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GRADIENT ESTIMATES FOR HARMONIC AND
q-HARMONIC FUNCTIONS OF SYMMETRIC STABLE

PROCESSES

K. BOGDAN, T. KULCZYCKI, AND A. NOWAK

Abstract. We give sharp gradient estimates for harmonic functions of
rotation invariant stable Lévy processes near the boundary of Lipschitz

domains. We also obtain sharp gradient estimates for harmonic func-
tions of corresponding Feynman-Kac semigroups under some assump-

tions on the potential q.

1. Introduction

The purpose of this paper is to investigate the growth properties of gradi-
ents of α-harmonic and q-harmonic functions. Our main result on α-harmonic
functions is the following (for definitions see Section 2).

Theorem 1.1. Let D be a Lipschitz domain in Rd, d ∈ N. Let V ⊂ Rd
be open and let K be a compact subset of V . There exist constants C =
C(D,V,K, α) and ε = ε(D,V,K, α) such that for every nonnegative function
f which is bounded on V , α-harmonic in D ∩ V , and vanishes in Dc ∩ V ,

(1) C
f(x)
δD(x)

≤ |∇f(x)| ≤ d f(x)
δD(x)

, x ∈ K ∩D, δD(x) < ε .

Our considerations are motivated by the natural question whether the clas-
sical results in this field (see [C], [CZ], [BP]) may be extended to nonlocal
operators such as the fractional Laplacian ∆α/2. Further motivation comes
from an attempt to understand the role of fractional derivatives in the poten-
tial theory of ∆α/2 on regular domains, a problem which may be related to
gradient estimates.

To prove Theorem 1.1 we develop a straightforward technique based on
Lemmas 4.4 and 4.5 below. It is noteworthy that the technique applies even

Received August 20, 2001; received in final form February 15, 2002.

2000 Mathematics Subject Classification. Primary 31B25, 60J45.
Research supported by KBN, Grant 2 PO3A 028 16. The second author is supported

by the Foundation for Polish Science.

c©2002 University of Illinois

541



542 K. BOGDAN, T. KULCZYCKI, AND A. NOWAK

more easily to the classical harmonic functions. In the present context there
are additional complications resulting from the fact that the α-harmonic func-
tions we consider need to be globally nonnegative, and the local maximum
principle has only certain quantitative substitutes in the present theory (see
the proof of Lemma 4.5).

The paper is organized as follows. In Section 2 we introduce the notation
and collect some basic facts concerning α-stable symmetric processes and α-
harmonic functions. In Section 3 we obtain the upper bound in (1) for an
arbitrary open set. In Section 4 we restrict ourselves to Lipschitz domains
and obtain the lower bound in (1).

We also give some applications of these estimates. In particular, in Section
5 we derive, for α > 1, sharp gradient estimates for nonnegative q-harmonic
functions under an appropriate growth condition on the potential function q
of the Feynman-Kac semigroup.

2. Preliminaries

Let d be a natural number. By | · | we denote the Euclidean norm in Rd.
For x ∈ Rd, r > 0 and A ⊂ Rd we set B(x, r) = {y ∈ Rd : |x− y| < r}, rA =
{ry : y ∈ A}, diamA = sup{|y−z| : y, z ∈ A}, dist(A, x) = inf{|x−y| : y ∈ A},
δA(x) = dist(x,Ac). A set D ⊂ R

d is called a domain if it is open and
nonempty. We say that a function f is nontrivial on D, if f(x) 6= 0 for some
x ∈ D. We generally assume Borel measurability of the sets and functions we
consider here.

The notation c = c(α, β, . . . , γ) means that c is a constant depending only
on α, β, . . . , γ. Constants are always (strictly) positive and finite.

In dimensions d ≥ 2 a domain D ⊂ Rd is called Lipschitz if for every Q ∈
∂D there are a Lipschitz function ΓQ : Rd−1 → R, an orthonormal coordinate
system CSQ, and a number RQ > 0 such that if y = (y1, y2, . . . , yd−1, yd) in
CSQ coordinates, then

D ∩B(Q,RQ) = {y : yd > ΓQ(y1, y2, . . . , yd−1)} ∩B(Q,RQ).

Note that we do not assume the connectedness nor the boundedness of D in
this definition. We also define a Lipschitz domain on the real line (d = 1)
as the union of any collection of open (possibly unbounded) intervals such
that every bounded subset of R intersects with only a finite number of these
intervals and no two intervals have a common endpoint.

For the rest of the paper, unless stated otherwise, α is a number in (0, 2).
By (Xt, P

x) we denote the standard (see [BG]) rotation invariant (“symmet-
ric”) α-stable, Rd-valued Lévy process (i.e., homogeneous, with independent
increments), with index of stability α and characteristic function

E0eiξXt = e−t|ξ|
α

, ξ ∈ Rd, t ≥ 0.
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As usual, Ex denotes the expectation with respect to the distribution P x of
the process starting from x ∈ Rd. (Xt, P

x) is a Markov process with transition
probabilities given by Pt(x,A) = P x(Xt ∈ A) =

∫
A
p(t;x, y) dy and is strong

Markov with respect to the so-called “standard filtration” [BG].
For A ⊂ Rd, we define the first exit time from A as τA = inf{t ≥ 0: Xt /∈

A}. Given x ∈ Rd, the P x distribution of XτA is a subprobability measure
on Ac (and a probability measure if A is bounded) called the α-harmonic
measure.

When r > 0, |x| < r and B = B(0, r) ⊂ Rd, the corresponding α-harmonic
measure has the density function Pr(x, ·) (the Poisson kernel) given by the
formula

(2) Pr(x, y) = Cdα

[
r2 − |x|2

|y|2 − r2

]α/2
|y − x|−d for |y| > r,

with Cdα = Γ(d/2)π−d/2−1 sin(πα/2), and is equal to 0 otherwise [BGR].

Definition 2.1. We say that f defined on Rd is α-harmonic in an open
set D ⊂ Rd if it has the mean value property

(3) f(x) = Exf(XτU ), x ∈ U,

for every bounded open set U with closure contained in D. It is called regular
α-harmonic in D if (3) holds for U = D.

In (3) it is always assumed that the expectation is absolutely convergent.
If D is unbounded then by the usual convention Exu(XτD ) = Ex[τD <
∞; u(XτD )]. By the strong Markov property a regular α-harmonic function is
necessarily α-harmonic. The converse is not generally true [B2]. An alterna-
tive definition of α-harmonic functions by means of the fractional Laplacian

∆α/2f(x) = A(d,−α) lim
ε→0+

∫
B(x,ε)c

f(y)− f(x)
|y − x|d+α

dy

is discussed in [BB1]. Here and below A(d, γ) = Γ[(d−γ)/2]/(2γπd/2|Γ(γ/2)|);
see [L], [BG]. It follows from (2) and (3) that a function f which is α-harmonic
in D satisfies

(4) f(x) =
∫

|y−θ|>r

Pr(x− θ, y − θ) f(y) dy, x ∈ B(θ, r),

provided B(θ, r) ⊂ D. The integral in (4) is absolutely convergent and by
(2) f is smooth on D. If, furthermore, f is nonnegative on Rd and nontrivial
in D, then it is positive in D, regardless of connectedness of D. In fact, the
following Harnack inequality holds [B1].
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Lemma 2.1. Let x1, x2 ∈ Rd, r > 0 and k ∈ N with |x1 − x2| < 2kr. If f
is nonnegative on Rd and α-harmonic in B(x1, r) ∪B(x2, r) then

C−1
1 2−k(d+α)f(x2) ≤ f(x1) ≤ C12k(d+α)f(x2),

with a constant C1 = C1(α, d).

For α < d the potential operator Uα of the process Xt is expressed in terms
of the Riesz kernel Kα. Namely, for f ≥ 0 on Rd

Uαf(x) = Ex
∫ ∞

0

f(Xt) dt =
∫
Kα(y − x)f(y) dy, x ∈ Rd,

where
Kα(x) = A(d, α)|x|α−d, x ∈ Rd .

Whenever α ≥ d the process Xt is recurrent (and pointwise recurrent if α >
d = 1), and it is appropriate to consider the so-called compensated kernels
[BGR]

Kα(y − x) =
∫ ∞

0

[p(t;x, y)− p(t; 0, x0)] dt ,

where x0 = 0 for α > d = 1 and x0 = 1 for α = d = 1. Thus, for α = d = 1

Kα(x) =
1
π

ln
1
|x|
,

and for α > d = 1

Kα(x) =
A(1, α)
|x|1−α

=
|x|α−1

2 Γ(α) cos(πα/2)
, x ∈ Rd.

Note that Kα(x) ≤ 0 if α > d = 1. We say that a domain D ⊂ Rd is Greenian
if α < d or α ≥ d = 1 and Rd\D is nonpolar. If α > d = 1 then the only
polar set is ∅, so in our setting nontrivial non-Greenian sets exist only for
α = d = 1. For a Greenian domain D in Rd we denote by GD the Green
operator and the Green function for D and Xt, i.e., for f ≥ 0 we write

GDf(x) = Ex
∫ τD

0

f(Xt) dt =
∫
D

GD(x, y)f(y) dy, x ∈ Rd .

The Green function satisfies

(5) GD(x, y) = Kα(y − x)− ExKα(y −XτD ), x, y ∈ D, x 6= y ,

whenever α < d or D is bounded [BGR]. It is well-known that GD(x, y) > 0
on D. Also, GD is symmetric and for each y ∈ D, GD(·, y) is α-harmonic in
D \ {y}. If α > d = 1 and D is a bounded domain then GD(·, ·) is bounded
on D ×D.

If D is a bounded domain with the exterior cone property then (see [IW],
[B1])

(6) PD(x, y) =
∫
D

A(d,−α)GD(x, v)
|y − v|d+α

dv, x ∈ D, y ∈ intDc,
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where PD(x, y) denotes the density function (i.e., the Poisson kernel) of the
harmonic measure P x(XτD ∈ dy).

By letting |y| → ∞ in |y|d+αPr(x, y), we obtain for B = B(0, r), r > 0,

(7) ExτB =
∫
B

GB(x, y) dy =
Cdα

A(d,−α)
(r2 − |x|2)α/2, |x| < r.

3. The upper bound

For r > 0 and x, y ∈ Rd we set ∇Pr(x, y) = (DiPr(x, y))di=1, where

DiPr(x, y) =
∂

∂xi
Pr(x, y) , |x| < r , |y| > r , i = 1, . . . , d .

Lemma 3.1. For r > 0 and B = B(0, r) ⊂ Rd we have

|∇Pr(x, y)| ≤ (d+ α)
Pr(x, y)
r − |x|

, x ∈ B, y ∈ intBc.

Proof. Since

(8)
∂

∂xi
Pr(x, y) = Pr(x, y)

[
−αxi

r2 − |x|2
+ d

yi − xi
|y − x|2

]
,

we have

|∇Pr(x, y)| ≤ Pr(x, y)
[

α|x|
r2 − |x|2

+
d

|y − x|

]
(9)

≤ (d+ α)
Pr(x, y)
r − |x|

. �

Assume that f is as in (4). By Lemma 3.1 and the bounded convergence
theorem,

(10)
∂

∂xi
f(x) =

∫
|y−θ|>r

DiPr(x−θ, y−θ)f(y) dy , x ∈ B(θ, r) , i = 1, . . . , d .

Lemma 3.2. Let D be an arbitrary open set in Rd. For every nonnegative
function f which is α-harmonic in D we have

|∇f(x)| ≤ d f(x)
δD(x)

, x ∈ D .

Proof. Let x ∈ D and 0 < r < δD(x). By (10) with θ = x and (9) we have

|∇f(x)| ≤
∫

|y−x|>r

|∇Pr(0, y − x)| f(y) dy ≤ d

r

∫
|y−x|>r

Pr(0, y − x) f(y) dy

= d
f(x)
r
→ d

f(x)
δD(x)

as r → δD(x) . �
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Lemma 3.2 applied to Rd gives a quick proof of the fact that the only
functions bounded from below (or above) and α-harmonic on the whole space
R
d are constants. The next result follows by an application of Lemma 3.2 to

D \ {y}.

Corollary 3.3. Let D be a Greenian domain in Rd. Then

|∇xGD(x, y)| ≤ d GD(x, y)
min{|x− y|, δD(x)}

, x, y ∈ D, x 6= y.

We note that the inequality in Corollary 3.3 may be stated more explicitly
in more regular domains (e.g., of class C1,1), because sharp estimates for the
Green function of such domains are known ([CS1], [K1]; see also [CS2], [B3]).

4. The lower bound

We introduce some auxiliary notation. For x = (x1, . . . , xd) ∈ Rd we write
x = (x̃, xd), where x̃ = (x1, . . . xd−1). In order to include the case d = 1 in
the considerations below, we make the convention that for x ∈ R, x̃ = 0, and
we set R0 = {0}.

For the remainder of the section we fix a Lipschitz function Γ: Rd−1 → R,
with Lipschitz constant λ, so that |Γ(x̃) − Γ(ỹ)| ≤ λ|x̃ − ỹ| for x̃, ỹ ∈ Rd−1.
We put ρ(x) = xd − Γ(x̃). Unless stated otherwise, D denotes the special
Lipschitz domain defined by D = {x ∈ Rd : ρ(x) > 0}. The function ρ(x)
serves as vertical distance from x ∈ D to ∂D; it satisfies

(11) ρ(x)/
√

1 + λ2 ≤ δD(x) ≤ ρ(x), x ∈ D.

We define the “box” ∆(x, a, r) = {y ∈ Rd : 0 < ρ(y) < a, |x̃ − ỹ| < r}, where
x ∈ Rd and a, r > 0. We note that ∆(x, a, r) is a Lipschitz domain (with
“bottom” on ∂D) and depends on x only through x̃. We also define the
“inverted box” ∇(x, a, r) = {y ∈ Rd : − a < ρ(y) ≤ 0, |x̃ − ỹ| < r}. (The
same symbol ∇ is used for the gradient, but the meaning will be clear from
the context.)

The following version of the boundary Harnack principle (BHP) for α-
harmonic functions follows from [B1, Lemma 16 and the proof of Theorem 1].
Note that the case d = 1 is a consequence of (2) and (4).

Lemma 4.1 (BHP). For all Q ∈ ∂D, r > 0, and nonnegative functions u, v
which are regular α-harmonic in ∆(Q, 2r, 2r), vanish on ∇(Q, 2r, 2r) and sat-
isfy u(y0) = v(y0) > 0 for some y0 ∈ ∆(Q, r, r), the ratio h(x) = u(x)/v(x) is
Hölder continuous in ∆(Q, r, r). In fact, there exist constants C2 = C2(α, d, λ)
and ξ = ξ(α, d, λ) such that

|h(x)− h(y)| ≤ C2(|x− y|/r)ξ, x, y ∈ ∆(Q, r, r).
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In particular, there is a constant C3 = C3(α, d, λ) such that

C−1
3 ≤ u(x)

v(x)
≤ C3, x ∈ ∆(Q, r, r).

If Q ∈ ∂D and r > 0 then Ar(Q) denotes the unique point “above” Q
such that |Ar(Q)−Q| = (Ar(Q))d −Qd = r/2. For convenience we state the
following useful estimate (see [B1, Lemma 5]).

Lemma 4.2. Under the same assumptions on Q, r and u as in Lemma 4.1
let A = Ar(Q). There are constants C4 = C4(α, d, λ) and γ = γ(α, d, λ) such
that

u(x) ≥ C4 u(A)
[
ρ(x)
ρ(A)

]α−γ
, x ∈ ∆(Q, r, r) .

In the case d = 1, by (2) and (4) we have γ = α/2. This is also true for
C1,1 functions Γ (see [CS1]), but not for general Lipschitz Γ ([K2]; see also
[M]).

We consider a particular Lipschitz “box” ∆ = ∆(0, 1, 1) and define

(12) g(x) = P x{Xτ∆ /∈ ∇(0,∞, 1)}, x ∈ Rd.

Clearly, g is regular α-harmonic on ∆, g = 0 on ∇(0,∞, 1) and g = 1 on
(∆ ∪∇(0,∞, 1))c.

Lemma 4.3. The function g(x) is nondecreasing in xd.

Proof. Note that g(x) = 1 − P x{Xτ∆ ∈ ∇(0,∞, 1)} for x ∈ Rd. Take
x, y ∈ ∆ such that x̃ = ỹ, xd ≤ yd (i.e., y is “above” x). Consider ω + x
and ω + y; the trajectories Xt are of the same shape, but start at x and y,
respectively. Observe that if ω + y exits ∆ by going into ∇(0,∞, 1), then so
does ω + x. �

Lemma 4.4. There is a constant C5 = C5(d, α, λ) such that

∂

∂xd
g(x) ≥ C5

g(x)
δD(x)

, x ∈ ∆(0, 1/4, 1/2) .

Proof. Choose x ∈ ∆(0, 1/4, 1/2) and set η = ρ(x). Let r = η/(2
√

1 + λ2).
PutB1 = B(x, r), B2 = B(x̂, r) andB3 = B(x̌, r), where x̂ = x+(0, . . . , 0, 2η),
x̌ = x−(0, . . . , 0, 2η). By (11) we have B1 ⊂ B(x, 2r) ⊂ ∆, B2 ⊂ B(x̂, 2r) ⊂ ∆
and B3 ⊂ ∇(0,∞, 1). Note that B2 and B3 are symmetric to each other with
respect to the hyperplane Π = {y ∈ Rd : yd = xd}. Using (4) and (10) with
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θ = x and (9) we get
∂

∂xd
g(x) =

∫
|y−x|>r

DdPr(0, y − x) g(y) dy

= d

∫
|y−x|>r

Pr(0, y − x)
yd − xd
|y − x|2

g(y) dy.

The function y 7→ Pr(0, y−x)(yd−xd)/|y−x|2 is antisymmetric with respect
to the hyperplane Π, and positive in the half-space “above” Π. From this and
Lemma 4.3 we obtain

(13)
∂

∂xd
g(x) ≥ d

∫
B2∪B3

Pr(0, y − x)
yd − xd
|y − x|2

g(y) dy.

Since g ≡ 0 on B3, the domain of integration B2 ∪ B3 here may be replaced
by B2.

We consider an arbitrary point y ∈ B2. We have B(y, r) ⊂ ∆ and η <
|y − x| < 3η. Lemma 2.1 yields g(y) ≥ c1g(x), with c1 = c1(d, α, λ). Since
yd − xd > η, using (13) we obtain

∂

∂xd
g(x) ≥ d

∫
B2

Cdα

[
r2

|y − x|2 − r2

]α/2
yd − xd
|y − x|d+2

g(y) dy

≥ c1d

∫
B2

[
η2/(4 + 4λ2)

9η2

]α/2
η

(3η)d+2
g(x) dy

= c1d
(

6
√

1 + λ2
)−α

3−d−2m(B2)η−d−1g(x)

= c2g(x)/ρ(x),

where m(B2) is the Lebesgue measure of B2 and c2 = c2(d, α, λ). The lemma
follows from (11). �

Lemma 4.5. Assume that f is nonnegative on Rd and regular α-harmonic
in ∆ and vanishes on ∇(0, 1, 1). Then

∂

∂xd
f(x) ≥ C6

f(x)
δD(x)

, x ∈ ∆(0, η, 1/2) ,

with some constants C6 = C6(d, α, λ) and η = η(d, α, λ).

Proof. Let x ∈ ∆(0, 1/16, 1/2). Let Q = (x̃,Γ(x̃)) be the point on ∂D
“below” x. We define u(y) = cg(y), y ∈ Rd, where c = limD3y→Q f(y)/g(y),
so that h(y) = f(y)/u(y)→ 1 as D 3 y → Q (see Lemma 4.1). By Lemma 4.4
and BHP in ∆(Q, 1/4, 1/4) (taking r = 1/4 in Lemma 4.1) we have

∂

∂xd
f(x) ≥ ∂

∂xd
u(x)− |∇(f − u)(x)|(14)

≥ C5C
−1
3

f(x)
δD(x)

− |∇(f − u)(x)| .
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Let µ = 2ρ(x). Note that µ ∈ (0, 1/8) and consider an arbitrary r ∈ (2µ, 1/4],
to be specified later. We put ∆r = ∆(Q, r, r) and ∆µ = ∆(Q,µ, µ). For
clarity we note that, e.g., ∆r ⊂ B(Q, 2r

√
1 + λ2). Recall that v = f − u

is regular α-harmonic in ∆µ and let V (y) = Ey|v(Xτ∆µ )|, y ∈ Rd. Clearly,
|v| ≤ V . By Lemma 3.2,

|∇(f − u)(x)| ≤ |∇V (x)|+ |∇(V − v)(x)|(15)

≤ 3d
V (x)
δ∆µ(x)

≤ 3d
√

1 + λ2
V (x)
δD(x)

.

To estimate V (x) we note that, by BHP in ∆(Q, 1/4, 1/4),

|(f − u)(y)| = u(y)|h(y)− 1| ≤ C2C3(4|y −Q|)ξf(y) , y ∈ ∆(Q, 1/4, 1/4) .

By the mean value property,

V (x) ≤ Ex{Xτ∆µ ∈ ∆r ; |(f − u)(Xτ∆µ )|}+ Ef + Eu(16)

≤ C2C3(8r
√

1 + λ2)ξf(x) + Ef + Eu ,

where the terms Ef = Ex{Xτ∆µ ∈ ∆c
r ; f(Xτ∆µ )} and Eu = Ex{Xτ∆µ ∈

∆c
r ; u(Xτ∆µ )} result from the jumps of the trajectories of Xt and can be

estimated as follows.
Let Gµ be the Green function of ∆µ. By (6),

Ef =
∫

∆c
r

∫
∆µ

Gµ(x, v)
A(d,−α)
|y − v|d+α

f(y) dvdy .

Let A = Ar(Q). For v ∈ ∆µ and y ∈ ∆r
c ∩ supp f we have

|y − v| ≥ (|y −A| − |A− v|) ∨ r

2
√

1 + λ2

≥ (|y −A| − 2r
√

1 + λ2) ∨ r

2
√

1 + λ2
≥ |y −A|

8(1 + λ2)
.

It follows that

Ef ≤ [8(1 + λ2)]d+α

∫
∆µ

Gµ(x, v) dv ·
∫

∆c
r

A(d,−α)
|y −A|d+α

f(y) dy .

We have by (7)∫
∆µ

Gµ(x, v) dv = Exτ∆µ
≤ ExτB(Q,2µ

√
1+λ2) ≤

Cdα
A(d,−α)

(2µ
√

1 + λ2)α .

Let B = B(A, r/(2
√

1 + λ2)). For y ∈ ∆c
r ⊂ Bc we have

Cdα
|y −A|d+α

≤
(
r/
(

2
√

1 + λ2
))−α

Pr/(2
√

1+λ2)(0, y −A)
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(see (2)). Thus by the mean value property and Lemma 4.2

Ef ≤ [8(1 + λ2)]d+α22α(1 + λ2)α(µ/r)αEAf(XτB )

≤ C4[8(1 + λ2)]d+α22α(1 + λ2)α(µ/r)γf(x) .

By a similar reasoning and BHP

Eu ≤ C3C4[8(1 + λ2)]d+α22α(1 + λ2)α(µ/r)γf(x) .

Recall that µ = 2ρ(x). We now define r = (2µ · µ−ξ/(γ+ξ)) ∧ (1/4). Then
(µ/r)γ ≤ 4γµγξ/(γ+ξ). Since r ≤ 2µγ/(γ+ξ), by (16), there exists c = c(d, α, λ)
such that V (x) ≤ cρ(x)γξ/(γ+ξ)f(x). The lemma now follows from (14) and
(15) provided we choose η so that 3d

√
1 + λ2cηγξ/(γ+ξ) ≤ C5C

−1
3 /2. �

In the case d = 1 a more explicit estimate easily follows from (8) and (10).

Lemma 4.6. For every nonnegative function f on R which is regular α-
harmonic in (−1, 1) and vanishes on (−3,−1]

f ′(x) ≥ α

6
f(x)

1− |x|
, x ∈ (−1,−1 + α/6) .

Proof of Theorem 1.1. The upper bound in (1) was stated more generally
in Lemma 3.2. To prove the lower bound we observe that its validity is not
affected by a translation or a unitary transformations of Rd. We also note
that a nonnegative function which is bounded and α-harmonic on a Lipschitz
domain is regular α-harmonic on this domain (see [B1]). Thus, we can use
Lemma 4.5 and the result follows from the inequality |∇f | ≥

∣∣∣ ∂
∂xd

f
∣∣∣, the

scaling properties of α-harmonic functions and the compactness of ∂D∩K. �

Example 4.1. Under the notation and the assumptions of Theorem 1.1
the function f has no local extremum on the set {x ∈ D ∩K : δD(x) < ε}. In
this connection consider the set D = (1/2, 1) ∪ (1/8, 1/4) ∪ (1/32, 1/16) ∪ · · ·
⊂ R. Define f(x) = P x{XτD > 1}, x ∈ R. On each interval (4−n/2, 4−n),
f has a local maximum, so the lower gradient estimate does not hold near
0 ∈ ∂D even though D is rather “fat” at 0.

We now consider the cones Ch = {x = (x̃, xd) ∈ Rd : |x̃| < hxd}, h > 0.
Each Ch is a Lipschitz domain. By [B2] there is a Martin kernel M for Ch
corresponding to the point at infinity. M vanishes continuously outside Ch
and is α-harmonic in Ch. By the uniqueness of M and the homogeneity and
symmetry of Ch we obtain M(x) = |x|βφ(x/|x|), where φ is symmetric with
respect to the axis of Ch and 0 < β < α. Thus for x = (0̃, xd) with xd > 0 we
have

|∇M(x)| = ∂

∂xd
M(x) = β

M(x)
|x|

= β
M(x)
δCh(x)

h√
1 + h2

.

This shows that C6 → 0 in Lemma 4.5 as λ → ∞, and the same behavior
may be expected for domains with narrow thorns.
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We state two results which are gradient analogs of the boundary Harnack
principle and the Harnack inequality. The first is a direct consequence of
Theorem 1.1 and BHP in a global version given in [B1]; the second follows
from Theorem 1.1 and Lemma 2.1.

Corollary 4.7 (BHP). Under the assumptions of Lemma 4.1 there is a
constant C7 = C7(V,K,D, α) such that

C−1
7 |∇u(x)| ≤ |∇v(x)| ≤ C7|∇u(x)|, x ∈ D ∩K, δD(x) < ε ,

where ε = ε(V,K,D, α) is the constant of Theorem 1.1.

Corollary 4.8. Under the assumptions of Theorem 1.1 let x1, x2 ∈ K ∩
D, r > 0 and k ∈ N be such that |x1 − x2| < 2kr and B(x1, r) ∪ B(x2, r) ⊂
D ∩ V . There exists a constant C8 = C8(D,V,K, α), such that

C−1
8 2−k(d+α+1)|∇f(x2)| ≤ |∇f(x1)| ≤ C82k(d+α+1)|∇f(x2)| ,

provided δD(x1) < ε and δD(x2) < ε, where ε = ε(V,K,D, α) is the constant
of Theorem 1.1.

5. q-harmonic functions

In this section we derive gradient estimates for q-harmonic functions from
gradient estimates for α-harmonic functions. We will use the properties of
nonnegative q-harmonic functions established in [BB1] (for α < d) and [BB2]
(for all α ∈ (0, 2) and d ∈ N). We first give some necessary definitions.

A function q on Rd belongs to the Kato class J α if

(17) lim
r↓0

sup
x∈Rd

∫
|y−x|<r

|q(y)Kα(y − x)| dy = 0,

where Kα is the function defined in Section 2. Clearly, if α < β < 2, then
J α ⊂ J β . If α > d = 1 then (17) is equivalent to

(18) sup
x∈Rd

∫
|y−x|<1

|q(y)| dy <∞ .

For q ∈ J α we define the Feynman-Kac functional eq(t) = exp
(∫ t

0
q(Xs) ds

)
,

t ≥ 0.

Definition 5.1. Let q ∈ J α. We say that a function u on Rd is q-
harmonic in an open set D ⊂ Rd if

(19) u(x) = Ex[eq(τU )u(XτU )], x ∈ U,

for every bounded open set U with U ⊂ D. The function u is called regular
q-harmonic in D if (19) holds for U = D.
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In the latter case, for unbounded D, the expectation in (19) is to be un-
derstood as Ex[τD <∞ ; eq(τD)u(XτD )]. It is known [BB2] that if a function
u is q-harmonic on D, then it is continuous on D and satisfies

(20) u(x) = Ex[u(XτU )] +GU (qu)(x) , x ∈ U
for every bounded open U with U ⊂ D. For nonnegative u the converse is
also true [BB2]. If, moreover, D is a Lipschitz domain and u is nonnegative
and bounded on D, then u is regular q-harmonic on D [BB1, Lemma 5.4].
This identification will be used in the sequel without further comments.

To obtain gradient estimates for q-harmonic functions it is appropriate to
impose a more stringent assumption on q, namely q ∈ J α−1, where α >
1. The case α ≤ 1 seems to require a modification of our arguments and
definitions and will not be discussed. The main result of this section is the
following.

Theorem 5.1. Let D be a Lipschitz domain in Rd, d ∈ N, α ∈ (1, 2) and
q ∈ J α−1. Let V ⊂ Rd be open and let K be a compact subset of V . There
exist constants C9 = C9(D,V,K, α, q) and ε = ε(D,V,K, α, q) such that for
every nonnegative function f which is bounded on V , q-harmonic in D ∩ V ,
and vanishes in Dc ∩ V , we have

C−1
9

u(x)
δD(x)

≤ |∇u(x)| ≤ C9
u(x)
δD(x)

, x ∈ K ∩D, δD(x) < ε .

For the rest of this section, unless stated otherwise, we fix d ∈ N, α ∈ (1, 2)
and q ∈ J α−1.

Lemma 5.2. Consider a bounded domain B ⊂ Rd and a bounded function
u on B. We have

∂

∂xi
GB(qu)(x) =

∫
B

∂

∂xi
GB(x, y)q(y)u(y) dy, x ∈ B , i = 1, 2, . . . , d .

Proof. We assume, as we may, that i = d. Let x0 ∈ B, 0 < h < δB(x0)/2
and hd = (0, . . . , 0, h). By (5) we have
∂

∂xd
GB(qf)(x0) = lim

h→0

∫
B

Kα(x0 + hd − y)−Kα(x0 − y)
h

q(y)u(y) dy

− lim
h→0

∫
B

H(x0 + hd, y)−H(x0, y)
h

q(y)u(y) dy = I − II,

where H(x, y) = ExKα(XτB − y). Since
|Kα(x0 + hd − y)−Kα(x0 − y)|

h
≤ c(α, d)(|x0 + hd − y| ∧ |x0 − y|)α−d−1 ,

the integrand in I is uniformly in h integrable on B. The same is true for II
by Lemma 3.2, the Harnack inequality, and the boundedness of H(x0, y) in
y ∈ B. �
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As in Section 4, we first consider the special Lipschitz domain D given by
a Lipschitz function Γ : Rd−1 → R with Lipschitz constant λ. For r > 0 and
Q ∈ ∂D we set ∆r = ∆(Q, r, r) and Gr = G∆r

. For a (nonnegative) function
u we put u∆r (x) = Exu(Xτ∆r ), x ∈ Rd.

Lemma 5.3. For every ε > 0 there exists a constant r0 = r0(d, λ, α, q, ε)
such that if r ≤ r0 and u is nonnegative in Rd and q-harmonic and bounded
in ∆r = ∆(Q, r, r), then

(21) (1− ε)u∆r (x) ≤ u(x) ≤ (1 + ε)u∆r (x) , x ∈ Rd .

Furthermore,

(22) Gr(|q|u)(x) ≤ εu∆r (x), x ∈ Rd .

For d = 1, when ∆r is an interval, (21) follows from the estimate for
the conditional gauge function given in Lemma 3.5 of [BB2] (see also (2.15)
there). This estimate in turn is a simple consequence of the Khasminskii’s
Lemma and the 3G Theorem for the ball [BB2]. In dimensions d > 1 the
same argument works by the version of the 3G Theorem stated in [BB1] and
[CS3] for Lipschitz domains (see also the earlier paper [CS1] for the case of
C1,1 domains), and by scaling. The estimate (22) follows from (21) and (20),
when applied to |q| and q.

Since q ∈ J α−1 ⊂ J α, given ε > 0 we have, by choosing a smaller value
for r0 = r0(d, λ, α, q, ε) ≤ 1 if necessary, for every Q ∈ ∂D and r ≤ r0,

(23) sup
x∈∆r

∫
∆r

|q(y)Kα−1(y − x)| dy ≤ ε ,

and

sup
x∈∆r

∫
∆r

|q(y)Kα(y − x)| dy ≤ ε , if d > 1 ,(24)

sup
x∈∆r

∫
∆r

|q(y)| dy ≤ ε , if d = 1 .(25)

Lemma 5.4. Let ε ≤ 1/2, Q ∈ ∂D and r ≤ r0(d, λ, α, q, ε). Assume that u
is nonnegative in Rd, and q-harmonic and bounded in ∆r = ∆(Q, r, r). There
exists a constant C10 = C10(d, α) such that

|∇Gr(qu)(x)| ≤ εC10
u(x)
δ∆r (x)

, x ∈ ∆r.

Proof. By Lemma 5.2,

|∇Gr(qu)(x)| ≤
∫

∆r

|∇xGr(x, y)||q(y)|u(y) dy , x ∈ ∆r.
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Let H(x, y) = ExKα(Xτ∆r − y), x, y ∈ ∆r. We fix x ∈ ∆r. Let B =
B(x, δ∆r (x)/2). By (5) and Lemma 3.2, for y ∈ B we have

(26) |∇xGr(x, y)| ≤ c1 [Kα−1(y − x) + |H(x, y)|/δ∆r
(x)] , y 6= x ,

where c1 = c1(d, α). Recall that α > 1. For d ≥ 2 we have H(x, y) ≤
Kα(x− y), and if d = 1 < α then, by scaling,

H(x, y) ≤ c3rα−1 , x, y ∈ ∆r ,

where c3 = c3(α). By (21) and the Harnack inequality,

(27) u(y) ≤ 3/2u∆r (y) ≤ 3/2c2u∆r (x) ≤ 3c2u(x) ,

where c2 = c2(d, α) results from Lemma 2.1. This, together with (26) and
(23), implies

(28)
∫
B

|∇xGr(x, y)||q(y)|u(y) dy ≤ 3c1c2u(x)ε[1 + δ−1
∆r

(x)] , if d > 1,

(29)
∫
B

|∇xGr(x, y)||q(y)|u(y) dy ≤ 3c1c2u(x)ε
[
1 +

c3r
α−1

δ∆r
(x)

]
, if d = 1.

By Corollary 3.3 we also have∫
∆r\B

|∇xGr(x, y)||q(y)|u(y) dy ≤ 2dGr(|q|u)(x)/δ∆r
(x) .

The lemma follows from (21), (22), (28) and (29) because δ∆r
(x) < r0 ≤ 1. �

As in the case of α-harmonic functions, the upper bound below holds for
every domain.

Lemma 5.5. Let B be an arbitrary domain in Rd. There exists a constant
C11 = C11(d, α, q) such that for every function u that is nonnegative in Rd

and q-harmonic in B we have

|∇u(x)| ≤ C11
u(x)

δB(x) ∧ 1
, x ∈ B.

Proof. Fix x ∈ B and ε = 1/2. For r > 0 we consider the particular
Lipschitz box ∆r = {y ∈ Rd : |xd − yd| < r/2, |x̃ − ỹ| < r}. Let r =
r0(d, 0, α, q, 1/2) ∧ (δB(x)/2). By (20) we have

|∇u(x)| ≤ |∇u∆r (x)|+ |∇Gr(qu)(x)|.
The assertion follows from Lemma 3.2, Lemma 5.4 and (21). �

Lemma 5.6. There are constants C12 = C12(d, α, λ, q) and κ = κ(d, α, λ, q)
such that if 0 < r ≤ κ, Q ∈ ∂D and u is nonnegative in Rd, q-harmonic and
bounded in ∆(Q, 2r, 2r), and vanishes in ∇(Q, 2r, 2r), then

|∇u(x)| ≥ C12
u(x)
δD(x)

, x ∈ ∆(Q, r, r).
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Proof. The function u satisfies (20) with U = ∆(Q, 2r, 2r). Using Lemmas
4.5, 5.4 and 5.3 we obtain the result by an appropriate choice of (ε and) κ. �

Proof of Theorem 5.1. The upper bound follows from Lemma 5.5. Note
that the class J α and the estimate in Lemma 5.6 are rotation invariant. Thus
the lower bound follows from this lemma and the compactness of ∂D∩K. �

We note that the techniques presented in this paper apply even more easily
to the classical harmonic and q-harmonic functions and give the estimates of
[C] and [BP].
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Wyb. Wyspiańskiego 27, 50–370 Wroc law, Poland

E-mail address: bogdan@im.pwr.wroc.pl

T. Kulczycki, Institute of Mathematics, Wroc law University of Technology,
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