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ISOMETRIES IN ALEKSANDROV SPACES OF CURVATURE
BOUNDED ABOVE

V.N. BERESTOVSKĬI

Abstract. We study the isometry groups of Aleksandrov spaces with
curvature bounded above. We prove that the metric of any finitely

compact geodesically complete CAT(K)-space (K < 0), all of whose
spheres are arcwise connected, can be recovered from the family of all
closed balls of a given positive radius. As a corollary, we obtain that
every bijection of such a space onto itself which preserves this family is
an isometry. In particular, these results hold for any simply connected

Riemannian space with sectional curvature at most K, where K < 0,
and of dimension greater than 1.

1. Introduction and main results

In this paper we prove some of the results on Aleksandrov spaces of curva-
ture at most K (see [1], [2], [7], [9]) announced in our earlier paper [6].

We first introduce some necessary definitions and notation. The distance
between two points x, y of a metric space M is denoted by xy. A (locally)
inner (or (locally) interior or (locally) length) metric space is a metric space
in which (locally) any two points x, y can be joined by a path with length
arbitrarily close to xy. A path joining the points x, y in M is called shortest
arc or segment (with ends x, y) if its length is equal to xy. A (locally) geodesic
space is a metric space in which (locally) any two points can be joined by
shortest arc.

A point y lies between two points x and z if xz = xy+yz and y 6= x, y 6= z;
we denote this relation by (xyz). An open (respectively closed) ball in M
of radius r with center x is denoted by U(x, r) (respectively B(x, r)). SK
denotes the complete simply connected two-dimensional Riemannian manifold
of constant sectional curvature K.

We study the properties of isometry groups of a geodesic space M with
inner metric of curvature at most K.
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Theorem 1.1. Let M be a locally compact complete geodesically complete
CAT(K)-space with curvature at most K, where K < 0, in which all spheres
are arcwise connected. Then every bijection f of the space M onto itself such
that f and f−1 map any closed ball of some fixed radius r > 0 onto some
closed ball of radius r, is an isometry.

This theorem generalizes the corresponding result of Guc [12] for Lobachev-
skii spaces and is also connected with the Beckman–Quarles characterization
of isometries of finite-dimensional Euclidean spaces given in [4] (see also [8]).
Kuzminykh later generalized both of these results in his paper [13].

We recall some natural concepts that arise in connection with Theorem 1.1
and its relatives.

Let M be a metric space and r > 0 a fixed real number. The set V ⊂M×M
of all ordered pairs (x, y) of points in M satisfying xy ≤ r forms a diagonal
tube about the diagonal ∆ ⊂ M ×M and defines a reflexive and symmetric
binary relation on M . Given a natural number n, we denote by nV the nth
self-composition of the relation V , defined inductively by the condition that
(x, z) ∈ (n + 1)V ⊂ M × M if and only if there is a point y ∈ M such
that (x, y) ∈ nV and (y, z) ∈ V . By the triangle inequality in M , we have
nV ⊂W , where W is the diagonal tube corresponding to the number nr. The
reverse inclusion is satisfied if M is a geodesic space, but it does not hold in
general. We set 0V = ∆. The union of the sets nV over all natural numbers
n provides a transitive closure of the relation V . This closure coincides with
the set M ×M if M is connected.

We consider here only one diagonal tube V . An automorphism of a space
(M,V ) is a bijection f of a set M onto itself such that f and f−1 pre-
serve the given relation V , i.e., (x, y) ∈ V implies that (f(x), f(y)) ∈ V
and (f−1(x), f−1(y)) ∈ V .

The following questions arise naturally:

• Can one recover the initial metric on M from V ?
• Is every automorphism of (M,V ) an isometry of M?

It is clear that a positive answer to the first question implies a positive
answer to the second question.

The second question is closely connected with the following problem, sug-
gested by A.D. Aleksandrov in 1960s:

• Under what conditions is a map of a metric space into itself preserving
a fixed distance (for example, unit distance) an isometry of this metric
space?

In 1953 Beckman and Quarles proved (see [4]) that any map f of an Eu-
clidean n-space (n ≥ 2) onto itself which preserves unit distance (i.e., satisfies
f(x)f(y) = 1 if xy = 1) is an isometry.
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Closely connected with this problem are the investigations of a student of
Aleksandrov, Kuzminykh, who in [13] proved the following remarkable result:

A map f of an n-dimensional Lobachevskii space (n ≥ 2) into itself is
an isometry if, for any fixed positive numbers a, a′, the following condition
holds: If xy = a, then f(x)f(y) = a′. In particular, this implies that a = a′.
Kuzminykh also proved many generalizations of this result, which we will not
discuss here. In the same paper [13] a weak characterization of isometries of
Euclidean n-space En (n ≥ 2) is given that generalizes the result of Beckman
and Quarles and uses only a subset of measure zero of an open ball in En. All
previous generalizations involved weakening the requirements on the map f .

In this paper we obtain a different generalization by weakening the require-
ments of the space itself. As far as we know, this is the first time that such a
generalization had been considered.

Note that a bijection f of a metric space M that preserves the relation
V above is in general not an isometry. An example of such a bijection for
the Euclidean space En is self-similarity with a coefficient λ < 1. For the
Lobachevski space with a labelled point O and a number λ < 1, we can define
f by the relation f(x) = x′, where (Ox′x) and Ox′ = λOx. Clearly, this
bijection preserves the relation V , but it is not an isometry. There are many
other maps of this type.

2. Isometries of Aleksandrov spaces with curvature at most K,
when K is nonnegative

In this section we study isometries in CAT(K)-spaces for nonnegative K.

Definition 2.1. The radius of uniqueness of shortest arcs at a point x in
a (locally geodesic) metric space M is defined as the least upper bound of all
numbers r such that for any two points y, z in the open ball U(x, r) there is
exactly one shortest arc [yz] joining these points. We denote this radius by
u(x). The radius of uniqueness of shortest arcs of a space M is defined as

u(M) := inf{u(x), x ∈M}.

The following lemma easily follows from known properties of Aleksandrov
spaces with curvature (locally) bounded above, the triangle inequality, and
the above definition.

Lemma 2.2. The radius of uniqueness of shortest arcs for a locally geo-
desic metric space M is a positive Lipshitz function (with constant 1) u(x)
of a point x ∈ M . If, in addition, M is compact, then the number u(M) is
positive. In particular, this holds for any Aleksandrov space M with curvature
bounded above.

Definition 2.3. The displacement function of an isometry φ of a metric
space M at a point x is defined as d(φ, x) := xφ(x).
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One can also easily prove the following lemma.

Lemma 2.4. The displacement function d(φ, x) of an isometry φ of a met-
ric space M is a Lipshitz function (with constant 2) of a point x ∈M . If, in
addition, M is compact, then this function attains its minimum d(φ).

Proposition 2.5. Let φ be an isometry of a locally geodesic metric space
M whose displacement function d(φ, x) attains a positive minimum d(φ) := d0

at a point x0 and such that d0 < u(x0) (see Definition 2.1). Then x0 is
contained in a unique nontrivial geodesic line γ(t), t ∈ R, which is invariant
under the isometry group {φk}, k ∈ Z. Moreover, d(φ, x) = d0 for every point
on the geodesic γ.

Proof. By the hypotheses of the proposition, the points x0 and φ(x0) are
joined by a unique shortest arc L. Then φ(L) is the unique shortest arc
joining the points φ(x0) and φ2(x0). If (x0xφ(x0)), then x lies on L, and by
the triangle inequality,

xφ(x) ≤ xφ(x0) + φ(x0)φ(x) = x0φ(x0).

Since x0 is a point of minimal displacement for φ, the inequality above must
be an equality (and d(φ, x) = d0). Thus, [xφ(x0)] ∪ [φ(x0)φ(x)] = [xφ(x)] is
the (unique) shortest arc. Hence the union of the shortest arcs φk(L) over all
integers k forms a geodesic line γ in M , which is evidently invariant under the
isometry group {φk}, k ∈ Z. We can parametrize γ by an arclength parameter
t. The last assertion of the proposition has been proved previously. �

Definition 2.6. We say that a one-parameter group of isometries {φt, t ∈
R} of a metric space M acts locally freely on M if for every point x0 ∈ M
there exist a neighborhood U(x0) of the point x0 and a number ε > 0, such
that for any number t with 0 < |t| < ε and any point x ∈ U(x0) we have
φt(x) 6= x.

Proposition 2.7. Let {φt, t ∈ R} be a one-parameter (continuous) group
of isometries of a compact Aleksandrov space M with curvature bounded above
acting locally freely on M . Then some orbit of {φt, t ∈ R} in M is a nontrivial
geodesic γ. Moreover, the geodesic γ is closed if and only if it is closed as a
subset of M . More generally, the orbit of every point in the closure γ is
geodesic, all these geodesic orbits are pairwise isometric, and γ is invariant
under the group {φt, t ∈ R} which acts as a group of Clifford-Wolf translations
on γ. The set of all points whose orbit under {φt, t ∈ R} is geodesic is closed
in M .

Proof. Since M is compact, there exists a number ε > 0 such that for
any number t with 0 < |t| < ε and any point x ∈ M we have φt(x) 6= x.
Furthermore, we can assume that for the same values of ε and t and all points
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x ∈M the inequality φt(x)x < u(M) holds (see Lemma 2.2). By Lemma 2.4,
for any t0 with 0 < |t0| < ε there is a point x0 of minimal positive displacement
for the isometry φt0 . By Proposition 2.5 it follows that the point x0 lies on
a unique geodesic γ0 which is invariant under the isometry group φkt0 , k ∈ Z,
and starts at the point x0. In the same way, given any natural number n and
setting tn := t0/2n, we can choose a geodesic γn which starts at some point
xn and is invariant under the isometry group φktn , k ∈ Z. Then γn is also
invariant under the groups φktm , k ∈ Z, for all natural numbers m satisfying
1 ≤ m ≤ n, since φktm = φktm = φ2n−mktn = φ2n−mk

tn .
Since M is a compact Aleksandrov space with curvature bounded above,

one can easily prove that any geodesic γ(s), s ∈ R, in M that is parametrized
by the arclength is a shortest arc on any s-segment of length less than some
fixed positive number r0 which depends only on M . Evidently, a pointwise
limit of a sequence of shortest arcs in any metric space is again a shortest
arc. It follows from these observations that a pointwise limit of a sequence of
nontrivial (parametrized) geodesics γn(s), s ∈ R, in M is again a nontrivial
parametrized geodesic.

By the compactness of M , we can choose a subsequence of the sequence
xn (which we will also denote by xn) that converges to a point x∞. Since
the map φ : R ×M → M , φ(t, x) = φt(x), is continuous, it follows from the
above arguments that, for all fixed numbers of the form t = ktm = t0/2m,
the points φt(x∞) = limφt(xn), lie on some nontrivial geodesic γ. Hence the
orbit of the one-parameter isometry group φt(x∞), t ∈ R, forms an invariant
nontrivial geodesic γ, for which t is a parameter proportional to arclength
on the geodesic γ starting at the point x∞. The remaining assertions of the
proposition are evident. �

Remark 2.8. The example of an irrational winding of the torus shows
that the geodesic orbit in the above proposition is not necessarily closed and
may even be dense in M . The next theorem shows that the situation described
in this proposition is cannot occur in the case of a compact geodesically com-
plete Aleksandrov space with negative curvature.

Theorem 2.9. Let M be a compact geodesically complete Aleksandrov
space with curvature at most K < 0 and of topological dimension at least two.
Then the full isometry group I(M) of M is finite, Γ = π1M is infinite, and
the centralizer C(Γ) of subgroup Γ in I(M̃) is trivial.

Remark 2.10. We announced this theorem in [6]. We omit the proof
since it follows directly from Theorem II.6.17, part (4), in the book of Brid-
son and Haefliger [9]. André Haefliger informed the author about their then
unpublished results at the ICM 1994. Unfortunately, it was difficult to change
the text of announcement [6].
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3. Recovering the metric for some CAT(K)-spaces, when K is
negative, from closed balls of given positive radius

A metric space M is called connected at infinity if for any closed ball
B(x, r), r ≥ 0, its complement with respect to M is connected. We will prove
the following theorem.

Theorem 3.1. Let M be a locally compact complete geodesically complete
CAT(K)-space with curvature at most K < 0 which is connected at infinity,
and let V ⊂ M ×M be the diagonal tube corresponding to a number r > 0.
Then the metric of the space M is uniquely determined by V .

Remark 3.2. As a corollary of the so-called Cartan–Hadamard–Aleksan-
drov theorem, which was conjectured by M. Gromov in [11] and proved by
Alexander and Bishop in [3] (see also Theorem II.4.1 in [9]), and Aleksandrov’s
patchwork (see [1], [2], or Proposition II.4.9 in [9]), any locally compact com-
plete simply connected Aleksandrov space of curvature at most K < 0 is a
CAT(K)-space.

The shortest arcs in M depend continuously on their ends, and the space
M is contractible. One can easily prove that any geodesic in M is a shortest
arc and can be extended (not necessarily uniquely) to a line in M , i.e., an
isometric embedding of the whole line (with the usual metric) into M . In the
sequel we will use these properties of the space M as well as the assumptions
of Theorem 3.1 without explicit reference to them.

We need the following proposition.

Proposition 3.3. Under the assumption of the other conditions in The-
orem 3.1, the condition of connectedness at infinity is equivalent to the con-
dition of arcwise connectedness of all spheres S(x, r′), r′ > 0, x ∈M .

Proof. Note that M is locally arcwise connected. Thus any open subset
U ⊂M is connected if and only if it is arcwise connected.

Let M be connected at infinity. Then the complement of any closed ball
B(x, r′) is arcwise connected. Let x1 and x2 be arbitrary points in S(x, r′).
Extend the shortest arcs [xx1] and [xx2] to longer shortest arcs [xx′1] and [xx′2]
and join the points x′1 and x′2 with a path x(t), 0 ≤ t ≤ 1, in the complement
of B(x, r′). The shortest arc [xx(t)], 0 ≤ t ≤ 1, intersects S(x, r′) at a unique
point y(t), 0 ≤ t ≤ 1. As a corollary of the global K-concavity condition (see
[7]), y(t), 0 ≤ t ≤ 1, is a (continuous) path in S(x, r′) that joins the given
points x1, x2 ∈ S(x, r′). Thus S(x, r′) is (arcwise) connected, as required.

The proof of the converse statement is much simpler. �

Lemma 3.4. Let [xy] be a shortest arc in M of length r1 > 0, and let r2

and r3 be positive numbers such that the largest of the three numbers r1, r2,
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and r3 does not exceed the sum of the other two numbers. Then there exists
a point z ∈M such that xz = r2 and yz = r3.

Proof. We can assume that the maximum of the numbers r1, r2, r3 is strictly
less than the sum of the other two. (Otherwise the assertion is obvious.) In
this case some inner point x0 of the shortest arc [xy] lies inside the intersection

C := B(x, r2) ∩B(y, r3),

and there exists an extension [x′y′] of the shortest arc [xy] (note that x′ or y′

may coincide with x or y) such that

y′ ∈ B(y, r3)−B(x, r2), x′ ∈ B(x, r2)−B(y, r3).

As a corollary of the global K-concavity condition, every closed ball B in
M with a positive radius is strictly convex, i.e., for any two distinct points
a, b ∈ B, the (relative) interior of the shortest arc [ab] is contained in B.
Hence the set C above is also strictly convex.

Take any point w outside of B(x, r2) ∪ B(y, r3). Since M is connected at
infinity, the points x′ and w can be joined by a path p1 outside of B(y, r3),
while the points w and y′ can be joined by a path p2 outside of B(x, r2). The
concatenation p of paths p1, p2 (at the point w) goes outside of C.

It follows from the strict convexity of the set C that for any point a in the
image of p the shortest arc [x0a] intersects the boundary of the set C at a
unique point a′. By the K-concavity, the point a′ depends continuously on
a. As a result, we get a (continuous) path p′ in the boundary of the set C.
It follows from the choice of x′ and y′ that the path p′ starts at S(y, r3) and
ends at S(x, r2). Hence some point z in the image of p′ is contained in the
intersection S(x, r2) ∩ S(y, r3). This point z has the desired properties. �

We will later need a special description of the topological completion M =
M ∪ hb(M) of a complete CAT(0)-space M in terms of Busemann (or ray)
functions which induces on M the initial metric topology. We denote by
C(M) the topological vector space of continuous real-valued functions on M
equipped with the topology of uniform convergence on bounded subsets. This
topology can be defined by a sequence of sup-norms, whose nth member is
the sup-norm on the closed ball of radius n with a fixed center p ∈ M . In
particular, if M is finitely compact, then this is the more familiar topology
of uniform convergence on compact subsets. Let p be a given fixed point in
M . There is a natural topological embedding ip : M → C(M) obtained by
associating to each x ∈ M the shifted distance function dp,x : y → xy − xp.
Then M can be identified with the closure of ip(M) in C(M). This definition
does not depend on the choice of the fixed point p. The complement to the
set ip(M) in M is called the ideal or hyperbolic boundary, and we denote it
by hb(M). Any ideal element in hb(M) is the Busemann or ray function,
corresponding to exactly one ray γ(t), t ∈ [0,+∞), with origin p (i.e., we



652 V.N. BERESTOVSKĬI

have γ(t1)γ(t2) = |t1 − t2| and γ(0) = p). The Busemann function of such a
ray is defined on M by the equation

(3.1) fγ(x) := lim
t→+∞

(t− xγ(t)),

where the limit on the right side is uniform on every bounded subset in M
(see [11] or [9]). (We have changed the sign here, as this will be convenient
later.)

A level set of a function fγ is called a horosphere. Any two geodesic rays
in M have the same limit (ideal) points limt→+∞ γ(t) if and only if the cor-
responding Busemann functions differ by a constant (see [9]) and thus have
the same family of horospheres if one ignores their levels. If we change the
fixed point p, then the ray corresponding to a given ideal element in hb(M)
will change, but the corresponding Busemann functions will only change by a
constant depending on this ideal element. If M is finitely compact, then the
space M is compact.

In [9] it was shown that this definition is equivalent to another definition
which involves the cone topology. If M is a CAT(K)-space for some K < 0,
then this definition of M , which is mainly due to M. Gromov, coincides up to
a homeomorphism with Gromov’s definition using a scalar product (see [11]).

Proposition 3.5. Let M be a locally compact complete geodesically com-
plete CAT(0)-space. Then the metric topology τm on M is equal to the initial
topology τf relative to the family of all ray functions on M .

Proof. Since any ray function is continuous on M , we have τf ⊂ τm. To
prove the reverse inclusion, we need to show that every open ball U(x, s),
where x ∈ M and s > 0, contains a neighborhood of the point x which is a
finite intersection of preimages of intervals for ray functions.

Consider the family Γ of all Busemann functions for rays with origin x. Let
u, 0 < u < s, be an arbitrary real number. Any shortest arc with origin x
can be extended to a ray (or even line) because M is geodesically complete.
Then it is not hard to prove that

(3.2) B(x, u) =
⋂
γ∈Γ

F (γ, u) ⊂ U(x, s),

where F (γ, u) := f−1
γ ([−u, u]). The space M is finitely compact by the Cohn-

Vossen Theorem. Thus M = hb(M)∪M is compact. Define G(γ, u) to be the
closure of F (γ, u) in M . Then G(γ, u) is compact, and G(γ, u) − F (γ, u) ⊂
hb(M). Also a /∈ G(γ−, u) if a ray γ ends at a ∈ hb(M), where γ− is a
ray with origin x opposite to γ, in the sense that γ ∪ γ− gives a line in M .
Since any point a ∈ hb(M) is an end point of a ray γ ∈ Γ, it follows from
these observations that the same relation (3.2) holds with G(γ, u) in place of
F (γ, u).
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From the above argument it follows that there is a finite set {γ1, ..., γk} ⊂ Γ
such that

G(γ1, u) ∩ ... ∩G(γk, u) ⊂ U(x, s),

because the sets G(γ, u) are compact and U(x, s) is open (see Corollary 3.15
in [10]). Thus

x ∈ f−1
γ1

(−u, u) ∩ ... ∩ f−1
γk

(−u, u) ⊂ U(x, s),

which gives the desired neighborhood of x. �

Proof of Theorem 3.1. Any ordered triple of points (x, y, w) inM satisfying

(3.3) xy = yw = r, xw = 2r

is characterized by the property that for each pair x,w there exists a unique
point y such that (x, y) ∈ V and (y, w) ∈ V . This follows from the fact that
any two points in M are joined by a unique shortest arc. This implies that
the relation V determines all spheres and open balls in M of radius r.

Consider all bilaterally infinite sequences of points {xz}, z ∈ Z, indexed by
the integers, such that for every z ∈ Z the triple (x, y, w) = (xz−1, xz, xz+1)
satisfies condition (3.3). We will call such a sequence an r-sequence. Clearly,
r-sequences can be defined by means of the relation V alone.

Any r-sequence {xz} together with the shortest arcs [xzxz+1], z ∈ Z, gives a
unique oriented line L. We say an r-sequence {xz} is line-equivalent to another
r-sequence {x′z} if the oriented lines defined by these sequences coincide. This
holds if and only if {xz} and {x′z} have the same limit points x+∞ = x′+∞ ∈
hb(M) and x−∞ = x′−∞ ∈ hb(M), both when z → +∞ and z → −∞.
Note that all four of these limit points exist. The necessity is evident. The
sufficiency follows from the Flat Strip Theorem (Theorem II.2.13 in [9]).

Also, any two r-sequences xz, x′z are line-equivalent if and only if there
exists an integer k such that

(3.4) (xz, x′z+k) ∈ V

for all integers z. The necessity is again evident. The sufficiency follows from
the above considerations because any two r-sequences with this condition have
the same limit points in hb(M), both at +∞ and at −∞.

Any oriented line L ⊂ M is a union of all points in all r-sequences from
some line-equivalence class. The orientation of L is defined by the order of any
r-sequence from this class. Thus we can define any oriented line L using only
the relation V . Note also that the (induced) topology on any oriented line L
can be defined by means of V . Indeed, suppose that the conditions x < y < w
and xw < r are satisfied for an ordered triple of points on an oriented line
L. These conditions can be expressed by means of V in the following form:
(x, y), (y, w), (x,w) ∈ V . There is no r-sequence which contains both x and
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w; for any r-sequences xz, yz, wz satisfying x0 = x, y0 = y, w0 = w from the
line-equivalence class defined by L we must have

(y−1, x0) ∈ V, (y−1, w0) /∈ V, (y1, x0) /∈ V, (y1, w0) ∈ V.
It remains to prove that one can find the midpoint of the segment [xzxz+1] for
some r-sequence {xz, z ∈ Z} in a line-equivalence class defined by an oriented
line in M .

Let γ(t), t ∈ R, be a parametrization of an oriented line L by the arclength,
i.e., γ(t1)γ(t2) = |t1− t2| and γ(t1) < γ(t2) if t1 < t2. Then the formula (3.1)
defines the corresponding Busemann function fγ , which we will also denote
by fL, and the corresponding horospheres.

We can define the horosphere h(L, x0) defined by an oriented line L and
passing through a given point x0 ∈ L using only the relation V . There exists
a unique r-sequence {xz, z ∈ Z} in the line-equivalence class of L with initial
term x0. Then, for any natural number n, the open ball U(xn, nr) is the set
of all points y in M such that (xn, y) ∈ nU , where (x, y) ∈ U if and only if
xy < r. If γ(t), t ∈ R, is the parametrization of L by arclength such that
γ(0) = x0, then f−1

γ (0,+∞) is an open set in M , which is equal to the union
of all balls U(xn, nr). We will use the description of h(L, x0) as the boundary
of this set to show that V determines h(L, x0).

Consider the family of all oriented geodesics L′ which have a common
(right) end a ∈ hb(M) with L. Any such geodesic L′ is characterized by the
property that for any r-sequence {x′z, z ∈ Z} in the line-equivalence class of
L′ there exist integers k,m such that relation (3.4) is satisfied for all z ≥ m
(see [9]). Thus this family of oriented geodesics can be defined by V . Any
point x ∈M lies on some line L′ of this type. Then the ray in L′ which starts
at x and ends at a is the unique ray in M with these ends (see [9]). We have

(3.5) |fγ(x)− fγ(x′)| = xx′; x, x′ ∈ L′,
and fγ(x) < fγ(x′) if x < x′. Thus x ∈ L′ lies on h(L, x0) if and only if x is
the unique boundary point of the open infinite interval (ray) f−1

γ (0,+∞)∩L′.
Since, as we showed above, the induced topology on L′ is defined entirely
by the relation V , any point x ∈ h(L, x0) can be defined by V . Thus the
horosphere itself is defined by V . Therefore, by Proposition 3.5, the relation
V defines the metric topology on M .

By equation (3.5), if {xz, z ∈ Z} is an r-sequence in L and x′z is the unique
point in L′ ∩ h(L, xz), then {x′z, z ∈ Z} is also an r-sequence (in L′).

Let now {xz, z ∈ Z} be any r-sequence in L. By Lemma 3.4, corresponding
to the points x = x−n and y = xn there exists a point z = zn ∈M such that
znx−n = znxn = x−nxn, i.e., there exists an equilateral triangle ∆ = ∆n with
sides 2nr. For some number δ > 0, the space M is δ-hyperbolic. Hence the
so-called insize of ∆ is at most δ (see [11]). Therefore we have the inequalities

(3.6) w−nx0 ≤ δ, wnx0 ≤ δ,
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where w−n (respectively wn) is the midpoint of the side [znx−n] (respectively
[znxn]). Since M is finitely compact and the inequalities (3.6) are satisfied, we
can suppose that a subsequence w−nk (respectively wnk) converges to a point
x−0 ∈ M (respectively x+

0 ∈ M) and the oriented geodesic segment [znx−n]
(respectively [znxn]) converges in the compact-open topology (relative to R
and M) to some oriented geodesic line L− (respectively L+). This convergence
can be described via the metric topology on M , and hence via the relation V ,
as we have shown previously.

As a result, the oriented line L+ has a common end point a ∈ hb(M) with
L, and L− has a common starting point b ∈ hb(M) with L+, while the end
point c ∈ hb(M) of the line L− coincides with the origin of the line L. We can
assume that the oriented geodesic L− (respectively L+) starts at the point
x−0 (respectively x+

0 ).
Construct the horospheres h(−L, xz), z ∈ Z, where −L denotes the ori-

ented line L endowed with the opposite orientation. The intersections of these
horospheres with the line L− define a unique r-sequence x−−z of the oriented
line L−, as we have shown above. Similarly, the intersections of the horo-
spheres h(L, xz) with the line L+ define a unique r-sequence x+

z of the ori-
ented line L+. It follows from the construction of L− and L+ and Proposition
II.8.19 in [9] (or, rather, by the definition of M which we assume here) that
the sequence of functions −(dznk −nkr) converges, uniformly on any compact
subset in M , simultaneously to the function f−L− and to the function f−L+ .
Thus we have x−z ∈ h(−L+, x

+
z ).

Take any point x ∈ L such that x0 < x < x1 and then define the points

x+ := h(L, x) ∩ L+, x− := h(−L+, x
+) ∩ L−.

Evidently, we have x+
0 < x+ < x+

1 on the line L+ and x−0 < x− < x−1 on the
line L−. Thus, x− ∈ h(−L, y) for some point y, x−1 < y < x0 on L. Clearly,

yx = yx0 + x0x, yx0 = x0x.

It follows from this that a point x is the midpoint of the segment [x0x1] if
and only if the corresponding point y, which is defined only by means of V
and x, lies in the r-sequence in L with point x. The last condition can also
be defined by V .

We define a new binary relation W in terms of V by setting 2W = V . Then
(x, y) ∈ W if and only if xy ≤ r/2. By induction, for any natural number n
we define a binary relation U by setting 2nU = V , so that (x, y) ∈ U if and
only if xy ≤ r/2n. Since we can define, by means of V , the induced topology
on any (oriented) line in M , we can define, using V , the original distance on
the metric space M . This completes the proof of the theorem. �

Proof of Theorem 1.1. The theorem follows immediately from Theorem 3.1.
�
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Remark 3.6. We can replace the relation V in Theorem 3.1 by the binary
relation S = {(x, y) ∈ M ×M : xy = r}, since in the presence of the other
conditions on M , the relation V defines S, while 2S = 2V = {(x, y) ∈M×M :
xy = 2r}.

The following is a natural question:

Question. Are Theorems 3.1 and 1.1 (as well as the theorem of Beckman–
Quarles [4]) true in the case when K = 0?

Acknowledgements. We are very obliged to André Haefliger for inform-
ing us of results from his then unpublished joint book [9] with M. Bridson.
This book helped us to reduce substantially the proofs in this paper. We wish
to thank the referee for reading the manuscript with a great deal of care and
for making several useful suggestions for improvements.

References
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