{2}\right) \leq \frac{2\left(e^{K t}-1\right)}{K} P_{t}|\nabla \xi|^{2}+\left(P_{t} \xi^{2}\right) \log P_{t} \xi^{2} \tag{2.3}
\end{equation*}
$$

for any $t \geq 0, \xi \in C_{b}^{1}(M)$. Hence (2.1) holds for $n=1$ since in this case $\mu^{T}\left(f^{2} \log f^{2}\right)=P_{s_{1}}\left(f^{2} \log f^{2}\right)(p)$. Assume that (2.1) holds for $n \leq k$ for some $k \geq 1$. It remains to prove (2.1) for $n=k+1$. Let

$$
\begin{aligned}
& \mu^{\left\{s_{1}, \cdots, s_{n}\right\}}\left(d x_{s_{1}}, \ldots, d x_{s_{n}}\right)=P\left(s_{1}, p, d x_{s_{1}}\right) P\left(s_{2}-s_{1}, x_{s_{1}}, d x_{s_{2}}\right) \\
& \cdots P\left(s_{k}-s_{k-1}, x_{s_{k-1}}, d x_{s_{k}}\right)
\end{aligned}
$$

where $P(t, x, d y)$ is the transition kernel of the (reflecting) Brownian motion. Note that for fixed $y \in M^{k}$, it follows from (2.2) with $t=s_{k+1}-s_{k}$ that

$$
\begin{align*}
& \left|\nabla \int_{M} f^{2}\left(y, x_{s_{k+1}}\right) P\left(s_{k+1}-s_{k}, \cdot, d x_{s_{k+1}}\right)\right| \tag{2.4}\\
& \quad \leq 2 e^{K\left(s_{k+1}-s_{k}\right) / 2} \int_{M}\left(|f| \cdot\left|\nabla_{k+1} f\right|\right)\left(y, x_{s_{k+1}}\right) P\left(s_{k+1}-s_{k}, \cdot, d x_{s_{k+1}}\right)
\end{align*}
$$

Applying (2.3) with $t=s_{k+1}-s_{k}$, (2.1) with $n=k$, and taking (2.4) into account, we obtain

$$
\begin{aligned}
& \mu^{T}\left(f^{2} \log f^{2}\right)=\int_{M^{k}} d \mu^{\left\{s_{1}, \cdots, s_{k}\right\}} \int_{M}\left(f^{2} \log f^{2}\right) P\left(s_{k+1}-s_{k}, x_{s_{k}}, d x_{s_{k+1}}\right) \\
& \leq \frac{2\left(e^{K\left(s_{k+1}-s_{k}\right)}-1\right)}{K} \mu^{T}\left(\left|\nabla_{k+1} f\right|^{2}\right) \\
& \quad+2 \int_{M^{k}} \sum_{i=1}^{k} \frac{\mu^{\left\{s_{1}, \cdots, s_{k}\right\}}\left(d x_{s_{1}}, \cdots, d x_{s_{k}}\right)}{\int_{M} f^{2} P\left(s_{k+1}-s_{k}, x_{s_{k}}, d x_{\left.s_{k+1}\right)}\right.} \\
& \quad \cdot\left\{\int_{M}|f|\left(\sum_{j=i}^{k+1}\left|\nabla_{j} f\right|\left(\frac{e^{K\left(s_{j}-s_{i-1}\right)}-e^{K\left(s_{j}-s_{i}\right)}}{K}\right)^{1 / 2}\right)\right. \\
& \leq \\
& \leq 2 \sum_{i=1}^{k+1} \int\left(\sum_{j=i}^{k+1}\left|\nabla_{j} f\right|\left(\frac{e^{K\left(s_{j}-s_{i-1}\right)}-e^{K\left(s_{j}-s_{i}\right)}}{K}\right)^{1 / 2}\right)^{2} d \mu^{T} .
\end{aligned}
$$

Corollary 2.2. In the situation of Lemma 2.1, let $I=\left\{s_{1}, \cdots, s_{n}\right\}$ with $0<s_{1}<\cdots<s_{n} \leq T$ and let μ^{I} denote the projection of μ^{T} onto M^{I}. For any $s_{n+1}>s_{n}$ and any function $h:(0, T] \rightarrow(0, \infty)$, we have

$$
\mu^{I}\left(f^{2} \log f^{2}\right) \leq 2 \sum_{j=1}^{n} \frac{\mu^{I}\left(\left|\nabla_{j} f\right|^{2}\right)}{\int_{s_{j}}^{s_{j+1}} h(s) d s} \int_{0}^{s_{j}} d s \int_{s}^{s_{n+1}} e^{K(t-s)} h(t) d t
$$

Proof. Note that

$$
\begin{aligned}
\left\{\sum_{j=i}^{n}\right. & \left.\left|\nabla_{j} f\right|\left(\int_{s_{i-1}}^{s_{i}} e^{K\left(s_{j}-s\right)} d s\right)^{1 / 2}\right\}^{2} \\
& \leq\left(\sum_{j=i}^{n} \frac{\left|\nabla_{j} f\right|^{2}}{\int_{s_{j}}^{s_{j+1}} h(s) d s}\right) \sum_{k=i}^{n} \int_{s_{i-1}}^{s_{i}} e^{K\left(s_{k}-s\right)} d s \int_{s_{k}}^{s_{k+1}} h(t) d t \\
& \leq\left(\sum_{j=i}^{n} \frac{\left|\nabla_{j} f\right|^{2}}{\int_{s_{j}}^{s_{j+1}} h(s) d s}\right) \int_{s_{i-1}}^{s_{i}} d s \int_{s}^{s_{n+1}} e^{K(t-s)} h(t) d t
\end{aligned}
$$

Then the desired result follows from Lemma 2.1.

Lemma 2.3. Let $\rho_{t}\left(x_{.}, y_{.}\right):=\rho\left(x_{t}, y_{t}\right)$. We have

$$
\left(\mu^{T} \times \mu^{T}\right)\left(\rho_{t}^{2}\right) \leq \frac{1}{K}\left(e^{K t}-1\right), \quad t \in[0, T]
$$

Proof. Let $\left(x_{t}\right)_{t \geq 0}$ and $\left(y_{t}\right)_{t \geq 0}$ be two independent (reflecting) Brownian motions with $x_{0}=y_{0}=p$. Since ∂M is either empty or convex, we have (see [10], [14])

$$
d \rho\left(x_{t}, y_{t}\right)=\sqrt{2} d b_{t}+\frac{1}{2}\left(\Delta \rho\left(x_{t}, \cdot\right)\left(y_{t}\right)+\Delta \rho\left(\cdot, y_{t}\right)\left(x_{t}\right)\right) d t-d L_{t}
$$

where b_{t} is the one-dimensional Brownian motion and L_{t} is an increasing process. By (1.1) and the Laplacian comparison theorem we have

$$
\begin{aligned}
\frac{1}{2}(\Delta \rho(x, \cdot)(y)+\Delta \rho(\cdot, y)(x)) & \leq \sqrt{K(d-1)} \operatorname{coth}(\sqrt{K(d-1)} \rho(x, y)) \\
& \leq \frac{d-1}{\rho(x, y)}+\sqrt{K(d-1)}
\end{aligned}
$$

Therefore, by Ito's formula we obtain

$$
\begin{aligned}
d \rho\left(x_{t}, y_{t}\right)^{2} & \leq 2 \sqrt{2} \rho\left(x_{t}, y_{t}\right) d b_{t}+\left(2 d+2 \sqrt{K(d-1)} \rho\left(x_{t}, y_{t}\right)\right) d t \\
& \leq 2 \sqrt{2} \rho\left(x_{t}, y_{t}\right) d b_{t}+\left(3 d-1+K \rho\left(x_{t}, y_{t}\right)^{2}\right) d t
\end{aligned}
$$

Since $\rho\left(x_{0}, y_{0}\right)=0$, this implies that

$$
E \rho\left(x_{t}, y_{t}\right)^{2} \leq \frac{1}{K}(3 d-1)\left(e^{K t}-1\right), \quad t>0
$$

Hence the proof is finished.
Lemma 2.4. Assume (1.1). Let $c_{t}=\left(e^{t K_{t}}-1\right) / K$. We have $\left[\mu^{T} \times \mu^{T}\right]\left(e^{\alpha \rho\left(x_{t}, y_{t}\right)^{2}}\right) \leq \frac{\exp \left[\alpha(3 d-1) c_{t} /\left(1-4 \alpha c_{t}\right)\right]}{\sqrt{1-4 \alpha c_{t}}}, t \in[0, T], \alpha \in\left(0,1 / 4 c_{t}\right)$.

Proof. By (2.3) and the additivity of the log-Sobolev inequality (see [7]) we have
$\left(P_{t} \times P_{t}\right)\left(\xi^{2} \log \xi^{2}\right) \leq 2 c_{t}\left(P_{t} \times P_{t}\right)\left(\left|\nabla_{M \times M} \xi\right|^{2}\right)+\left(P_{t} \times P_{t}\right)\left(\xi^{2}\right) \log \left(P_{t} \times P_{t}\right)\left(\xi^{2}\right)$ for any $t>0, \xi \in C_{b}^{1}(M \times M)$. Since $\left|\nabla_{M \times M} \rho\right|^{2}=2$, according to [2] this implies that

$$
\begin{equation*}
\left(P_{t} \times P_{t}\right)\left(e^{\alpha \rho^{2}}\right) \leq \frac{\exp \left[\alpha\left(\left(P_{t} \times P_{t}\right)(\rho)\right)^{2} /\left(1-4 \alpha c_{t}\right)\right]}{\sqrt{1-4 \alpha c_{t}}}, \quad t>0 \tag{2.5}
\end{equation*}
$$

Applying Lemma 2.3 completes the proof.
Proof of Theorem 1.2. For $I=\left\{s_{i}: 1 \leq i \leq n\right\}$ with $0<s_{1}<\cdots<s_{n}<$ T, let $f^{I}\left(x_{s_{1}}, \cdots, x_{s_{n}}\right)=\mu^{T}\left(f \mid x_{s_{1}}, \cdots, x_{s_{n}}\right)$ and let μ^{I} be the projection of
μ^{T} onto M^{I}. It is easy to check that ρ^{I} is the Riemannian distance on M^{I} with metric

$$
\langle X, Y\rangle_{I}:=\sum_{i}\left(s_{i+1}-s_{i}\right)\left\langle X_{s_{i}}, Y_{s_{i}}\right\rangle_{M}
$$

where $X_{s_{i}}$ (resp. $Y_{s_{i}}$) is the i-th component of X (resp. Y) which is tangent to $M^{\left\{s_{i}\right\}}$. Moreover, let ∇_{I} denote the corresponding gradient operator. For $g \in C^{\infty}\left(M^{I}\right)$ one has

$$
\left\langle\nabla_{I} g, \nabla_{I} g\right\rangle_{I}=\sum_{j=1}^{n}\left(s_{j+1}-s_{j}\right)^{-1}\left|\nabla_{j} g\right|^{2}
$$

Thus, by Theorem 1.1 and Corollary 2.2 with $h \equiv 1$, we obtain

$$
\begin{align*}
W_{2}^{I}\left(f^{I} \mu_{p}^{I}, \mu^{I}\right)^{2} & \leq 2 \mu^{I}\left(f^{I} \log f^{I}\right) \int_{0}^{s_{n}} d s \int_{s}^{s_{n+1}} e^{K(t-s)} d t \tag{2.6}\\
& \leq 2 \mu^{T}(f \log f) \int_{0}^{T} d s \int_{s}^{T} e^{K(t-s)} d t
\end{align*}
$$

It remains to prove the first inequality in (1.4). Since $\left(M_{p}^{T}, \rho_{\infty}^{T}\right)$ is a Polish space with Borel σ-algebra \mathcal{A}_{p}^{T}, where $\rho_{\infty}^{T}\left(x_{.}, y.\right):=\sup _{t \in[0, T]} \rho\left(x_{t}, y_{t}\right)$, $\left\{\mu^{T}, f \mu^{T}\right\}$ is tight. Moreover, for any compact set $D \subset M_{p}^{T}$ and any $\pi \in$ $\mathcal{C}\left(f \mu^{T}, \mu^{T}\right)$ one has

$$
\pi\left((D \times D)^{c}\right) \leq \mu^{T}\left(D^{c}\right)+\left(f \mu^{T}\right)\left(D^{c}\right)
$$

Thus $\mathcal{C}\left(f \mu^{T}, \mu^{T}\right)$ is tight too. Let $\left\{I_{n}\right\}$ be increasing such that $\delta\left(I_{n}\right) \downarrow 0$ as $n \uparrow \infty$, where $\delta\left(I_{n}\right):=\max _{1 \leq i \leq k_{n}+1}\left(s_{i}-s_{i-1}\right)$ for $I_{n}:=\left\{0=s_{0}<s_{1}<\cdots<\right.$ $\left.s_{k_{n}}<T=s_{k_{n}+1}\right\}$. For each $n \geq 1$ let $\pi^{I_{n}} \in \mathcal{C}\left(f^{I_{n}} \mu^{I_{n}}, \mu^{I_{n}}\right)$ be such that

$$
\pi^{I_{n}}\left(\left(\rho^{I_{n}}\right)^{2}\right) \leq W_{2}^{I_{n}}\left(f^{I_{n}} \mu^{I_{n}}, \mu^{I_{n}}\right)^{2}+\frac{1}{n}
$$

Let

$$
\pi_{n}(\cdot):=\int \pi^{I_{n}}\left(d x_{I_{n}}, d y_{I_{n}}\right)\left[\left(f \mu^{T}\right) \times \mu^{T}\right]\left(\cdot \mid x_{I_{n}}, y_{I_{n}}\right)
$$

i.e., for any set $A \subset \mathcal{A}_{p}^{T} \times \mathcal{A}_{p}^{T}$,

$$
\pi_{n}(A):=\int_{M^{I_{n}} \times M^{I_{n}}}\left[\left(f \mu^{T}\right) \times \mu^{T}\right]\left(A \mid x_{I_{n}}, y_{I_{n}}\right) \pi^{I_{n}}\left(d x_{I_{n}}, d y_{I_{n}}\right)
$$

Then $\left\{\pi_{n}\right\} \subset \mathcal{C}\left(f \mu^{T}, \mu^{T}\right)$. Let $\left\{\pi_{n^{\prime}}\right\}$ be a subsequence such that $\pi_{n^{\prime}} \rightarrow \pi$ weakly for a probability measure π on $M_{p}^{T} \times M_{p}^{T}$. Then $\pi \in \mathcal{C}\left(f \mu^{T}, \mu^{T}\right)$. Thus for any $n \geq 1$ and any $N>0$, if we let $\rho_{N}^{I_{n}}$ be defined in the same way as $\rho^{I_{n}}$, but with ρ replaced by $\rho \wedge N$, we have
(2.7) $\pi\left(\left(\rho_{N}^{I_{n}}\right)^{2}\right)=\lim _{n^{\prime} \rightarrow \infty} \pi^{I_{n^{\prime}}}\left(\left(\rho_{N}^{I_{n}}\right)^{2}\right)$

$$
\leq(1+\varepsilon) \widetilde{W}_{2}^{T}\left(f \mu^{T}, \mu^{T}\right)^{2}+\left(1+\varepsilon^{-1}\right) \sup _{n^{\prime}>n} \pi^{I_{n^{\prime}}}\left(\left|\rho_{N}^{I_{n}}-\rho_{N}^{I_{n^{\prime}}}\right|^{2}\right)
$$

for any $\varepsilon>0$. Noting that $\left|\rho\left(x_{s}, y_{s}\right)-\rho\left(x_{t}, y_{t}\right)\right| \leq \rho\left(x_{s}, x_{t}\right)+\rho\left(y_{s}, y_{t}\right)$, we have

$$
\begin{aligned}
& \sup _{n^{\prime}>n} \pi^{I_{n^{\prime}}}\left(\left|\rho_{N}^{I_{n}}-\rho_{N}^{I_{n}{ }^{\prime}}\right|^{2}\right) \\
& \quad \leq 2 \int_{M_{p}^{T}}\left\{N \wedge \sup _{0<s<t<T, t-s \leq \delta\left(I_{n}\right)} \rho\left(x_{s}, x_{t}\right)\right\}^{2}\left(f \mu^{T}+\mu^{T}\right)(d x .)
\end{aligned}
$$

which converges to zero as $n \rightarrow \infty$ according to the dominated convergence theorem. Letting first $n \uparrow \infty$, then $N \uparrow \infty$, and finally $\varepsilon \downarrow 0$ in (2.7), we complete the proof.

Proof of Theorem 1.3. We simply note that the argument in the proof of Theorem 1.2 yields

$$
W_{2}^{I, h}\left(f^{I} \mu^{T}, \mu^{T}\right)^{2} \leq 2 \mu^{T}(f \log f)
$$

hence the first assertion follows. It remains to prove the second assertion, where $\int_{0}^{\infty} e^{t K_{t}} h(t) d t<\infty$. To this end, it suffices to show

$$
\begin{equation*}
W_{2}^{\infty, h}\left(f \mu^{\infty}, \mu^{\infty}\right) \leq \limsup _{T \rightarrow \infty} W_{2}^{T, h}\left(f \mu^{T}, \mu^{T}\right) \tag{2.8}
\end{equation*}
$$

For nonnegative f with $\mu^{\infty}(f)=1$ and $\mu^{\infty}(f \log f)<\infty$, by Lemma 2.4 with $\alpha_{t}=1 / 8 c_{t}$ for each $t>0$ we obtain

$$
\begin{aligned}
{\left[\left(f \mu^{\infty}\right) \times \mu^{\infty}\right]\left(\left(\rho_{h}^{\infty}\right)^{2}\right)=} & \int_{0}^{\infty} \frac{h(t)\left[\left(f \mu^{\infty}\right) \times \mu^{\infty}\right]\left(\rho\left(x_{t}, y_{t}\right)^{2}\right) d t}{\int_{0}^{t} d s \int_{s}^{\infty} e^{K(r-s)} h(r) d r} \\
\leq & \int_{0}^{\infty} \frac{h(t) \mu^{\infty}(f \log f) d t}{\alpha_{t} \int_{0}^{t} d s \int_{s}^{\infty} e^{K(r-s)} h(r) d r} \\
& +\int_{0}^{\infty} \frac{h(t)\left[\mu^{\infty} \times \mu^{\infty}\right]\left(\exp \left[\alpha_{t} \rho\left(x_{t}, y_{t}\right)^{2}\right]\right) d t}{\int_{0}^{t} d s \int_{s}^{\infty} e^{K(r-s)} h(r) d r}<\infty
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mu^{\infty}\left((1+f)\left(\rho_{h}^{\infty}(\cdot, z .)^{2}\right)<\infty\right. \tag{2.9}
\end{equation*}
$$

for μ^{∞}-a.s. $z . \in M_{p}^{\infty}$. Let us fix $z . \in M_{p}^{\infty}$ such that (2.9) holds. For any coupling π^{T} for $f^{T} \mu^{T}$ and μ^{T}, where $f^{T}\left(x_{[0, T]}\right):=\mu^{\infty}\left(f \mid x_{[0, T]}\right)$, we have

$$
\left.\begin{array}{rl}
\pi(\cdot):= & \int_{M_{p}^{T} \times M_{p}^{T}} \pi^{T}\left(d x_{[0, T]}, d y_{[0, T]}\right)\left[\left(f \mu^{\infty}\right) \times \mu^{\infty}\right]\left(\cdot \mid x_{[0, T]},\right. \\
{[0, T]}
\end{array}\right)
$$

Then

$$
\begin{aligned}
W_{2}^{\infty, h}\left(f \mu^{\infty}, \mu^{\infty}\right)^{2} \leq & \int_{M_{p}^{T} \times M_{p}^{T}}\left(\rho_{h}^{T}\right)^{2} d \pi^{T} \\
& +2 \int_{T}^{\infty} \frac{h(s)\left[\rho\left(x_{s}, z_{s}\right)^{2}+\rho\left(y_{s}, z_{s}\right)^{2}\right] \pi(d x ., d y .)}{\int_{0}^{s} d r \int_{r}^{\infty} e^{K(t-r)} h(t) d t} d s \\
= & \int_{M_{p}^{T} \times M_{p}^{T}}\left(\rho_{h}^{T}\right)^{2} d \pi^{T}+2 \int_{T}^{\infty} \frac{h(s) \int \rho\left(x_{s}, z_{s}\right)^{2}\left[(1+f) \mu^{\infty}\right](d x .)}{\int_{0}^{s} d r \int_{r}^{\infty} e^{K(t-r)} h(t) d t} d s \\
= & \int_{M_{p}^{T} \times M_{p}^{T}}\left(\rho_{h}^{T}\right)^{2} d \pi^{T}+\varepsilon(T) .
\end{aligned}
$$

Combining this with the first assertion, we arrive at

$$
W_{2}^{\infty, h}\left(f \mu^{\infty}, \mu^{\infty}\right)^{2} \leq W_{2}^{T, h}\left(f^{T} \mu^{T}, \mu^{T}\right)^{2}+\varepsilon(T)
$$

Then (2.8) follows by noting that $\lim _{T \rightarrow \infty} \varepsilon(T)=0$ according to (2.9).
Acknowledgement. The author would like to thank the referee for his comments and suggestions.

References

[1] S. Aida and D. Elworthy, Differential calculus on path and loop spaces I: Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 97-102.
[2] S. Aida, T. Masuda, and I. Shigekawa, Logarithmic Sobolev inequalities and exponential integrability, J. Funct. Anal. 126 (1994), 83-101.
[3] D. Bakry and M. Ledoux, Lévy-Gromov's isoperimetric inequality for an infinitedimensional diffusion generator, Invent. Math. 123 (1996), 253-270.
[4] S. G. Bobkov, I. Gentil, and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 80 (2001), 669-696.
[5] M. Capitaine, E. P. Hus, and M. Ledoux, Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab. 2 (1997), 71-81.
[6] I. Gentil, Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en E.D.P., Chapter 5, Ph.D. Thesis, Univ. Paul Sabatier, Toulouse, 2001.
[7] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
[8] E. P. Hsu, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phys. 189 (1997), 9-16.
[9] _, Multiplicative functional for the heat equation on manifolds with boundary, Michigan Math. J. 50 (2002), 351-367.
[10] W. S. Kendall, The radial part of Brownian motion on a Riemannian manifold: a semimartingale property, Ann. Probab. 15 (1987), 1491-1500.
[11] F. Otto and C. Villani, Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400.
[12] Z. Qian, A gradient estimate on a manifold with convex boundary, Proc. Royal Soc. Edinburgh Sect. A 127 (1997), 171-179.
[13] M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6 (1996), 587-600.
[14] F.-Y. Wang, Application of coupling methods to the Neumann eigenvalue problem, Probab. Theory Relat. Fields 98 (1994), 299-306.
[15] , On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Relat. Fields 108 (1997), 87-101.
[16] , Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal., to appear.

Department of Mathematics, Beijing Normal University, Beijing 100875, China
E-mail address: wangfy@bnu.edu.cn

[^0]: Received March 1, 2001; received in final form December 23, 2002.
 2000 Mathematics Subject Classification. 47D07, 60H10.
 Supported in part by NNSFC $(10025105,10121101)$, TRAPOYT in China and the $973-$ project.

