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ASYMPTOTIC BEHAVIOUR OF S-ESTIMATES OF
MULTIVARIATE LOCATION PARAMETERS AND
DISPERSION MATRICES

By P. L. DAVIES
Universitit Gesamthochschule Essen

It is shown under appropriate conditions that Rousseeuw’s minimum
volume estimator and other S-estimators of multivariate location and disper-
sion parameters are consistent. Under certain differentiability conditions the
estimates are asymptotically normally distributed with a norming factor of
n'/2,

1. Introduction. Let (X®)% be a sequence of independently and identi-
cally distributed random variables with values in R*, £ > 2. We suppose that
the X have a common density function of the form

8 =172 (2 = 0)'Sx - ),
where ¢ denotes transposition and
(@) n € R%,

(b) = € PDS(%k), the set of all positive-definite symmetric (PDS) &k X &
matrices,

(c) |2| denotes the determinant of = and

(d) f: [0, 00) = [0, ) satisfies

[ 1(r)r*/dr = T(k/2)/n*/2.
0

Condition (d) is simply a normalization which guarantees that (1) integrates to 1.
The k-dimensional normal distribution may be obtained by setting f(r) =
@) ~*/%exp(— 3r).

Here we consider the problem of obtaining affine equivariant estimates of p
and 3 with high breakdown points. This problem is discussed in Chapter 8 of
Huber (1981) and Chapter 5 of Hampel, Ronchetti, Rousseeuw and Stahel (1986).
Maronna (1976) has shown that M-estimators have a breakdown point of at
most (B + 1)~! and Donoho (1982) gives a list of other affine equivariant
estimators and shows that they also have breakdown points of at most (& + 1)~ %

An affine equivariant estimator with an asymptotic breakdown point of 0.5
was given by Stahel (1981) and Donoho (1982). This is discussed in Donoho and
Huber (1983) and Section 5.5¢ of Hampel, Ronchetti, Rousseeuw and Stahel
(1986), and may be briefly described as follows. For each point X, 1 <j < n, of
the sample of size n the remaining n — 1 points are projected onto the rays
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through X, That ray for which X’ is in some sense most outlying is
determined and X is then assigned a weight «; which is a decreasing function
of its outlyingness. The weights «; are to be chosen, as is possible, to be affine
invariant. Robust estimates of the mean and the covariance matrix may then be
obtained by taking the empirical mean and covariance matrix of the weighted
sample.

Rousseeuw (1986) [also see Hampel, Ronchetti, Rousseeuw and Stahel (1986),
page 303] introduced two affine equivariant estimators of the location parameter
and showed that they have a finite sample breakdown point ¢* given by

@) et =([3] - #+1) n.

where [ a] denotes the largest integer less than or equal to a. His estimators may
be described as follows. His first estimator, the MVE estimator, is defined to be
the centre of the minimum volume ellipsoid which covers [n/2] + 1 the data
points. The second estimator, the MCD estimator, is defined to be the mean of
those [n/2] + 1 data points whose empirical covariance matrix has the smallest
determinant. For & = 1, Rousseeuw showed that both estimators were consistent
and that the MCD estimator is asymptotically normally distributed with a
norming factor of n'/2. The norming factor for the MVE estimator is n'/3 and
the limiting distribution is not normal.

Rousseeuw’s MVE estimator is an S-estimator in the sense of Rousseeuw and
Yohai (1984). By modifying the MVE estimator by using a smooth p-function we
extend Rousseeuw’s result for £ = 1 to general & and obtain consistency and
asymptotic normality with a norming factor of n'/2. The situation is comparable
to that in robust regression where the least median of squares estimator of
Rousseeuw (1984) has a norming factor of n'/3, whereas an S-estimator with a
smooth p-function has one of n'/2.

We define S-estimators of p and = as follows. We denote by k: R, — [0,1] a
nonincreasing left continuous function with the properties

3) x(0) = 1,

(4) k is continuous at 0,
(5) . k() >0, O<u<ece,
and

(6) k(u) =0, u>c,

for some ¢ > 0.

Our estimators p™, ™ of p and = are defined to be a solution (a*, A*) of
the following minimization problem which we denote by £,.

Choose a € R* and A € PDS(k) so as to minimize |A| subject to

(7) -rlzzn‘,n((X(”) —a)’A"Y(X® - a)) >1-c¢g,
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where
1-e=E(x((X - p)'27Y(X - p)))

(8) 'ﬂ‘k/g 0 k/2-1
= _—_—I‘(k/2)v/(; k(r)f(r)r dr.

We shall show later that for n(1 — &) > £ + 1, &, has almost surely at least
one solution (a*, A*) with |[A*| > 0. The MVE estimator of Rousseeuw may be
obtained by setting k(x) = 1,0 < u < ¢, and k(u) = 0, u > ¢, and then choosing
csuch that 1 — ¢ = ([n/2] + 1)/n.

We note that if we transform the data by setting Y®) = BX® + y,1 <» < n,
where y € R* and B is a nonsingular £ X k-matrix, then (Ba* + vy, BA*B?)is a
solution of &, for the Y-data for every solution (a*, A*) of £, for the X-data. In
this sense the S-estimator is, indeed, affine equivariant.

If k were taken to be continuous then we could replace (7) by

9) —’I;ix((X(") —a)’A"Y(X® - a)) =1-e¢

This would, however, exclude the MVE estimator of Rousseeuw.

In order to obtain consistent estimates of p and X it is necessary to impose
restrictions on f. We shall say that two real-valued nonincreasing functions £
and g defined on a common nondegenerate interval I have a common point of
decrease d if d is an interior point of I and

£(u) > £(d) > ¢(v) and g(u) > g(d) > g(v),
for all u, v in I with u < d < v. We assume

(10) f is nonincreasing
and
(11) k and f have at least one common point of decrease d, > 0.

In particular, this implies that «x(u)f(z) > 0 for 0 < u < d, so that 1 — ¢ in (8)
is strictly positive.

Notation will be introduced as necessary, but we will adapt the following
conventions: .c, ¢y, ¢y,..., dg, dy,..., €y, €q,..., I, s, u and v will denote real
numbers and a, B, v, p, x and y points in R* with components a; through
to ¥, 1 <i < k. A and = will denote positive definite symmetric 2 X k2 matrices
and we will denote by 3'/2? the symmetric positive definite 2 X %2 matrix which
satisfies /2312 =73, A and A will denote positive definite £ X % diagonal
matrices with diagonal elements (A )¥ and (8,)%, respectively. These will also be
regarded as points in R* = [0, 00)* and denoted by A and &, respectively. We
write A = diag(A) and A = diag(8). The identity matrix will be denoted by I,
and Lebesgue measure in R* by m®, || || will denote the usual Euclidean norm
in R* and {x: ---} or { -} will denote the set of points x with the property

- as well as the indicator function of this set.
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The paper is organized as follows. In Section 2 we show that the S-estimator
is well defined and strongly consistent. Under additional assumptions on k we
show that the S-estimator is asymptotically normally distributed and give the
limiting distribution. It is to be noted that the MVE of Rousseeuw is not covered
by this result. In Section 4 we discuss the finite sample breakdown point and
show that an appropriate choice of k and ¢ leads to the highest possible
breakdown point for affine equivariant estimators. Finally, in Section 5 we
consider the problem of calculating the MVE estimator of Rousseeuw and give
the results of a simple simulation.

2. Consistency. Let P, denote the empirical measure induced by the sam-
ple (X, ..., X™), Then we may write (7) in the form

(12) j k((x — @)’A " (x— o)) dP, 2 1 — ¢,
which in the limit as n tends to infinity yields
(13) |=|~12 fx((x —a)’A Y (x - a))f((x )= Y x - y)) dx>1-—c¢.

We denote the problem of choosing a« € R* and A € PDS(k) so as to
minimize |A|, subject to (13), by #. A typical consistency proof now involves
showing that # has the unique solution (a*, A*) = (u, Z) and then using a
uniform strong law for the empirical measures P, to show that any solutions
(p™, =M) of P, satisfy lim,, _, (™, =) = (p, ) almost surely [see Chapter
II of Pollard (1984)]. We therefore turn to the problem of showing that & has
the unique solution (a*, A*) = (g, 2).

On transforming the integral in (13), using the transformation x — p + /%,
we obtain

(14) fx((x —y)'SV2ATIIV2(x — y)) f(xx) dx = 1 — ¢,

with y = 2~ Y%(a — p).

Let O be a k X k orthogonal matrix such that O'S~Y243- 20 = A =
diag(A). We now transform the integral in (14) using the transformation x — Ox
to obtain -

(15) [e((x = BY'A (= = B)) f(a) dx = 1 — e,

with 8 = O~ %(a — p).

Let %, denote the problem of choosing B € R* and a positive defi-
nite diagonal matrix A so as to minimize |A| subject to (15). From the
‘preceding, it follows that any solution (a*, A*) of # is of the form
(p + SV20B*, Z/20A*0'2'/?), with O an orthogonal matrix and (8* A*) a
solution of #;. Thus, if #; has the unique solution (0, I,,), it follows that & has
the unique solution (g, Z). We therefore consider the problem Z.
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For (B, \) € R* X R*, we define the function H: R* X R* —» R by

H(B,\) = {f"((x - B)'A~Y(x — B))f(xx) dx, if|A| >0,
0, ’ if |A] = 0.

LEmMA 1. H: R* X R® — R is continuous.

PRrOOF. Let {d;: j € J}, denote the set of dlscontmulty points of k. o is at
most countable and may be empty. We write for j €J and A € R% with
T1EA; > 0,

N(BA) = {x:(x = B)'A~N(x - B} = d)
and

N(B,A) = U Ni(B,N).

JjeJ
As m®(N/(B,\)) = 0, we have m®(N(B,\)) = 0. Let (B,A) € R* x R%
with TT*(A,> 0 and let (A, B™) e R* x R, 1 <n < o, satlsfy
hmn-»oo(ﬁ‘”) X™) = (B, N). Then
(16)  lim k((x — B™)'A®Hx — ™)) = k((x — B)'A"(x - B)),

for all x & N(B, M) and, hence, for almost all x. A straightforward application of
dominated convergence now yields hmn_,wH(B(") AP = H( B, \).
If TT#\; = 0 and, say A, = 0, then lim,, _, ,A{) = 0 and again the result follows
from dommated convergence. [
Suppose (B*, A*) is a solution of £, with
f:c((x — B*)'A*Y(x — B*))f(x'x) de > 1 —e.

Then, from Lemma 1 and the fact that « is nonincreasing with lim , ,  x(u) = 0,
it follows that for some 1 > 0,

fx((l +a)(x— B*)A* Y x + B*))f(xtx) dc=1-—¢
and, hence, (a*,(1 + 1)~ 'A*) satisfies (15) with (1 + 7)~"A*| < |A*|, a con-
tradiction. Thus, any solution (8*, A*) of #; must satisfy H(B*,A\*) =1 —¢

and we may, therefore, reduce the problem £, to that of choosing (8,A) €
R* X R* so as to minimize [T{A; subject to

17) Je((x = B)'A~Y(x - B)) F(x'x) dx = 1~ .

We now show that £, has at least one solution (8*, A*). We require
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LEMMA 2. Let (8,\) € R* X R* and let
ABN=[ f(x') dx.
JE—ByAT a-B)sc
Then there exist constants c,, ¢, and c,, independent of B and A\ such that
(i) AC(B’ >\) < C2|A|1/2,

(i) ALB, N) < e AIV*GBP) if 1B = 2/Ajc and
(i) ALB, A) < ¢ Ny2 forallj,1<j <k

PROOF. As f is nonincreasing we have
ALB,N) < £(0) [ dx = ¢)| A2,
(x—B)YA N (x-B)=<c

proving the first of the inequalities.

To prove the second, we note that if |8, > 2W then f(x%) < f(3B?) on
{x: (x — B)’A"Y(x — B) < c). The result now follows as before.

Finally, to prove the third inequality we note that

k
A(B,N) < xj+ Zx?) dx, - dx,
1.

i#j

‘Lj‘ﬁjl S‘/)\,_Cf(

k-1
<2/ ff( ¥ x?) dx, -+ dx,_,
i=1
= 03\/A_j’ 0

LEMMA 3. 2, has at least one solution {B*, \*) and the minimum satisfies

k
(18) O<II*=J[at <1.
1

ProoF. As (0, 1) satisfies (17), it is sufficient to consider minimizing [T*A J
on the set

(19) - &= {(,B, A): (B, \) satisfies (17) and lf[}\js 1}.

As (0, I,) belongs to &, & is not empty. From (11), (15), (3) and Lemma 2(iii)
we obtain
1—-e<H(B,A) <A[(B,A) <N/
which, in turn, implies
(20) 0<c¢<Aj<c;<oo

on &.
From (20) we conclude TIfA;> c;> 0 on & and this, together with the

second inequality of Lemma 2 and the fact that lim,_ f(r) = 0, implies
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I1BIl < ¢; < o0 on &#. Thus, & is a bounded set. However, Lemma 1 implies that
it is a closed set and, hence, it is compact. As [TfA ; is a continuous function of
(B, M) it attains its minimum at some point (8*, A\*) in & and, thus, %, has at
least one solution. (18) follows from (19). O

Consider now the problem of maximizing H(B, A) subject to l’[")x =II* =
l_[kk* where (8%, A*) is a solution of #;. We denote this problem by P4 I
there exists a (B, \) with H(B, \) > H(B*, \*) and 1'["’}\ = IT* > 0, it follows
from the continuity of H and the fact that H is a nondecreasmg function of A
that there exists a A* such that H(S,A*) = H(B*, A*) =1 —¢ and |A*| <
|A*| = II*. This, however, contradicts the fact that (8%, A*) is a solution of Z,.
Thus, (B8*, A*) is also a solution of £/ and it now suffices to show that £/ has
the unique solution (0, I,,). To this end we first show that if (8*, A*) is a solution
of 2}, then so is (0, A*). This follows from the next lemma.

LEMMA 4. Let (B,\) € R* X R* with |A\| >0 and ¢ and g: R, > R, be
nonincreasing functions such that

fg(x‘x) dx < oo.
Then
@) [&((x - B) ANz - B))g(x'x) dx < [¢(x'A"x)g(x'x) dx.

Furthermore, if A = I, and § and g have at least one common point of decrease,
the inequality is strict unless 8 = 0.

PROOF. For fixed (x,)5 and (B,)5 we define £ and & by
k
£(u) = €(u + 2 (x;— B,-)2/>\,-)
2
and
k 2
o) - glu+ T(x- ) )
2
Then £ and & are nonincreasing functions and, hence,
(g((x1 - 31)2/}\1) - g(xf/}‘l))(g((xl - B1)2) - g(xlz)) >0

for all x,. On integ:rating this inequality with respect to x; we obtain
f§ (xl Bl dx +f§ (x, - B1)/>‘) ( )‘lxl

s2f£ x1 dxl

On using the transformation x, > —x, + B in the first integral, we conclude

J&(x = B/ )8(x2) dey < [E(x2/N,)8(x3) e,
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which together with Fubini’s theorem implies

[((x - BYA" x ~ B))g(x's) de = [¢((x — B)'A~(x — BO))g(x'x) d,

where 8{" = 0 and B{ = B;, 2 <j < k. The first claim of the lemma now follows
on applying the same argument to the remaining 2 — 1 components.
If A = I, we have, directly,

(22) (4((= - B)'(x - B)) — &(x%%))(&((= = B)'(x = B)) — &(xx)) = 0,

for all x. Suppose B8 # 0, let u, > 0 be a common point of decrease of £ and g
and choose u > 0 such that

uBB<u,<(1+ u)2,8‘;8.
On setting x(u) = —uB we see that x% < u, < (x — B)(x — B) in some

neighbourhood of x(«). This implies that strict inequality in (22) holds on a set
of positive measure, which yields strict inequality in (21). O

Lemma 4 shows that H(B,A) < H(0,A\) and, hence, we can provisionally
restrict our search for a solution of 24 to the problem of maximizing H(0, A)
subject to TTFA ;= IT* > 0. It turns out that this is a problem of majorization as
treated in Marshall and Olkin (1979).

If we define H: R* —» R by

(23) H(x,,...,x;) = H(0, (exp(x,),...,exp(x;))),

we see that we must maximize H subject to kx ;= log IT*. From
H(0,)) = j K(xA %) f(x'x) di,

it follows that H(0, A) is a symmetric function of A,,..., A, and, hence, Hisa
symmetric function of x,,..., x,. We shall now show that H is Schur-convex in
the following sense. Let A = diag(A) and A = diag(8) be two diagonal matrices
with |A| = |A|. We write A < 8 if I'I§=1}\(j) < l'[j=18(j), 1 <1<k, where A <

©+ <Ay and §; < -+ <4, denote A;,..., A, and §y,..., 8, in increasing
order. This may be interpreted as the ellipsoid given by {x: x’Ax < 1} being less
disperse than that given by {x: xAx < 1}. Then the Schur-convexity of H is
equivalent to H(0, A) < H(0, §).

It follows from Marshall and Olkin [(1979), Section A.5, page 58] that it is
sufficient to show that for fixed xj,..., x, the function H(x,, x,, x3,...,x;) as a
function of (x,, x,) is Schur-convex. We, therefore, restrict ourselves to £ = 2 for
the next few lemmas.

LEMMA 5. Let A = diag(u, u™ ') and A = diag(v, v ) with0 <u<v <1 be
two diagonal matrices. Then x'Ax < x'Ax if and only if (1 + uv)/(u + v)xAx <
x'x.
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ProOF. We have x’Ax < x’Ax if and only if v~ (v — u)x2 < u(v — u)x2 As
v > u this implies
(24) x'Ax < xAx ifand only if xAx < (u + v)x2.

Now x'x = oxAx + (1 — v®)x? and consequently x2 = (x'x — vaAx)/
1 - v?).

On using this in .the second inequality of (24) we obtain the claim of the
lemma. O

LEMMA 6. Let A = diag(u, u™!) be a diagonal matrix and £ andg: R, > R,
nonincreasing functions satisfying [g(xx) dx < co. Then

(25) Je(x'hx)g(xtx) dx < [¢(xx)g(x') dx

with strict inequality if u # 1 and ¢ and g have at least one common point of
decrease.

PrOOF. As ¢ and g are nonincreasing we have for all x,

(26) (£(x'Ax) — &(x%))(g(x'Ax) — g(x%)) > 0.
On integrating we obtain

j £(x'Ax)g(xt) dx + f £(x'x)g(x'Ax) dx

< fﬁ(x‘Ax)g(x‘Ax) dx + fﬁ(x‘x)g(x‘x) dx.

If we now transform the second and third integrals, using the transformation
x — A~12x, we obtain

fé(x‘Ax)g(x‘x) dx + f&(x‘A‘lx)g(x'x) dx < 2f§(x‘x)g(x‘x) dx.

Now, the first two integrals are, in fact, equal as may be seen by considering the
transformation (x,, x,) = (x4, ;). This gives the desired inequality.

To prove the second part we may suppose without loss of generality that
0<u<1 Then on writing u=(1+29)"! with >0 and on setting
x(n)(d,(1 + 7m))/2,0) where d, > 0 is the common point of decrease we see
that x(n)'Ax(n) < d; < x(n)'x(n). Thus, x’Ax < d, < x'x in some neighbour-
hood of x(n), which implies that strict inequality in (26) holds on a set of
positive Lebesgue measure. This, in turn, implies strict inequality in (25). O

LEMMA 7. Let A = diag(u, u™?!) and A = diag(v,v™!) with 0 <u<v<1

and let ¢ and g: R, — R be nonincreasing and satisfy [g(x'x) dx < oo.
“Then

(27) fg(x‘Ax)g(x‘x) dx < f&(x‘Ax)g(x‘x) dx.
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Proor. We need only consider the case ¥ < v. From Lemma 5 and the fact
that £ and g are nonincreasing we obtain

1+
(¢(x'Ax) - é(xtAx))(g( ” +z:)v
On integrating we deduce
J(6(x) - £(x8))g(x'%) de

x‘Ax) - g(x’x)) >0,

< f(&(xtAx) - é(xtAx))g( luil:)DxtAx) dx

_ _ . 1+ wo ;
= [(e(xn72A07 %) - s<xx))g( u+to “) *

<0,

where we have made the transformation x = A~'/2x and then applied Lemma 6.
(]

We can now prove that H of (23) is Schur-convex.

LEMMA 8. Let A = diag(\) and A = diag(8) be positive definite diagonal
matrices with A < 8. Then H(0, A\) < H(0, §).

PROOF. As mentioned above H(0,A) is a symmetric function of A and,
hence, it is sufficient to prove H(0,A) < H(0,A), where A; <A, <A, <A,
MA, =X, and Xj =X, 3<j <k We write n =27\, = A, u= YA/,
and v = /A, /A,. Then

k
ffn()\le + A 22+ Y )\jx})g
j=3

= ff ux? + u”'x3) (xf + x%) dx, dx,

k
xZ+ x2+ fo) dx, dx,
Jj=3

< ff ox? + v %) g(x2 + x2) dx, dx,

—/f ( 1x1+}\2x2+ Z

where we have written

k
2lglx2+x2+ Y }\jxf) dx, dx,,
j=3

k
i(s) = x(n1/2s + Y x}),

Jj=3

&s)=g

k
s+ fo)

=3
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and then applied Lemma 7. On integrating the above inequality with respect to
Xg,..., X, We obtain the desired result. O

We can now prove .

THEOREM 1. The problem of choosing a € R* and A € PDS(k) so as to
minimize |A| subject to

2172 [((x - @)'A7(x - @) f((x - w) Tz —p))de=1-¢
has the unique solution (o, A*) = (p, ).
PROOF. Let (B8*, A*) be a solution of 2, as in Lemma 3. Then,
1—e= [u((x - B*)'A~Y(x - B*)) f(x') dx

and (8*, A*) is a solution of #7.
However, A\* < IT*/*1, with 1, = (1,...,1) and as H(B* A*) = H(0, \*) <
H(o, IT*V klk), it follows that (0, IT*'/*1,) is also a solution of ;. This implies

(28) l-—e= f k(IT*V*xte ) f(x'x) dx.

If I1*/% < 1, then on a set of positive k-dimensional Lebesgue measure we
have IT*/*x% < d, <x'x and f(x%)> 0, where d, is a common point of
decrease of k and f. This implies

fx(H*l/kx‘x)f(x‘x) dx < fx(xtx)f(x‘x) de=1—c¢,

contradicting (27). Thus we must have IT* = 1 and, hence, (0, I,) is a solution of
P

TLet (0, A*) be a solution of #7 with A* # 1, but II* = [TfA* = 1. Then
A* <1, and we may suppose, without loss of generality, that A; < 1 We define
X* by A* = (A, A{L1,...,1) so that A* <X* < 1,.

For xg ..., x, ﬁxed we define &(u) = x(u + L% gx?) and f(u) =
flu+X _3x2) If *%_sx? < d,, with d, a common point of decrease of k and f,
then & and f have a common point of decrease. This implies, by Lemma 6,

//k'()\le + AT %2)F (22 + x2) dx, dx,
(29)

<ff x4 x2)f(x2 + x2) dx, dx,

on a set of positive (k¢ — 2)-dimensional Lebesgue measure. On integrating (28)
with respect to x,...,x, we obtain H(0, \*) < H(0,1,), which implies that
(0, A*) is not a solution of £%.

We have now shown that every solution of £/ is of the form (8*1,). If
B* # 0 we may use the second part of Lemma 4 to conclude that H(B*1,) <
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H(0,1,). It follows, therefore, that £ has the unique solution (0,1,). As every
solution of £, is a solution of £/, we may conclude that %, also has the
unique solution (0,1,), which in turn implies that £ has the unique solution
(u, =) as was to be proved. O ¢

THEOREM 2. If k+ 1 < n(1 — ¢) then the problem %, has at least one
solution with probability 1:

ProOF. From (3), (4) and (6) it follows that

1 n
lim — Y k(0o IX®X®) = 1

v N 1

and

1 n
lim — ) k(v XX ®) =0,
v-0n

almost surely. Thus, there exists a vy, 0 < v, < 00, such that

S|~

n
(v XPIX®) >1 —¢
1

and we define
%, = {(a, A): a« € R*, A € PDS(k), (, A) satisfies (7) with |A| < v} + 1}.
We next show that %, is contained in a compact subset of R*/*¥+D+k For
(a, A) in &, we have

17
;Zn((X(”) —a)A(XV - a))21-¢
1

and, hence,

(30) (X" —a)’ A~ (X® -a) <c

for at least n(1 — €) > & + 1 of the X®’s. The ellipsoid, defined by
(31) . {x: (x—a)'A Y (x—a) <c},

is convex and, hence, contains the convex hull of at least £ + 1 of the X®)’s,

However, as the X®)’s are independent and have a density function, it follows
that, with probability 1, no 2 + 1 X*’s lie on a (k — 1)-dimensional hyperplane.
In particular, the convex hull of any & + 1 of the X*)’s contains an open sphere
of positive radius with probability 1. For each subset of size &£ + 1 of the X®)’s
we choose such a sphere and denote by U;, 0 < U, < oo, the minimum of the
tadii. Then the ellipsoid (31) contains an open sphere of radius U, and, hence, we
may conclude

{x:|lx — o] < Uy} C {x: (x—a)'A ™ (x—a) < c}.
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Let a, denote the smallest eigenvalue of A. Then ag) is the largest
eigenvalue of A ! and we have [Rao (1973), page 62],

(x —a)’AY(x — a)

“w = -l 0 (iu,)’
4c
< Ff’
so that a;, > 1U?/c = U, > 0. This together with |A| < vf + 1 yields
(32) 0<Uy=<a;<U<ow

for the eigenvalues (a, ;)% of any A for which (a, A) lies in &, for some a € R*.
For such a pair (a, A) we have

%ix((X(”) —a)’A"Y(X® - a)) < -’l-l-zn:x(Ugl(X(") —a) (X" - a))

and as

. 1 Z t

im =Y k(U7 (X® - a)/(X® - o)) =0,

la| >0
it follows that (32) and
(33) llall < U,
hold for any pair (a, A) in &,. This proves that %, is contained in a compact
subset of R¥+k/2(k+D),
We define

D, = inf{|A|: (a, A) € &, for some a € R*}.

To show that £, has a solution, it is necessary to show that there exists a
pair (a*, A*) with A* € PDS(k) which satisfies (7) and |A*| = D,.

As &, is contained in a compact set it follows that we can find a convergent
subsequence ((a(™), A™))¥ in &, with

lim |JA"™)| = D,
m— oo
and
(34) o* = lim o™,  A*= lim A™.
m— o0 m— o0

It is clear that A* € PDS(k).
From (34) it follows that there exists a sequence (,,)¥ satisfying 7, > 0,
1<m< w,lim,_mn,=0and

- 17m)‘1()((v) —a*) A (X - a*) < (X® - a™) A (X — (™)

forl<»<n.
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We have
17
~Lk((1+mp) (XD = a?) A (XO ~ )
1 -
12 -
> ;ZK((X(”) — aM) AmT(X) a(m)))
1
>1—cg,

so that (a*, (1 + 1,,)A*) satisfies (7) for all m. Using the fact that « is continuous
on the left we may deduce
1 n
1-e< lim —Yk((1 +9,) (X? - a*)’a* (X - o*))
1

m—o0o N
1 n
= — Zn((X(") _ a*)tA*—l(X(ll) — a*)),
1
which implies that (a*, A*) satisfies (7) and is, therefore, a solution of £,. O
We can now prove

THEOREM 3. For n > (k+ 1)1 — &)~ ! let (4™, =™) be a solution of #,.
Then
lim p™ =p and lim 2™ =3,
n—>o n— oo

almost surely.

PROOF. By using the transformation X — 32X® + 4 we see that it is
sufficient to consider the case p = 0 and = = I,.
Let P denote the measure on R* with density function f(x’x). Then accord-
ing to Rao (1962) [also see Chapter 1 of Pollard (1984)], we have
lim sup |P,(C) - P(C)|=0,
n—oo Ccc Rh

C convex

almost surely. On writing
E, = {x: (x — u™)' =™ (x — p™) < c},

we may conclude that P(E,) > ;(1 — ¢) for all n sufficiently large, almost
surely. This, together with Lemma 2, implies that the eigenvalues of the (™ are
bounded away from zero and the ||u(™)|| are bounded above, almost surely.

The strong law of large numbers implies

(35) nl:n:o %zn:n((l + n)_lX(”)‘X(")) = fx((l + n)_lx‘x)f(x‘x) dx,

almost surely, for each n > —1. The right-hand side of (35) is a nondecreasing
function of 7. Furthermore, as k and f have at least one common point of
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decrease, this function is strictly increasing at 5 = 0. Thus, by the strong law of
large numbers

1 n
lim —ZK((I + n)_lX(")‘X(”)) >1-—g,
1

n—oo N

almost surely, for each n > 0. In particular, we have for n > 0,
1 n
;Zn((l + n)_lX(”)‘X(")) >1-¢
1

for all n sufficiently large, almost surely.

This implies that (0,(1 + n)I,,) satisfies (7) for all n sufficiently large and,
hence, as =™ is a solution of £, |2™| < |1 + M| =1 + n)* for all n
sufficiently large. As 7 > 0 may be taken to be arbitrarily small we may,
therefore, conclude
(36) limsup|2™| < 1,

n— oo
almost surely.

We have already shown that the eigenvalues of the = are bounded away
from zero and this, together with (36), shows that they are also bounded above.
As the ||u(™)|| are bounded above it follows that, with probability 1, the sequence
((u™, Z(MY)% lies in a compact subset of R***/2k+D,

Let (p", 2(")%; be a convergent sequence with

lim p™) = f, lim 3¢ = §,

Jo o Jo oo

almost surely. On writing

7i(x) = &((x — p®) =7 (x — pm))

and
i(x) = «((x - 0)'SY(x - ),
we see that
(37) lim Ej(x(f)) = i(x)
, jo o0

for any_ sequence (x’)? with lim j2wX? =2x and any x such that
(x — {)!S~Y(x — fi) is a point of continuity of k. As k has at most a countable
number of discontinuity points, we see that (37) holds for almost all x with
respect to Lebesgue measure and, hence, with respect to P. We now apply
Theorem 5.5 of Billingsley (1968). Let g: R, — R, be defined by g(u) = u,
0 <u<1,and g(u) = 1for u > 1. As the sequence of measures (P, )7’ converges
weakly to P it follows from this theorem that

Jim, [e(i)(x)) dP, (%) = [e(#(x)) dP
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and, hence, as 0 < &;(x), &(x) <1 for all x,
1 ”f
1-e< lim — ((X(V) — M(n,)) () (X(v) _ ﬂ(nj)))

Jj— oo n]

= [e((x = B)'E7(x - @) f(x'x) dx.

Thus, (i, 2) satisfies (13) with p= 0 and = = I,. However, for this choice of p
and Z, the problem £ has the unique solution (0, I,) by Theorem 1. From this
we deduce |I,| < ||, which together with (38), implies I£| = 1. Thus, (i, 2) is
also a solution and Theorem 1 implies (i, 2) = (0, I,). We have, therefore,
shown that every convergent subsequence of ((u(™, =(™))? converges almost
surely to (0, I,). As the sequence ((p™, 2(™))% is contained in a compact set,
this can only be the case if the sequence itself converges to (0, I,) which proves
the theorem. O

3. Asymptotic normality. In addition to the assumptions already made
about k, we now assume that k has a continuous third derivative. For i = 1 and
2 we denote the ith derivative of k by k.

In order to state our results we require the following constants:

eo=(1-¢),
e = d(k) S5 [T 1y,

e, = % 0°°(kn<1>(r) + 2rkO(r)) f(r)r*/2 =1 dr,

€5 = %’:—) O°°x<1>(r)f(r)rk/2dr,

€= 2,@}’,(6':) 5 [ (@ENir)r+ar,

T e+ 2c:§2)le(k T 2) fow("(l)("))zf (r)r/etdr,
e = — e+ k:2(d(k)f k(r)2f(r)r /2 ldr—eo),

where d(k) = n*/2/T(k/2).

+~ THEOREM 4. Under the above assumptions on f and k we have
(VY (b = p), VR (2™ = 2)) = (2, 2),
where Z and z are independently distributed normal random variables with zero



S-ESTIMATES OF MULTIVARIATE LOCATION PARAMETERS" 1285

mean and
(38) E(zz%) = —2
2
(39) E(zlj pq) eGEU pq + e5(zzpzjq + 2zqsz)

Proor. It is sufficient to consider the case p = 0 and = = I,. On introducing
the Langrange multiplier 7, and writing =™ = I, + B™ we see that p(™ and
B™ must satisfy

a a4
aa aB a (a B n)lp,(") B™ 4, = O’

where

F,(a,B,n) = [I,+ B| +1

3 k(X - ) (I, + B) (X - a)) —

The theorem may now be proved as follows. The partial derivatives are
replaced by their Taylor expansions of order 2, as higher order terms may be
neglected because of the consistency of the estimators. It is then a straightfor-
ward matter of applying as appropriate, either the strong law of large numbers
or the central limit theorem, to those terms remaining and then solving the
resulting system of linear equations. O

It was pointed out by one of the referees that (38) and (39) correspond to the
general form of the covariance matrices for affine equivariant estimators.

4. Breakdown point. Consider a sample (X©,...,X™) =X with (1 — e)n >
k + 1 and in general position, that is, no more than & points of the sample lie on
any (k — 1)-dimensional hyperplane. For our estimators u™ and 3™ based on
X we set

k
(40) T(X) = K71+ (e + o),
where o{™, ..., of™ are the eigenvalues of =™,

The ﬁnite sample breakdown point &* may now be defined by

ek = min{l: sup T(X(1)) = oo}/n,

X(I)

where X(/) is obtained from X by varying at most [ of the points X, ..., X,

The definition of breakdown point here corresponds to that called e-replace-
ment in Donoho and Huber (1983). We include the breakdown of the estimate of
the dispersion matrix, which will usually lead to a lower breakdown point than
obtained by restricting the definition to the breakdown of the location estimate.
This is discussed in Section 2.5 of Donoho and Huber (1983).
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In order to obtain the finite sample breakdown point we require the following
lemma, which relates the volume of an ellipsoid which covers a sphere to the
distance between their respective centres.

LEMMA 9. Let a € R* and A € PDS(k) with smallest eigenvalue a,,. Sup-
pose that the ellipsoid {x: (x — «)’A™%x — a) < ¢} contains the open sphere
{x: |lx — B|l < p} with B € R* and p > 0. Then there exist positive numbers c,
and c,, depending only on ¢, B and p such that

(41) Qa2 >0
and
(42) A2 = eyo(llell — 181D

Proor. Let x = B + y with ||y|| = p/2. Then
(B+y-a)A"(B+y-a)<c
and
(B-y-a)A"(B-y-a)<c.
On adding these two inequalities we obtain
(B-a)A™(B-a)+yAly<c
and, hence, as A is positive definite,
yA ly<e.
This implies [see, for example, Rao (1973), page 62]
ajl = sup YA~y
D imerz (p/2)°
< 4c¢/p%,

which yields the first inequality with cg = p?/4c.
To prove the second we note that the largest eigenvalue a,, of A satisfies the
inequality [Rao (1973), page 62]

1 (B-a)'aA"(B-a) c
< . < ;
) 1B — ol 1B = all
and, hence, a, > ||B — af|*/c. As |A| > a{;'0a, we obtain
Al 2 g8 — ell*/c,

which implies (42). O

- We now revert to the assumptions of Section 1 and drop the assumptions
concerning the differentiability of k. However, the results and proofs of this
section are simplified if we assume that for some 1 > 0,

(43) k(u)=1, O=<u<n.
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Under this additional assumption we now have

THEOREM 5. If the sample (X©O,..., X™) with n(1 —2¢) >k + 1 is in
general position, then

e* = ([ne] + 1)/n.

ProoF. The proof follows the lines of that given in Rousseeuw (1986).

We first note that for the existence of a solution of the problem £, for a
sample X = (X®,..., X™), it is only necessary that any subsample of size
n(1 — ¢) should contain at least 2 + 1 points whose simplex contains a non-
empty sphere. This follows from the proof of Theorem 2 and the condition is
certainly met if X is in general position.

From (43) it follows that there exists a v, = vy(X) > 0 such that

(44) K(vo—lx(l')tX(V)) =

for 1 < v < n. Weset V= |v,],| = vk

Consider now a subsample S of X of size & + 1. From (41) of Lemma 9 it
follows that there exists an r, > 0 such that, for all a € R* with ||| > r, and
A € PDS(k) for which ,
(45) (X® - a)'A (X" - a) <ec,
for all X® € S, we have |A| > V. By taking the maximum over all subsamples
of size k£ + 1 we obtain an r > 0 such that, if ||a|| > r and (45) is satisfied for all
X® in some subsample of size k2 + 1, then |A| > V.

Another similar application of Lemma 9 shows that there exists a ¢;; > 0 such
that the smallest eigenvalue a;, of any A satisfying (44) satisfies

(46) 0 <c; <ag.

Let Y denote a sample of size n obtained from X by replacing [ne] of the
X®’s, Then any subsample of Y of size at least n(l — ¢) contains at least
n(l — &) — [ne] = n(1 — 2¢) > k + 1 of the X’s and, hence, the problem %,
for the sample Y has at least one solution, which we denote by (af, A¥). As
(Y — af)As " (Y? — af) < c for at least n(1 — &) of the Y®’s we see that
for at least & + 1 of the X™’s, we have (X — a})A} (X® — a}) < c. If now
|la¥|| > r with r as defined previously, it follows that |A¥| > V. However, Y
contains at least n — [ne] > n(1 — £)X®’s and, hence,

1 n
- En(vo_lY(")‘Y(")) >1-ce.

As (af, A}) is a solution of 2, for Y we deduce |[A}| < |vol,| = V and obtain
a contradiction. Thus,

(47) lefll < r

for any solution (a§, A$). From |A | < V and (46) we see that there exists a c,,,
0 < ¢,y < o0, such that

(48) 0<c;<ag<cy 1<i<k,
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for the eigenvalues a,..., ay, of any solution A¥. This together with (47)
shows that the breakdown point ¢} satisfies ¢} > ([ne] + 1)/n.

We now prove the opposite inequality. Let Y now denote a sample obtained
from X by replacing [ne] + 1 of the X®’s. Let (ay, Ay) now denote a pair for
which

1 n
;;n((Y(") - ay)tA;l(Y(") - ay)) >1—e.

Then (Y® — ay) Ay (Y® — ay) < c for at least n — [ne] of the Y*’s. Thus,
for at least n — [ne] + [ne] + 1 — n > 1 of the replacements, say Y, we must
have

(YO - ay) A7 (YO - ay) < ¢
and, therefore,
YD — ay||® < Ca (1)

where @, denote the largest eigenvalue of Ay. As Y® may be varied at will,
this implies that the S-estimator breaks down and, hence, e¢* < ([ne] + 1)/n. 0

COROLLARY 1.

lim g* = e.
n—>oo
COROLLARY 2. If e=1/2 — (k + 1)/2n then
n—k+1
(49) gf = — |/

It is perhaps worth noting that the e* of (49) is higher than that given by
Rousseeuw (1986) for his minimum volume estimator, namely ((n/2] — & + 1)/n.
This may be obtained by setting ¢ = ([n/2] + 1)/n. As this ¢ does not fulfill the
condition n(1 — 2¢) > k£ + 1 of Theorem 5, we have increased the breakdown
point by imposing a slightly more stringent condition on the sample size.

In Donoho and Huber (1983) and Huber (1985) the breakdown point in the
e-contamination model of the Donoho—Stahel estimator described in Section 1 is
shown to be (n — 2k + 1)/(2n — 2k +1). The breakdown point in the e-
contamination model for a sample of size n is defined to be m/(m + n), where m
is the smallest number of additional arbitrary sample points which, when
adjoined to the initial sample, cause the estimator to break down. In order to
reinterpret this result in terms of the e-replacement model we note that the
smallest m satisfies

m n—2k+1

n+m 2n—2k+1’

giving m = n — 2k + 1. Thus, the combined sample has a size of n =n + m =
2n — 2k + 1 of which m=n -2k + 1=[N/2] — k + 1 points are bad. This
implies a breakdown point for the combined sample in the e-replacement model
of [N/2] — k + 1)/N.
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This is again lower than that given by Corollary 2 and a natural question is
whether the result of Corollary 2 is the best possible.

THEOREM 6. Suppose n > k + 1, and the sample is in general position. Then
the breakdown point of any affine equivariant estimator of the location and
dispersion parameters is at most [(n — k + 1)/2]/n.

ProoF. Consider a sample X of size n and a replacement sample X’ with
[(n — k + 1)/2] bad points. We have n — [(n — & + 1)/2] > k good points. We
choose k of these points and consider the hyperplane determined by them. As
the estimator is affine equivariant, we may suppose that this hyperplane is the
(k — 1)-dimensional subspace {x: x, = 0}. There remain n'=n—[(n — k +
1)/2] — k good points which we denote by X®, ..., X", Now n’ < [(n — k +
1)/2] and, hence, we can choose n’ of the bad points and place them at the
points X'®, ..., X’® with X' =X®,1<i<k-1,1<v<n/,and X;® =
uX, 1 < v <n, with u> 0. We denote this sample by X'(u). Let A(u) =
diag(l,...,1, u~!) and set X"(u) = A(u)X'(z). Then X"(u) is also obtained from
X by altering at most [(n — k& + 1)/2] points. As our estimator is affine equiv-
ariant the estimators of the dispersion matrices 2(z) and 2”(u) obtained from
X'(u) and X"(u) are related by ="(u) = A(x)Z'(u)A(u) and, consequently,
1="(u)| = u™?|Z"(u)|.

Thus as u tends to zero, one or another of the determinants must tend to zero
or infinity, causing the estimator to breakdown. This proves the theorem. O

5. An example. In order to calculate Rousseeuw’s minimum volume el-
lipsoid exactly, it is necessary to consider all ([n /2'3 + 1) subsamples of the sample
and then calculate the minimum covering ellipsoid for each subsample. This
latter problem is certainly not easy and it would seem that an exact algorithm is
available only for & = 2 [see Silverman and Titterington (1980)]. However, even
if this problem could be solved, the large number of subsets is an insuperable
barrier moderate for even values of n.

In spite of this, the situation is not quite hopeless. The minimum volume
property can be used as a criterion for judging the goodness of ellipsoids. If it
were possible to provide a large number of suitable candidates, then one could
choose the best one according to the minimum volume criterion. One way of
finding suitable candidates is to use a random search procedure. Using a random
number generator, ¢ > k& + 1 sample points are chosen from the n points in the
sample. A similar procedure is suggested in Hampel, Ronchetti, Rousseeuw and
Stahel [(1986), page 302] for calculating the Donoho—Stahel estimator. Leroy
and Rousseeuw (1984) also used a random search for calculating the best
regression in the sense of least median of squares. The idea is due to Siegel
(1982).

If we denote the empirical mean and variance-covariance matrix of these
points by p? and X9, then .

E(p?) =p
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Fic. 1. Standard x?* plot with 5 degrees of freedom.

and
Ese) - 115
q b

as long as the points in the sample are distributed according to the assumed
theoretical distribution. The ellipsoid {x: (x — p?)Y(2?)"X(x — p?) < 1} can now
be blown up until it covers, say, [(n — & + 1)/2] of the sample points and the
volume calculated. This process is repeated a large number, N, of times and the
best ellipsoid then determined.

In order to test the procedure we decided to generate random variables
according to a critical distribution for M-estimators, i.e., a distribution which
causes M-estimators to breakdown. Such a distribution is described in Hampel,
Ronchetti, Rousseeuw and Stahel [(1986), page 297]. In their notation we took
m = 5 and F; to be the standard normal distribution in 5 dimensions. We then
generated 200 independent random variables according to the distribution

(50) Gy(-) = 0.65F,(-) + 0.35H,(- /s,)

for different values of s,. The distribution G, of (50) may be interpreted as
having 35% bad observations distributed according to H (- /s;).

Figure 1 shows the x2-plot based on the mean and covariance matrix of the
whole sample. The H ,-observations are denoted by the bars below the x-axis. In
this example we set s, = 50. Figure 2 shows the x2-plot for the same data, this
titne using the mean and covariance matrix obtained after 1000 random searches.
Increasing the value of s, has no effect on the minimum volume estimator.

One interesting effect occurs when s, is reduced somewhat so that the
H ,-observations lie closer to the origin. Figure 3 shows the x2-plot for the data
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"

T T T

F1c. 2. Robust x* plot with 5 degrees of freedom.

F1c. 3. Robust x> plot with 5 degrees of freedom.

with s, = 40 using the minimum volume estimator obtained from a random
search. It can be seen that the minimum volume estimator has been greatly
affected by the H ,-observations. This behaviour does not contradict Theorem 5.
The T(X) of (40) remains bounded for all values of s,, 0 < s, < 0o, although, of
course, particular values may be very large. The reason for the behaviour is clear.
The minimum volume estimator derives from the ellipsoid with the smallest
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volume which covers 98 = [(200 — 5 + 1)/2] observations. The 70 H ,-observa-
tions lie on a one-dimensional hyperplane. As they also lie close to the main body
of the data, it is possible to find 28 Fj-observations close to the 70 H ,-observa-
tions such that the resulting 98 observations may be covered by an ellipsoid with
a small volume.
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