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OPERATORS COMMUTING WITH MIXING SEQUENCES

M. D. HA

ABSTRACT. Let (X, .T’,/z) be a probability space and let L2(X, 0) be the collection of all f L2(X) with
zero integrals. A collection .A of linear operators on L2(X) is said to satisfy the Gaussian-distribution
property (G.D.E) if L (X, 0) is invariant under4 and there exists a constant C < cx such that the following
condition holds:

Whenever TI Tk arefinitely many operators in t, and f is afunction in L with zero integral,
then, for any required degree of approximation, there is another LE-function g with g 112--< C f 112,
such that all the inner products (Re 7)g, Re Tj g) are approximately equal to the corresponding inner
products (Re T/f, Re Tj f) for all < i, j < k and such that the joint distribution of the functions
Re T g Re Tkg is approximately Gaussian.

It has been proved that if (Sn) is a sequence of uniformly bounded linear operators on L2(X) that
satisfies the Bourgain’s infinite entropy condition and the G.D.P., then there exists an h L (X) such that
lim Sn h fails to exist/z-a.e, as a finite limit on X.

The purpose of this paper is to provide sufficient conditions for a collection .,4 of linear operators
on L2 (X) to satisfy the G.D.P.

I. Introduction

The Zygmund-Marcinkiewicz conjecture states that if f is a l-periodic, bounded
measurable function, then the sequence of Riemann sums (Rnf) converges a.e. on

n k[0,1) to f0,1) f dkl. Here, Rnf(x) -ff Y’t= f(x + -if), Yx [0, 1) and ,k is the
Lebesgue measure on R. This was disproved by Rudin in 1962 [9]. The method
employed by Rudin essentially made use of only the arithmetic properties of the
primes, namely that if p, p2 Pu are distinct primes, then for any _< _< N,
Pi does not divide the least common multiple of p, P2 Pi-I, Pi+l PN.

Also, in 1969, Marstrand [7] proved that if (at) is any E-sequence in N (see [7]
for the definition), then given any > 0, there is some open set O

_
(0, 1) for which

Z(O) < and

lim sup , Xo (atx(modl)) 1,
n n k=l

Yx (0, 1).

The sequence (k) was then shown to be an E-sequence, and thus, applying the above,
Khintchine’s conjecture [7] was settled. Again, the arguments given by Marstrand
depend essentially only on the properties of an Z-sequence. The approaches taken
by both Rudin and Marstrand in the disproof of the respective conjectures were
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apparently ad hoc and seem to depend strongly on each particular situation being
encountered. Therefore, it became clear that a more unified and general principle,
one that would somehow allow us to "simultaneously" settle these and other related
almost everywhere convergence problems, was very much needed.

Then in 1987, Bourgain [3] established a criterion providing necessary conditions
for a.e. convergence in a very general setting (so that many types of operators en-
countered in ergodic theory are covered). Bourgain’s proof of the result above made
use of several ideas and theorems in the theory of Gaussian Processes.

2. Some motivations

Let .1 be the Lebesgue measure on R. For each real number a, let ra" [0, 1) -->
[0, 1) be the translation x -> x -I- a (mod 1). A weighted averages oftranslations on
the unit interval is a contraction A defined for all < p < oo by

A Lt’([0, 1), ,,) Lt’([0, 1),

af E otjf o Z’aj forall f e LP([0, 1),.1),

where (otj) is a sequence of non-negative reals with ’j% aj and (aj) is a
sequence of real numbers.

In an attempt to simplify and better understand Bourgain’s proof of the Entropy
Criteria, M. A. Akcoglu, M. D. Ha and R. L. Jones [1] discovered and proved the
following.

(i) Every sequence (An) of weighted average of translations on the unit interval
has an interesting property, which was called the Gaussian-distribution property.

(ii) Moreover, if a sequence (An) of weighted averages of translations on the
unit interval has infinite L2-entropy, then, using the Gaussian-distribution property
of (An), it was shown that there exists some f e L([0, 1), ,) such that the a.e.
convergence of (An f)o fails.

The techniques used in were later refined in [2] so that in certain cases, much
stronger results can be obtained. The methods employed in and [2] differ substan-
tially from the one used by Bourgain in [3] and the proofs given are self-contained,
avoiding specialized estimates used in the theory of probability.

The purpose of this paper is to extend some of the results in [1] by establishing a
general criterion whereby various classes of operators in ergodic theory can be shown
to also have the Gaussian Distribution Property. This is the contents of Theorems I
and II (Section 4) of this paper.
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3. Preliminaries

3.1. Weak convergence of measures. For any topological space Y, let 13(Y)
be the a-algebra of all Borel sets in Y. We denote by M(Y) the collection of all
probability measures on B(Y). Let Cb(Y) be the collection of all real-valued bounded
continuous functions on Y. Each 99 in Cb(Y) induces a map

99* M(Y)---> R

-> I-tpdlz, lz M Y

The weak topology on M(Y) is the smallest topology on M(Y) making each of the
maps o* above continuous. A sequence (/Zn)’ in M(Y) conv,erges weakly to tx
M(Y) if the convergence takes place in the weak topology on M(Y). Equivalently,
(/xn) converges weakly to/z iff

lim fr 99 d/-t,, fr o d# for all o Cb(Y).

We denote this weak convergence of (/zn) to/z symbolically by

#n /Z asH--->

3.2. Distribution measures. Let (X, .T’,/z) be a probability space and let Y be a
topological space. The distribution measure v of a measurable function f: X ---> Y
is the measure on Y defined by

v(E) lZ (f- (E)), E I(Y).

We shall write # o f- for the distribution measure of f. If f fv are mea-
surable functions from X into Y, (f fN): X ---> YV is the function defined by
(f flv)(x) (f(x) fs(x)) for every x X. It is clear that (f fs)
is measurable when YS is given the product topology. It then makes sense to talk
about/z o (f fv)-, the joint-distribution measure of fl fs.

3.3. Gauss measures on’B(RV). Unless otherwise stated, x Rn will stand for
the point x (x xv). The usual inner-product on Rv will be denoted by ),
i.e., (x, y) -= xiYi for all x, y Rv. Here and elsewhere, ()= j is the
product a-algebra of the a-algebras .j. We shall identify Rrv with (RV)r. Hence,
if ) is a probability measure on/(Rv) and H: ((RV)r ()= B(RV)) --> R is

measurable’ we will write fRN HdZrfrthemrecumbersmeftRN) Hd’r"
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For each positive integer m, the standard m-dimensional Gaussian density func-
tion, m, is defined to be

m" Rm R

m(X) -’ (x,x) lme’r x
(2)m/2

The above usage of teinology is in agreement with that of a probability theorist
concerning density functions of random variables. For a lively account of these
matters and more, the reader can consult [4].

Throughout this paper, m denotes the m-dimensional Lebesgue measure restricted
to B(Rm), the Borel subsets of Rm.

Definition 3.3. I. For each positive integer m, the standard m-dimensional Gaus-
sian measure is the probability measure Ym on B(R) defined by

fm dXm, E (Rm).ym(E)

If N is any positive integer, a Gauss measure on B(Rs) is the distribution measure
of a linear transformation

for some integer m. Here, we do not require L to be one to one.

For each N, we will let " N denote the projection map onto the
ih-coordinate. In [6], the following result was deduced from the Multi-dimensional
Central Limit Theorem (Theorem 11.10 in [41).

3.4. THE CENTRAL LIMIT THEOREM FOR GAUSSIAN MEASURES. Fix some posi-
tive integer N. Let ) be any probability measure on /3(Rv) such that for all
<_i,j <_v,

zrid;=0 and fR 7riTrj d, < o.
N N

For each K N, define Tr" Rrv Rv by

x
Tr(x x r) x r R,...,x _.

Then, there exists a unique Gauss measure }, on/3(Rv) satisfying

fR 715iYgJ d, fn 7(i71J dZ for all < i, j < N.
N N

Moreover,

Lr o T, Y as K - o.

From this result, we obtain the following.
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COROLLARY. Let (X, .T’,/z) be a probability space. Let fl fN E L2(X)
and ]. dlz Ofor all l, 2 N. Then, there exists a unique Gauss measure

, on B(Rv) such that

TiYtj d’ fx fi j dlz for all <_ i, j < N.
N

Proof. Let f2 (fl fs) and , =/z o f2-l Then

fridX=OandfrirrjdZ=fxfifd<
Hence, by the theorem immediately above, we are done.

for all < i, j < N.

Definition 3.4. I. The Gauss measure , in the above corollary is called the Gauss
measure induced by (f f/v). We denote this y by Gauss(f f/v).

3.4. Mixing transformations and sequences. Throughout this discussion, we let
(X, .T’,/z) be a fixed probability space. We will first recall some standard terminolo-
gies concerning various kinds of transformations on X that are frequently encountered
in ergodic theory.
A map r: X X is said to be measure-preserving if r- A E " and/x(r- A)

/x(A) for all A .T’. A measure-preserving map r" X ---> X is said to be ergodic if
whenever r-I A A for some A .T’, then/x(A) or/x(A) 0. A measure-
preserving map r" X ---> X is said to be weakly mixing if for all A, B ’,

lim -1 [/z (a fq ’-J B) /x(a) #(B) 0,
n n

j=l

and is strongly mixing if for all A, B .T’,

lim /z (A N r-n B) =/x(a)/z(B).

Also, as is well known, strongly mixing == weakly mixing := ergodicity [8]. We
hall be interested in sequences of measure-preserving maps on X that has a certain
property of mixing as following.

Definition 3.5.1. Let (rn) be a sequence ofmeasure-preserving transformations
from X into X. Then (rn) is said to be mixing ofall orders if for all K > and all
Ai, A2 AK E .T’,

/z(r,, A fq rm-2 A2 fq fq r- At) =/z(A) (A2) lz(Ar)m/(
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Remark 3.5.1. A slightly different notion of mixing of all orders from the one
introduced in Definition 3.5.1 is the following. Let (rn) be a sequence of measure-
preserving transformations on a probability space (X, ’,/x). Then (rn) is said to
be mixing ofall orders (of type II) if for all K > and all Ai, A2 Ar ,

lim
inf (m.i+i -mj)--o

<j<g-

inf mj---o
I<_.j<_K

/Z(rr, AI fq rm- A2 f’) fq r- At) =/z(A) (A2) lz(Ar)mK

It is clear that if a sequence (rn) is mixing of all orders of type II, then it is mixing
of all orders as defined in our definition above. Thus, mixing of all orders of type
II is a more stringent condition imposed on a sequence (rn). For the present paper,
Definition 3.5.1 suffices. Also, if r is a measure-preserving map on X such that
(r") is mixing of all orders of type II, then r is strongly mixing. The converse still
remains an open problem for sometime.

3.5. Examples. (a) Bernoulli shifts. Let us first recall what we mean by Bernoulli
shifts. Let X be a topological space, 13(X) being the a-algebra of its Borel sets, and

let/x be a probability measure on B(X). Let Y H X be endowed with the product

topology. Given Ao Am 13(X) and j Z, define a cylinder set in Y as

C(j, Ao Am) {(xk) Y" xj Ao, xj+ AI Xj+m Am}.

It can be shown that there exists a unique probability measure v on B(Y) satisfying

m

v(C(j, Ao Am)) H tz(Ai) j Z, Ai - ](X).
i=0

The map

defined by

(a(0))(n)=0(n+l), nZ, 0 r
(considering an element 0 of Y as a map 0" Z --> X) is called a Bernoulli shift on
X. It can be shown that (an) is mixing of all orders. We call (Y, B(Y), v, a) a
Bernoulli scheme. In the special case when X 1,2 n} is given the discrete
topology and/z({i}) Pi for each n, where Pi >_ O, in=l Pi 1, we
denote the corresponding Bernoulli scheme as B(p, p2 Pn).

(b) Continuous ergodic automorphisms of compact abelian groups. Let X be a
compact, abelian group equipped with the normalized Haar measure m defined on
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the a-algebra B(X) of its Borel sets. An automorphism r: X X is a 1-1, onto
map such that r(xy) r(x)r(y) for all x, y X, i.e., a group isomorphism. It
can be shown that if r" X X is a continuous, surjective group homomorphism
then r is measure-preserving. It can also be shown, using the fact that the dual
space , of X forms an orthonormal basis for L2(X, m), that a continuous ergodic
automorphism of X is strongly mixing. In fact, Lind, Miles and Thomas [8] were
able to show that any continuous, ergodic, automorphism of a compact abelian group
is isomorphic to a Bernoulli shift on some probability space. Recall that if (X, ’,/z)
and (Y,)-, v) are probability spaces, and if r: X X, p: Y Y are measure-
preserving transformations, then r and p are said to be isomorphic if (X, .T’,/z, r) and
(Y, E, v, p) are isomorphic in the following sense: There exists X0 c_ X, Y0

_
Y,

lz(Xo) v(Yo) such that

(i) r(X0) c_C_ Xo P(Yo) Yo and
(ii) there exists an invertible, measure-preserving map : X0 Y0 such that

(r(x)) p(qb(x)) for all x in X0.

(By an invertible measure-preserving mapwe mean that both and-I are measure-
preserving, i.e., v((a tq Xo)) lz(a f3 Xo) and/z(-I (E N Y0)) u(E Yo), a
’, E -.)

It is intuitively clear that if r and p are isomorphic, then (rn) is mixing of all
orders if and only if (pn) is.

For an application of the above observation, consider the 2-torus T2 [0, l)2

with the usual Lebesgues measure )2 defined on its Borel sets. Consider the "baker’s
transformation" b: [0, l)2 --> [0, l)2 defined by

(2x, i y)b(x, y)
(2x, (y -I- 1))

(modl) if0<x < 1/2
(modl) if1/2 <x <

Then, (T2, (T2), 2, b) is isomorphic to the Bernoulli scheme B(1/2, 1/2). Hence,
(bn) is mixing of all orders.

Since a continuous ergodic automorphism of a compact abelian group is isomor-
phic to a Bernoulli shift, we conclude from (a) that if r is a continuous ergodic
automorphism of a compact abelian group then (rn) is mixing of all orders. For
another example, consider S {z C: Izl and let ll be the usual normalized
arc-length measure on S Let

(Sn, B(sn), In) ((S B(S), /I),
k=l

the product measure space. Then S is a compact abelian group under coordinate-
wise multiplication and In is the normalized Haar measure on Sn. Let A [aij]
Mnn (Z), with det A 4-1 and suppose that A has no eigenvalues which are roots
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of unity. Define

r" S" Sn,
"t’(Zl Zn) (ZII 7a"l _a,,i

7
a ),n 2;I n (Zl Zn) E Sn.

Then r is a continuous ergodic automorphism [8] so that (r") is mixing of all
orders. So, if p" T2 T2 is given by, say,

p(x, y) (5x -I- 7y, 3x + 4y) (mod 1), (x, y) E T2,

then, (p")’ is mixing of all orders.
(c) Product ofmixing sequences.
Let (X, ’,/z) be a probability space. Assume that (r,) and (s,)’ are mixing of

all orders on X. Define

p,," (X x X, ’(R).T’, z (R)/z) (X x X,(R), # (R)/z),

On(X, y) (rn x, Sny), V(X, y) X2 n 2,

Then (p,,) is mixing of all orders. An application of this gives the following result.
Let n be a given positive integer Let Tn [0, )n be the n-torus, with the usual

Lebesgue measure defined on its a-algebra 13(Tn) ofBorel sets. Define a sequence
(k) oftransformations on Tn asfollows:

aPk Tn -’ Tn,
ap (xl xn) (kxt (mod 1) kxn (mod 1)), k=l,2

Then, (k) is mixing ofall orders.
To see this, consider the l-torus (T B(TI), ,1). Define the multiplication operators
A4j on T as follows:

./j(X) jx (mod 1), j 1,2 x T .
Since (Tn, (n= B(T) n Tnl)k=l .l) B(T) )), it suffices to show that
(.Mj) is mixing of all orders. Simply apply the approximate independence iemma
[1 which states that if f,. ,:., fr L (T ) and e > 0 are given, there exists M0
such that whenever (n nK) eNrsatisfies > M0foralll <j < K-I

nj

then

K

f[0,1) fl(nlx) f2(n2x)"’fK(nKx)d)l--Ilf[o.=,1)
j(x) d,l

By putting j5 XAi, Ai - /(TI), < < K, we see immediately that (./j)x is
mixing of all orders.

(d) If r" S -- S is an ergodic rotation of the unit circle, then r is not weak
mixing. Hence, (r) cannot be mixing of all orders.
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3.6. The Gaussian distribution property.
we let Re f denote the real part of f.

For any complex-valued function f,

Definition 3.7.1. Let (X, .T’, #) be a probability space. A finite collection A
{Sl, $2 SN} of linear transformations on L2(X) is said to satisfy the Gaussian
distribution property, abbreviated as G.D.P., if it has the following properties:

(a) L2(X, 0) is invariant under A, i.e., S(L (X, 0)) c: L2(X, 0) for all S A.

(b) There exists a constant x^ < cx such that given any f L2(X, 0), we can
find a sequence (gk) C_ L2(X) with Ilgkll2 < c^llfll2 for all k 1,2 and
such that

/zo(ReSlgk Re&vg)-l Gauss(ReSIf, Re&vf) ask -- 0.

A collection A of linear transformations on L2 (X) is said to satisfy the G.D.P. if every
finite sub-collection A of A does and

c := sup KA < O.
finite

Finally, a collection (r),j of measure-preserving transformations on X is said to
satisfy the G.D.P. if the corresponding collection (Ur),j of induced operators on
L2(X) satisfies the G.D.P. Here, each U, is defined by Ur (f) f o r for all
f Lg-(X).

4. Main results

The following two theorems are the main results of the paper.

THEOREM I. Let (X, .T’,/z) be a probability space and let A be any finite col-
lection ofbounded, linear operators on L2(X, .T, lz) such that L2(X, O) is invariant
under A. Assume that there exists a sequence (rn)" X ---> X which is mixing ofall
orders and satisfies thefollowing approximate commutativity condition:

Given f L2(X, , Iz) and > O, there exist infinitely many integers n > such
that

IlS(f o rn) (Sf) o rnll2 < for alI S A.

Then A satisfies the G.D.P., and moreover, we can take :^ to be 3.
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To state our next theorem, we first need to define the following concept of subsets
of N having certain densities. For each finite set A, let Card (A) be the number of
elements in A.
A set S __. N is said to have density t if

Card(S q {1,2 n})
lim t.

n---o n

S c_C_ N is said to have positive upper density if

Card(S tq {1,2 N})
lim sup > 0.

Clearly, S has positive density implies S has positive upper density.

THEOREM II. Let (X, .T’,/z) be a probability space. Let A be a finite collec-
tion of bounded, linear operators on L2(X) such that L2(X, 0) is invariant under
A. Assume there exists a weakly-mixing transformation r: X X satisfying the
following condition:

For any f L(X) andfor any K, > O, K an integer, there exists positive
integers j < j2 <"" < jr such that the set

D "= {n N: IIS (f o rnjk) (Sf) o njk 112 < ’S A, ’1 < k < K}

has positive upper density.
Then A satisfies the G.D.P. with CA 3.

Consequently, A satisfies the G.D.P. if there exists a weakly mixing r: X --> X
satisfying

SUr =UrS for allSA.

5. Some lemmas

This part of the paper is devoted to statements and proofs of all necessary lemmas
that will be needed in the proof of Theorem I.

LEMMA 5.1. Let N > be any given integer. Let al av, bl bv be
real numbers with P max{lail, Ibil: < < N}. Then

ai H bi
i=l i=l

N
< pV- lai bil.

i=1
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Proof. We have

N N

H ai--H bi ala2...aN--bla2...aN
i=1 i=1

+ bla2...av blb2a3...aN
-F blb2a3...aN bb2b3aa...alv
+

+ bb2"" bN-laN blb2"" bN.

Thus, letting the empty product be 1, we obtain

N N

i=1 i=1

<_ la b VI Ibi lai
j=l i=1 i=j-I-I

N

_<  la.j -bjl.
j=l

El

LEMMA 5.2. Let (X, .T’, #) be a probability space. Let (rn)" X X be
mixing of all orders. Let K be any positive integer and assume hi" X C is in
L(X)for j 1,2 K. Then,for any > O, there exists an integer M > with
thefollowing property:

Whenever (n nr) Nr satisfies

(i) nj+-----2- > M, < j <K-land
nj

(ii) n nr > M,

then

Proof. This follows from Lemma and a routine approximation argument. El

LEMMA 5.3. Let A > 0. Let K, N > be integers. Consider the compact set
C [-A, A]v x x [-A, A]N in Rrs. Let 13 be the collection ofall real-valued
functions on C oftheform

tp: C- R
(x ,..., xr) -, o(x) x x or(xr),
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where x xr are points of [-A, A]v and qgi is bounded and continuous on
[-A, A]u for each < < K.

Then lin/3 is dense in the normed space ofall continuous real-valuedfunctions on
C with the sup-norm

Proof This follows directly from the Stone-Weierstrass theorem. I--I

We now combine Lemma 2 and Lemma 3 to obtain the following proposition
which plays a key role in the proof of Theorem I.

PROPOSITION 5.1. Let N, K be given positive integers. Let (X, .T’, kt) be
a probability space and suppose (rn)" X X is mixing of all orders. Let
h h:" X RN bemeasurablesuchthatzriohj L2(X, ft)forall < < N,
< j < K. For eachj 1,2 K, letvj lzoh. Consider the product

measure space

K

(RtCU,/3(R/v) (R) (R) 3(RV), v)= ( (RV,/3(RV), vj).
j=l

For n (n nK) 6 NK, let Hn (h rn,,..., ht o rnx)" X --+ Rt(v, and
IXn H Let " Rt R be bounded and continuous and let O > 0 be
given.

Then there exists an integer Mo > with thefollowingproperty: Ifn (n n to)
Nr’ satisfies

(i) nJ+----2- > M0, j 1,2 K and.
nj

(ii) n nk > Mo,

then

dlzn fRxN 0 dv

Proof Let " Rv R be bounded and continuous and let r/ > 0. We may
assume that IIPlI _< 1. Choose e > 0 so that KNe + (1 N)r < 0/4.
Since each rri hj L2(X), we can choose A > 0 such that the set Xij {x
X: Izri hj(x)l > A} has measure lz(Xij) < e, for all < < N, < j < K.
Hence, for each j,

N

{X X: hi(x) [-A, A]N} C__. U Xij.
i=1
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Thus, if vj lz o h;’, then vj ([-A, A]N) > (1 N) for all j. Let v ()=, vj
and let

C--=[-A,A]/v x x [-A,A]v

K times

Then, v(C) >_ (1 -Ne)r so that

v(RKN-C) < -(1 -N)K.

Similarly, if n (hI nr) Nr and/Zn /Z O (hI o rn hr o rna)-,
then lzn(C) >_ KNe, so that

/z(Rrs- C) <_ KNe.

Let B be as in Lemma 3. Then there exists 99o lin B such that

sup IOo(X) ap(x)[ < 0/4.
xEC

Also, for any n (n, nr) Nr, let I [fRaN dlz fRaN dul. Then

I ft dtz.-fa dv + fcdlz.-fcdVaN_C aN_C

Now, if J Ifc P dlzn fc dvi, then

J fc(ap-tpo)dlzn-fc(ap-qgo)dv + fc q)odlzn-fc tpodv

<- 2supl@(x)-qg(x)l + fc tPdtzn- fc

Therefore, we have

I ftaNdlzn-faNdv
< KN+I-(I-N)r+0/2+

<_3o/4+fcod#-fcodv1.
O dtzn fc oo d v



440 M.D. HA

Hence, to complete the proofofour proposition, it suffices to show that for any 0 E/3,
there exists an integer M > such that whenever n (nl nr) E NK satisfies

nj > M for each j 1,2 K and nJ+----Lt > M, we have
nj

[fcOdo-fcdv<o/4.
So, let tp /3, say tp(x xK) ol (xl) tpr(xr), where each 9i is a bounded
continuous real-valued function on [-A, A]N. Then

fcOdV fc(O, x x oK)d(v, (R)... (R) vr)

K K

H ft jdvj=jIfi (X.[-A,A]N Xtpj)dl)j
j=l A,A]N .=

K

H fx [(X[-a’al’v 0 hi) (tpj o hj)] dlg (1)
j=l

Similarly, if n (nl nK) NK, then

fc a#n f, (xc x

.] Xc o (hi o r., h K o

xo, o (hi o r.,) x x qgK o (hK o r.) dig.

Since

we have

K

Xc o (hi o rn, hg 0 Tng) H(XI-A,A]At 0 hi) o "On.i,
j=l

fctPdign fx Cfi [XI-A’Alv hj) x (qgj hj)] "Cn’i) (2)

For each j 1, 2 K, let gj (X|_A,AFV o hi) (tpj o hj). Then from (1) and
(2),

li,  ,Sx (3)
j-I

Since tpj is bounded for each j, we have gj L(X), j 1,2 K. Now apply
Lemma 2 to (3) to conclude that there exists an integer M > with the required
property.
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COROLLARY 5.1. Let N, K E N. Suppose (X, ’,/z) is a probability space
and (rn)" X ---> X is mixing ofall orders.

Let f L2 (X, 0), f fN L2(X, O) be real-valued functions. Let f2
(fl fN): X -- RN. Put tz o f2-, andfor n (nt,..., nr) Nr, let

Iz, # o (f o r,, f o r,)-.

Let ap" Rr - R be bounded and continuous and let > 0 be given. Then there
exists an integer Mo >_ with thefollowing property:

Whenever n (n n r) Nr satisfies
(i)
nj+ >_ Mofor each j l, 2 K and
nj

(ii) nl nr >_ Mo,
We have

(a)

(b)

RKN
p dlz" fRKN ap d"r < rl and

Orn,)(f orn.j)dlz <0 Vl <i # j <_K.

LEMMA 5.4. There exists a countable set 7-( ofcontinuous real-valuedfunctions
on Rn with compact supports satisfying thefollowing condition:

Let qb: RN ---> R be continuous with supx,, I(x)l I111 _< 1. Let.K c_C_ RN

be compact and > O. Then there is some 99 in 7-[ such that

sup 199(x) (x)l < .
xK

Proof. Write RN U Kn, where K c_ K2 c_ K3 c_ are compact subsets
i=l

of Rv. Let

C(K,,) f: K,, R: f continuous}.

Since K, is compact, C(Kn) has a countable dense subset ,. Here, the norm of

f E C(K,) is Ilfllr,, SUPxr,, If(x)l. For each u E n, let : Rs R be
a Tietze’s extension of u to all of Rs, i.e., is continuous of compact support,
(x) u(x) for all x Kn and I111 IlallK,,. For n 1,2 let

7"/n {’" RN -- R: c E ,, }.

Put U
n=l

Now, suppose that @: RN R is continuous with I1@11 _< 1. Let e > 0 and let
K c__ RN be compact. Then K c_ K,, for some n. Hence, there exists c , such
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that

sup I,(x)-t(x)l <_.
x K,,

Let 6 7-t, be a corresponding Tietze’s extension of a to all of Ru. Then

sup I’(x) (x) _< sup 18(x) (x) sup let(x) (x) _<
xEK xE K,, x K.

The two lemmas below are very elementary. We omit the proofs.

LEMMA 5.5. Let (X, f’, #) be a probability space. Let N be a positive integer.
Let S L2(X, J, #) be bounded, so that there exists C < cx with Ilfl12 <_ Cfor all

f S. Then for each > O, there exists a compact set K c__ R such that, for all
f foS,

/2 o (fl fo) -I (Ru K) < .
LEMMA 5.6. Let " Ru R be any continuousfunction ofcompact support.

Let rl > O. Then there is some > 0 with thefollowing property:
Let (X, ., lz) be any probaility space. Let

a--(031 aN)" X -- RN, --" (1,’’’, fiN): X RN,

where Oli, [i" are real-valued measurablefunctions on X. Assume that

Ilai-/3ill2< Vl <i <N.

Then

d(lz oot-) f d(lz o rl-)
N N

6. Proof of Theorem I

Proof. Let (X, ’,/z) be a probability space and let A {S So}, (rn)
be as in the hypotheses of Theorem I. Assume that f L2 (X, 0). Then Re Si f
Lt(X, 0) for all < < N.

Let {j s be a finite collection of compactly-supported, continuous functions from
R to R. Let y Gauss(Re S f, Re So f). We will show the following"

For any q > O, there exists some g L2(X), Ilgl12 _< 211f112 such that if

v =/z o (ReS g ReSo g)-l,

then

j dv /t J dY <r/ Vj= 1,2 J.
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1. Put f/ Re Sif, < < N. Let := (fl ......fu)" X Ru, and. =/x o -. If rri" Ru R is the ith-projection, then for < i, j < N,

f, i dX fx f" du

f, r r dX fx fi f dtZ fx r r d,
Thus, by the Central Limit Theorem in Section 3, we can choose an integer K > N
large enough so that for all < j < J,

where T" Rru
__
R is defined by

x +...+xr
T(x x K) Vx xK E RN

2. Forn (nl nr) E Nr letH. (2or., r.)and#,, =/.H,;-Choose 0 > 0 small enough so that Lemma 6 holds for each j in place of ,
By our assumption on (r.), there exist infinitely many integers m >_ I’such that

for all < k _< N,

0
IIS(f o "t’m) (Sk f) o troll2 < (5)

K

By Corollary 1, we can choose a p (p, P2 Pr) c= Nr satisfying

with

and so that

Vl <k < N, 1 <i < K (6)IIS(f o rp,) (S f) o rp, 112 < K

Ifit (esJ T)dptP fItU (J T)d)K

o rp,)(f o rp.,)d/z

From (4) and (7),

<rt 1 <j <J (7)

< Iif1122 Vl < -76- j < K. (8)
K

(j o T)d#p fR j dF <20 1 <j <J. (9)
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3. For each 1,2 N, let gi" X ---> R be defined by

or, + j o +...+

Let ’ =/z o (gl gt)-. Then

/ ctr, fl (or)atz,
KN KN

j ,2 (o)

4. Let g [f ort, +... + f ort,x ]. For all < < N, we have (by (6))

IIRe Sig gi 112 Re Si(f o rp.,) (Re Si f) o "re,
j=l 2
K

_< IIRe (Si(f o rp.,) (Sif) o rp.,)ll2 < E0

Consequently, ifcz (Re Slg Re Stcg) and (g gv), then by Lemma6,

<r/ ’V’I <j <J, (11)

where v =/z o cz- =/z o/-
5. Therefore, by using (9), (10) and (11), for each j 1,2 J we obtain

< 37.

Finally, since g [/o rp, +... + f o rpr ], we have

Ilgl12 (f o rp,)(f o rp.,)d#
I<i,j<K

Thus, by (8),

I<i#j<K

_< Iif1122 +-K(K- 1)
< 211fll 22

x(f

o rp,)(f o

K
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We have completely proved what we set out to prove.
6. Let 7/be as in Lemma 5.4, say 7/= {p, P2, P3 }. It follows from step 5

above that for any positive integer l, there exists gl - L2(X), IIg/ll _< 211f112, such
that if vj =/x o (Re Sgj Re Svgj)- for each j > 1, then

Pi dvt ftN Pi dy <-:- Vi 1,2 1.
1

Hence, it follows that there exists (gj) c. L2(X), Ilgyll2 _< 211f112 for all j
1,2 such that

Therefore,

0 dry ft# Oi dy <- Vi 1,2 j.
J

limfl odvj=fit pdy Vqg7-(. (12)

7. Let " R# R be continuous, I1 I1 1. We will show that

limfn dvj fn dy.

Fix some small d > 0. By Lemma 5.5, there exists a compact set K C RN such that

vj(RN K) < 8 for all j and y(RN K) < .
8. Choose so that supg I(x) (x) < . en, for all j 1,

< 2v(R K) + v(R K) + d v(R) < 4d.

Similarly, using the last inequality in step 7, we obtain

Hence,

[fnduJ-fndY fRdvj--fRdvj + fRduJ--fn dV
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Thus,

By (12),

+ if"~ odvj-fa6/od,
lim fa dvj fn d,. (13)

9.Ifc" RN R is continuous and bounded, let
Ilctllo + ’sthatllll <- 1,

and then apply (13) to get

limf dvj fl a d.
Remarks. By making use ofFurstenberg’s theorem stated below [5] and adapting

the techniques employed in the proof of Theorem I, Theorem II can be similarly
proved, and therefore we omit the proof.

FURSTENBERG’S RECURRENCE THEOREM FOR WEAKLY-MIXING TRANSFORMATIONS.

Let(X, , lz) beaprobabilityspaceandletcr: X X beweakly-mixing. Let K e N.
Then, for every j < j2 < < jr in N, every f fr L(X) and every
r/> 0, there exists a set D D(r/, j jr f fr) C N ofdensity l, such
that,for all n 79, we have

K K
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