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A “NICE” MAP COLOUR THEOREM

K.S. SARKARIA

Abstract. A closed orientable triangulated surface is “nice” if its ver-

tices can be assigned 4 colours in such a way that all 4 colours are used
in the closed star of each edge. The 4-colouring can be interpreted as a
simplicial map from the surface to the 4-vertex 2-sphere. If the surface

has genus (n − 1)2, then the degree of this map is at least n2. Con-
versely we show that, if n is not divisible by 2 and 3, then there are

“nice” surfaces of genus (n− 1)2 for which the degree of the above map
is exactly n2. Complex analytically “nice” surfaces can be viewed as
minimally triangulated meromorphic functions of a Riemann surface.

1

By a meromorphic function of a (closed and connected) Riemann surface M
we will mean a non-constant holomorphic function f from M to the complex
sphere S2 = C ∪ {∞}. If f ′(z) = 0, then z ∈ M is called a singular point of
f , and the value taken by f at a singular point z is called a singular value
of f ; all other points of M and S2 are called regular. The cardinality of the
inverse image f−1(w) is the same for any regular point w ∈ S2 and is called
the degree d of f . One can always find a simplicial complex L whose vertex
set contains all the singular values of f , which triangulates S2, and which
pulls back under f to a simplicial complex K = f−1(L) which triangulates
M . Note that L has at least 4 vertices. We will call f a minimal meromorphic
function iff one can find such an L = S2

4 with just 4 vertices (so a minimal f
has ≤ 4 singular values). Our main result can be stated as follows.

Theorem 1. A minimal meromorphic function f of a Riemann surface
M of genus g has degree d ≥ (

√
g + 1)2. Furthermore, this bound is the best

possible, in the sense that, if 2 and 3 do not divide n, then one does have a
Riemann surface of genus g = (n− 1)2 which admits a minimal meromorphic
function f having degree d = n2.
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The branching number of f at any v ∈M is the integer k ≥ 1 such that, in
suitably chosen local charts near v and f(v), the holomorphic map f becomes
f(z) = zk. So a point v ∈ M is singular iff k ≥ 2 and the branched covering
map f : M → S2 pulls back the (open) simplices of a triangulation L of S2

to open simplices if the singular values of f are amongst the vertices of L.
In general, this simplicial subdivision K = f−1(L) of M is not a simplicial
complex (as we want) on account of two edges having the same pair of vertices;
e.g., a meromorphic function f may well have ≤ 4 singular values, without
being minimal. Also note that, even though all 4-vertex triangulations of S2

are, of course, combinatorially isomorphic, the combinatorics of K can depend
on how the 4 chosen vertices are joined to each other on S2.

The key fact for us will be that this simplicial complex K = f−1(S2
4) is

“nicely” four colourable, as per the terminology introduced in our joint paper
with Madahar [7]. That is, the 4-colouring which f determines on the vertices
of K—the four colours being the 4 vertices {A,B,C,D} of S2

4—is such that
the 4 vertices contained in the closed star of each edge of K get 4 distinct
colours. To see this note that, if a vertex v of K has branching number k,
then its valence in K is 3k. For if, say, v is a D-vertex (i.e., f(v) = D), then
each of the three edges DA, DB and DC of S2

4 pulls back under f to k edges
of K incident to v. Furthermore, as we cyclically go around the link of a
D-vertex, every third vertex has one of the remaining three colours A, B, C
(likewise for links of A-vertices, etc.) which, obviously, is an equivalent way
of saying that the 4-colouring of K is “nice”.

In the figures below, the ABC-triangles (those having their 3 vertices
coloured A, B and C) will be shaded, so we will also refer to these as the
“black” triangles of K. Clearly there are exactly d such triangles (and the
same number of BCD-triangles, etc.) and, since f is orientation preserv-
ing, all these d triangles get oriented positively by the cyclic order of these 3
colours prescribed by the requirement that the triangle ABC of S2 be posi-
tively oriented.

The construction given above can be reversed. This time we start with
a “nice” surface K of genus g, i.e., an oriented simplicial 2-manifold K,
equipped with a “nice” vertex-colouring f by the 4 colours {A,B,C,D},
having d “black” triangles (positively oriented). The colouring f induces

a simplicial map K
f−→ S2

4 , which topologically is a branched covering of
the 2-sphere S2, its branch points being precisely those vertices of K whose
valence is bigger than 3, the branching number being always one-third of
this valence (which, by “niceness”, has to be a multiple of 3). We can now
(cf. Springer [10, Chap. 4, p. 93]) equip M = |K| with a (not necessarily
unique) complex structure with respect to which (and with respect to the
unique complex structure of S2) the branched covering map f : M → S2 is
holomorphic. For example, we can equip the open star of each vertex v of
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K, having valence 3k, with the chart obtained by using all the k-th roots of
a chosen complex chart, of the open star in S2

4 of f(v), which takes f(v) to
0 ∈ C. This gives, as required, a Riemann surface M of genus g, equipped
with a minimal meromorphic function f of degree d.

The second part of Theorem 1 is thus equivalent to Theorem 6 of Section 6,
which says that, if n is not divisible by 2 and 3, then one has a “nice” surface
K of genus (n− 1)2 having n2 “black” triangles. The first part of Theorem 1
is proved in Section 2 by showing that it follows from the t = 4 case of
a (presumably known) lower bound on the number of vertices required to
triangulate a surface if we want a vertex colouring by t colours which assigns
distinct colours to adjacent vertices. So our results are “nice” analogues of
those of Ringel-Youngs [9], Jungerman [5] and others. In Section 3 there is a
(also perhaps known) “holomorphic Reeb theorem”. The next section gives
an analogue of Theorem 1, with the additional condition that the minimal
meromorphic function has no more than 3 singular values. The main item
of Section 5 is Figure 2 below, a “nice” surface of degree 9 and genus 2,
whose discovery paved the way for the later constructions of Section 6. The
concluding Section 7 points out a connection between “nice” 4-colourings and
orthogonal latin squares.

2

We recall first a numerical characterization of “niceness” which played a
major rôle in [7]. Let K be any oriented simplicial 2-manifold, and let f be
any 4-colouring of its vertices by {A,B,C,D}. Then, f still induces, in the
usual way, a simplicial map f : K → S2

4 , and it still makes sense to speak
of this map’s degree d, provided we now use the definition f∗[K] = d · [S2

4 ],
where [K] and [S2

4 ] denote the fundamental 2-cycles of K and S2
4 . In other

words, now d ∈ Z is the algebraical number (i.e., counted with orientation) of
ABC-triangles of K. (Note that the triangles of K having 2, or all 3, vertices
of the same colour are not counted.) This shows that the actual number of
ABC-triangles (and, likewise, of BCD-triangles, etc.) is at least |d|, and so
one always has α2 ≥ 4 |d|, with equality holding if and only if the colouring
is “nice”; here, and below, αi denotes the number of i-simplices of K. This
follows at once by noting that, if, say, two ABC-triangles share an edge,
then they must have opposite orientations. Alternatively, using 3α2 = 2α1

and Euler’s formula α0 − α1 + α2 = 2 − 2g, we see that one always has
α0 ≥ 2 + 2 |d| − 2g, with equality holding if and only if the colouring f is
“nice”.

Using this equation α0 = 2 + 2d− 2g, which incidentally gives at once the
very rough bound d ≥ g + 1, we see that the first part of Theorem 1, i.e., the
stronger assertion that d ≥ (

√
g+ 1)2 for any “nice” surface K, is equivalent
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to the inequality α0 ≥ 4 + 4
√
g, which we will now check for a much bigger

class of 4-colourings.

Theorem 2. If K is an orientable simplicial 2-manifold of genus g, with
t colours (here 3 ≤ t ≤ α0) assigned to its α0 vertices in such a way that
adjacent vertices have distinct colours, then

α0 ≤ 2− 2g +
1
3

(
t

2

)(α0

t

)2

.

For example, when t = 4, such a K must have at least 4 + 4
√
g vertices.

Proof. Let α0,j , 1 ≤ j ≤ t, denote the number of vertices of K which
have been assigned the j-th colour. Since α1 ≤

∑
j 6=k(α0,jα0,k), we see, on

maximizing this quadratic function of t variables α0,j subject to the constraint∑
j α0,j = α0, that α1 ≤ tC2 ·(α0/t)2. Substituting this in α0 = 2−2g+α1/3,

we obtain the stated inequality. (Since we only used 3α2 = 2α1, this inequality
is valid even when K is a pseudomanifold having Euler characteristic 2−2g.)
For the case t = 4 it becomes (α0)2 − 8 · α0 + 16 − 16g ≥ 0, which holds iff
α0 ≥ 4 + 4

√
g. �

Available evidence suggests that, for any t, the above inequality is probably
the best possible for infinitely many, and perhaps even almost all, values of the
genus g. For example, for t = α0, i.e., when there is effectively no restriction
on K, it becomes

α0 ≥
7 +
√

1 + 48g
2

,

and the celebrated map colour theorem (see Ringel [8]) essentially just says
that this bound is the best possible for all g. Again, for the other extreme
case t = 3, it reads (α0)2 − 9 · α0 + 18 − 18g ≥ 0, and is best possible
for all g’s of the type t(t − 1)/2, t a natural number. This is so because
(3n)2−9(3n) + 18−18 · n−1Cn−3 = 0 and Ringel and Youngs [9] showed that
the genus n−1Cn−3 orientable surface has a triangulation T whose 1-skeleton is
the complete 3-partite graph Kn,n,n. Likewise others, notably Jungerman [5],
have constructed orientable simplicial surfaces K with g = (n−1)2 6= 4, whose
1-skeleton is Kn,n,n,n. This shows that, for the case t = 4 which interests us
most, the inequality α0 ≥ 4 + 4

√
g of Theorem 2 is known to be the best

possible for all g’s which are perfect squares 6= 4. However, none of these
authors—besides [5] see also Garman [3] and White [11]—required their K’s
to be “nice”, and indeed, we were unable to locate any “nice” K’s amongst
these known examples. (For instance, if n ≡ 1 mod 4, the circuit given by
the current graph, Fig. 6, of Jungerman [5, p. 184], contains two light edges
separated by just one other edge, which means in our terminology that, in the
link of a D-vertex, one of the other three colours does not have periodicity 3,
as required by “niceness”.) So Theorem 4 below can be viewed as a “nice”
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Figure 1

analogue of the map colour theorem, for it gives a new “nice” series of K’s,
with g a perfect square, and having Kn,n,n,n as 1-skeleton. Before giving these
and other constructions, we note that “nice” 4-colourability is obviously much
stronger than requiring that adjacent vertices have distinct colours; e.g., the
four colour theorem assures us that any triangulation K of S2 is of the second
type, but most (e.g., all those having a vertex whose valence is not divisible
by 3) are not of the first type.

3

Nothing much of combinatorial interest happens if the number of singular
values (colours) is at most 2; e.g., we will see in the course of the proof of the
following “holomorphic Reeb theorem” that K = S2

4 is the only such “nice”
surface.

Theorem 3. A (closed and connected) Riemann surface M admits no
(non-constant) meromorphic function having just one singular value, and if it
admits a meromorphic function f having either none or precisely two singular
values, then M must be the complex 2-sphere.

Proof. To see this consider the star of a D-vertex of K = f−1(S2
4) whose

3k incident edges have in cyclic order, the other vertex Ai, Bi, Ci, i ∈ Z/k;
see Figure 1, which shows the case k = 3. Now, if B is a regular value of
f , i.e., if all the B-vertices of K have valence 3, then K must contain the k
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“black” triangles AiBiCi. If all the C-vertices of K are also of valence 3, then
we must have the identification of edge pairs AiCi ≡ Ai+1Ci, i ∈ Z/k, which
show that K has no triangles other than the indicated ones, and that |K| is a
2-sphere. Note further that all the vertices Ai are same, and that this vertex
has also valence 3k. If k = 1 (no singular value), then K = S2

4 , while for k ≥ 2
(two singular values) the simplicial subdivision K is not a simplicial complex,
i.e., f is not minimal, and has just two singular points, both with the same
branching number k, this being equal to the degree d of the map f . �

4

In contrast to the above, one obtains lots of “nice” surfaces K 6= S2
4 as

soon as one allows 3 singular colours.

Theorem 4. Any closed oriented surface M of genus g ≥ 0 can be tri-
angulated by a “nicely” four coloured simplicial complex K, all of whose D-
vertices are of valence 3 (and so M can be made into a Riemann surface
admitting a minimal meromorphic function having precisely 3 singular val-
ues). Such a K has degree d ≥ 2g + (1/2) (5 + 3

√
1 + 8g), and this bound is

the best possible if g is of the type t(t− 1)/2.

Proof. Start with any triangulation T whose vertices can be assigned 3
colours {A,B,C} in such a way that adjacent vertices have distinct colours
(e.g., take T to be the barycentric derived of any triangulation). Under the
cyclic order of colours, ABC, exactly half the triangles of T are oriented
positively. Derive the remaining triangles by taking one new vertex in each
of them, to which is assigned the fourth colour D. This gives a “nicely”
4-coloured K of the required kind having degree d = (1/2)α2(T ).

If we start with a barycentric derived as our T , the degree d of K is pretty
high, but it can be lowered by making a more prudent choice of T , e.g.,
as in [7]. Indeed, this construction gives lowest degree “nice” surfaces of
genus g = n−1Cn−3 having only three singular colours, if we start with the
triangulation T of Ringel-Youngs [9] mentioned in Section 2.

This follows because any such “nice” K is obtainable in the above way from
the 3-coloured T obtained by erasing the D-vertices of K and their incident
edges. So d = (1/2)α2(T ) = α0(T ) − 2 + 2g, which gives, on using the
case t = 3 of Theorem 2, d ≥ 2g + (1/2) (5 + 3

√
1 + 8g). (Note that this is

much bigger than (
√
g + 1)2.) For a Ringel-Youngs triangulation T , we have

d = (1/2)α2(T ) = n2 and g = n−1Cn−3, and then equality holds. �

One can increase the number of triangles of T by any even number ≥ 4
without losing 3-colourability: Put a new edge within an edge to increase this
number by 4, and put a new triangle within a triangle to increase this number
by 6. So one also has “nice” K’s, with all D-vertices of valence 3, and of genus
n−1Cn−3 and degree n2 + t for any t ≥ 2.
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5

From now on we will allow all the colours to be singular. The “nice”
degree 3 sphere, and the “nice” degree 6 torus, of [7] turn out to be the first
two instances (g = 0, 1) of a pretty sequence.

Theorem 5. For each g ≥ 0, there is a “nice” surface K of genus g having
degree d = 3(g + 1). (This is less than the bound 2g + (1/2) (5 + 3

√
1 + 8g)

attained in Section 4 iff g ≤ 17.)

Proof. Our surface K has g + 2 vertices of each colour. There is a D-
vertex having valence 3(g + 1), which we denote by D∗, and we denote by
. . . AiBiCiAi+1 . . . , i ∈ Z/g + 1, the vertices which occur, in cyclic order,
in its link. The three other vertices of these three colours are denoted A∗,
B∗ and C∗, and there is precisely one of these in each “black” triangle. So
these 3(g+ 1) triangles are AiC∗Bi, BiA∗Ci and CiB∗Ai+1, i ∈ Z/g+ 1. The
remaining vertices are denoted by Di, i ∈ Z/g + 1; each of them has valence
6, the link of Di being BiC∗Ai+1B∗Ci+1A∗. We equip the D-stars and the
“black” triangles with the orientations which induce the indicated cyclic order
of their boundaries. So for g = 2 the D-stars and the “black” triangles form
a plane polygon as shown in Figure 2 below (where edges incident to the D-
vertices have been omitted to reduce clutter) and a pairwise identification of
its boundary edges gives K.

The D-links are all edge-disjoint, and each of the 9(g + 1) edges consti-
tuting them occurs exactly once, with opposite orientation, as an edge of
one of the 3(g + 1) “black” triangles. So K is an oriented pseudomani-
fold with α0 − (1/2)α2 = (4g + 8) − (1/2) (12g + 12) = 2 − 2g as de-
sired. To see that |K| is a manifold we verify finally that the other vertex
links are also (single) polygons. We have link(Ai) = C∗BiD∗Ci−1B∗Di−1,
link(Bi) = C∗DiA∗CiD∗Ai and link(Ci) = A∗Di−1C∗Ai+1D, all hexagons;
while link(A∗) = . . . CiBiDiCi+1 . . . , link(B∗) = . . . CiDi−1AiCi−1 . . . and
link(C∗) = . . . DiCiAiDi−1 . . . , all 3(g + 1)-gons. �

The only smaller degree “nice” sphere is S2
4 . If there was one with d = 2,

it would have α0 = 6, so a colour which is assigned to just one vertex, which
must have valence 3d = 6, which needs 7 vertices already.

There is also no smaller degree “nice” torus. For example, if there were
one with d = 4 (similar arguments apply to other values of d ≤ 5), it would
have α0 = 8, so there is a colour, say D, occurring at most twice. The sum
of the valences of these D-vertices being 3d = 12, obviously there cannot be
just one D-vertex, and there must be two D-vertices, both of valence 6, with
the same 6 vertices in their links. Consider now the 6 edges of the first link.
Each is incident to one of the 4 “black” triangles, so two of them, necessarily
adjacent, must be incident to the same “black” triangle. The common vertex
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Figure 2

of these edges then has valence 3 and does not occur in the second link, which
is a contradiction.

The same arguments also show easily that there is no “nice” genus 2 surface
with d ≤ 7, and if there is one with d = 8, then the colour assigned least
frequently in it must occur 3 times with valences 9, 9 and 6. But, vexingly
enough, we were unable to rule this out, and so still do not know if degree
9 is least possible for g = 2. (It was the complexity of this argument which
first suggested to us that, for g large, 3(g + 1) was nowhere near the least
degree possible; soon thereafter, in June 1999, we became aware of Ringel-
Youngs [9]. Using [9] we were able to lower this value easily, for g ≥ 18, by
the construction of Section 4.)

We feel that a computer program, based on the methods of this paper,
will probably give quickly least degree “nice” surfaces for many low values of
g. However, as such, these triangulations are rare; this was made clear by
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the fact that a long computer search by Frank Lutz, using the already extant
bistellar flips program of Björner-Lutz [1], failed to find any degree 9 “nice”
genus two surface. The example of Figure 2 was found shortly after this, by
hand, in May 1999.

6

The “nice” surfaces of Sections 4–5 still have degree d far bigger than the
lower bound (

√
g+1)2 of Section 2. We were able to close this gap completely,

in June 1999, for infinitely many values of g, by means of the construction
given below. Note that this is not much different from that of Theorem 5; we
now use many analogous plane polygons, and identify their boundary edges
in pairs.

Theorem 6. If n is not divisible by 2 and 3, then there exists a “nice”
surface of genus (n− 1)2 and degree n2.

Proof. We want an oriented simplicial 2-manifold K, with 4n vertices and
6n2 edges, with each of its vertices assigned one of 4 colours {A,B,C,D} so
that each colour is given to precisely n vertices, with any two vertices adjacent
if and only if their colours are distinct, and the 3 colours {A,B,C} are given
to the 3 vertices of precisely n2 (“black”) triangles, which all get oriented
positively under the cyclic ordering ACB of these 3 colours.

Definition of K. From now on all suffixes are integers mod n. We will
describe K by giving the boundaries of the n 2-chains formed by the sums of
the oriented triangles of the stars of its D vertices, and by its “black” triangles.
We want ∂(Star (Dj)) =

∑
i{AiBi+j} + {Bi+jCi+2j} + {Ci+2jAi+1}, which

we will write more briefly as

∂(Dj) = . . . AiBi+j Ci+2j Ai+1 . . . ,

and the n2 oriented “black” triangles of K will be

∆j,i = Ai Ci−3+2j Bi+j .

Less formally, the vertices occurring in the link of D0 are, in cyclic order,
A0B0C0A1B1C1 . . . An−1Bn−1Cn−1. Now, keeping suffixes of the A vertices
the same, increase those of the B and C vertices by 1 and 2, respectively, to
obtain the link of D1. Repeating this gives the link of D2, and so on. Figure
3 below displays Star(D0) for the least non-trivial case n = 5; it shows also
the “black” triangles ∆0,i incident to the AB edges of this link. Note that
the triangles of the figure are equipped with the clockwise orientation, and
that all the simplices shown are distinct, except that each of the C vertices
occurs twice, and these pairs of vertices will of course be identified in K.
The remaining simplices of K are obtained from those shown in the figure by
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Figure 3

repeatedly applying an order n (colour and orientation preserving) simplicial
automorphism λ of K, viz., that defined by

λ(Ai) = Ai , λ(Bi) = Bi+1 , λ(Ci) = Ci+2 , λ(Di) = Di+1 .

So, for n = 5, one has 5 copies of the displayed polygonal region. Each
white/black boundary edge, of any of these, repeats exactly once as a black/
white boundary edge of some other polygon, and K is obtained from the 5
polygonal regions by identifying these pairs of edges. Since the case n = 1 is
trivial—now K = S2

4—we will assume below that n > 1.
Any edge, with neither of its two vertices coloured D, occurs once and only

once in the n links of the D vertices. This follows from the above formula for
∂(Dj) because there is a unique pair {i, j} of integers mod n which satisfies
each of the following pairs of equations: {x = i , y = i+ j}, {x = i+ j , y =
i+2j}, {x = i+2j , y = i+1}. For the last pair of equations we used here the
hypothesis 2 - n which gives the unique solution {i = y−1 , j = (x−y+1)/2}.

Likewise, each of these 3n2 edges occurs once and only once amongst the
edges of the “black” triangles. This follows from the formula for ∆j,i because
there is a unique pair {i, j} of integers mod n which satisfies each of the pairs of
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equations {x = i , y = i+j}, {x = i+j,, y = i−3+2j}, {x = i , y = i−3+2j},
using again, for the last pair, the hypothesis 2 - n.

So each edge of K is incident to precisely two triangles. Also note that
the two occurrences—in the boundary of the star of a D vertex, and in the
boundary of a “black” triangle—of each of the aforementioned 3n2 edges, are
with opposite incidence numbers. So the 2-chain formed by the sum of all the
oriented triangles of K has zero boundary; i.e., for any odd n, the K defined
above is an oriented pseudo 2-manifold of the correct genus and degree. So it
remains only to check that the A, B and C vertices are all nonsingular.

The links of the A, B and C vertices are all 3n-gons, and are given by the
following formulae, where we have used the same notation as used previously
for the case of the D vertices:

∂(Aj) = . . . Di C2i+j−1Bi+j+1Di+1 . . . ,

∂(Bj) = . . . Ai C2j−i−3Dj−i−3Ai+3 . . . ,

∂(Cj) = . . . AiD(j−i+1)/2B(i+j−1)/2Ai−4 . . . .

The proofs of all three formulae are similar. For example, for the second for-
mula (which is the only point where we use 3 - n) note that AiC2j−i−3Bj =
∆j−i,i, so the edge AiC2j−i−3 is in the link of Bj , then that Ai+3BjC2j−i−3 oc-
curs as a subsequence in the formula for ∂(Dj−i−3), so the edges
C2j−i−3Dj−i−3 and Dj−i−3Ai+3 are also in the link of Bj . (Likewise for
the first formula note that AjC2i+j−1Bi+j+1 = ∆i+1,j and C2i+j+1AjBi+j+1

is a subsequence of ∂Di+1, and for the third formula that Ai−4CjB(i+j−1)/2 =
∆(j−i+7)/2,i−4 and B(i+j−1)/2CjAi is a subsequence of ∂D(j−i+1)/2.) As we
continue in this manner, the suffixes of the successive A vertices occurring in
the link of Bj increase by 3, and of the successive C and D vertices decrease
by 3. Since 3 - n, the initial vertex Ai recurs only after we have gone through
all the 3n vertices not coloured D. So the link of Bj is a single polygon with
3n sides, i.e., Bj is nonsingular. �

Using Theorem 6 as a starting point, and the (for K 6= S2
4) local construc-

tions of [7, Figs. 4b and 4c], it follows that if 2 - n and 3 - n, then one also
has “nice” surfaces of genus (n−1)2 and degree n2 + t for all t ≥ 2. However,
for t = 1, the construction of [7, Fig. 4a] cannot be used now because the link
of every edge consists of the two vertices of some other edge. It seems likely
nevertheless that if 2 - n, 3 - n and n > 1, then one also has a “nice” surface
of genus (n− 1)2 and degree n2 + 1.

7

An n × n matrix over Z/n (or any other cardinality n set) is called an
Euler square if each element of Z/n occurs exactly once in each row and in
each column. Superimposing two such squares, one gets an n × n matrix
over Z/n × Z/n, and if all entries of this matrix are distinct, the two Euler
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squares are deemed orthogonal, and this superimposition is often called a
Graeco-Latin square.

A notable feature of the construction of Section 6 was the use of many
Euler squares; e.g., in the definition of the D-links we used [i + j, i + 2j]
which is a Graeco-Latin square because 2 - n. More generally any Graeco-
Latin square [gij , `ij ] will give n edge-disjoint 3n-gons if we similarly define
∂(Dj) = . . . AiBgij C`ij Ai+1 . . . . Likewise, in the definition of the “black
triangles”, we used [i − 3 + 2j, i + j], which too is Graeco-Latin because 2 -
n. This property ensured edge-disjointness of the boundaries of the “black
triangles”, and so gave a “nice” pseudomanifold of the correct degree and
genus. This much of Theorem 6 will remain true if now [`i−1,j−1, gij ] is also
Graeco-Latin. There are even sized Graeco-Latin square having this property,
e.g., 

1, 1 2, 2 3, 3 0, 0
2, 3 1, 0 0, 1 3, 2
3, 0 0, 3 1, 2 2, 1
0, 2 3, 1 2, 0 1, 3


is one, thus giving a “nice” pseudomanifold K of degree 16 and genus 9. (All
the A- and B-vertices are nonsingular, but the links of the C-vertices turn
out to be two disjoint hexagons.)

In fact, any Graeco-Latin square of size n determines a rather trivial “nice”
pseudomanifold K of degree n2 and genus (n− 1)2. There is a standard way
(see, e.g., Hall [4, p. 190]) in which one can consider the pair of orthogonal
Euler squares as an orthogonal array OA(n, 4) over Z/n having 4 rows and
n2 columns. Think of an entry i of OA(n, 4) as the vertex Ai, Bi, Ci or Di

depending on whether it occurs in the first, second, third or fourth row. As the
4n2 triangles of K we take all those which have all their three vertices in the
same column of OA(n, 4). Note that each column of OA(n, 4) thus contributes
a 4-vertex sphere, and K is simply the union of these edge-disjoint spheres
(and so K desingularizes—see below—to give a union of disjoint 2-spheres).

One can desingularize a simplicial pseudomanifold in an obvious way, by
replacing each vertex, whose link consists of the union of t polygons, by t
distinct vertices. We remark that, if 3 |n but 2 - n, then desingularizing
the pseudomanifolds given by the construction of Section 6 one gets “nice”
connected surfaces with degrees very close to the lower bound. However,
though the divisibility conditions of Theorem 6 are probably redundant for
large n, we have so far no construction which actually attains the lower bound
when these conditions fail.

The K’s of Section 6 have the property that the two vertices of each edge
occur exactly once as the link of some other edge. Starting from any such
K of degree n2 and genus (n− 1)2 one gets an OA(n, 4), whose r-th column
consists of the four indices of the vertices of the r-th ABC-triangle and the
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adjacent ABD-triangle. Equivalently, any such K determines a Graeco-Latin
square of size n, which implies that there is no such “nice” K of degree 36 and
genus 25. This follows because there is no Graeco-Latin square of size six: 36
officers of 6 different ranks from 6 different regiments cannot be arranged in
a 6× 6 array so that no rank or regiment repeats in any row or column.

As is well-known, Euler (1782) had in fact expected more generally that
there is no Graeco-Latin square of size n ≡ 2 mod 4. An interesting topological
misproof of Euler’s conjecture was given in the seminal paper of MacNeish [6].
He gave a construction (quite different from those of this paper) which asso-
ciates to any Graeco-Latin square an oriented 2-pseudomanifold, and showed
that Euler’s conjecture is true whenever this MacNeish complex has first Betti
number even. He erred in assuming this to be always the case; to see that it is
not so, consider, e.g., S2 with two of its points identified when b1 = 1. Later,
of course, Euler’s conjecture was completely demolished by Bose, Parker and
Shrikhande in 1959 (see, e.g., [2] and [4]).

The minimality of the meromorphic function, e.g., the fact that it has at
most 4 singular values, is necessary for the lower bound of Theorem 1. We
remark that if one lifts this condition, one can, by using instead of S2

4 bigger
triangulations of the 2-sphere, construct by similar combinatorial methods
examples of meromorphic functions on genus g surfaces with degree less than
εg where ε > 0 is preassigned. Also, as we shall show elsewhere, there are
natural and interesting analogues of “nice” surfaces in dimensions ≥ 3.
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