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ON THE RISK OF HISTOGRAMS FOR ESTIMATING
DECREASING DENSITIES

By LUCIEN BIRGE
Université Paris X and U.A. C.N.R.S. 743

Suppose we want to estimate an element f of the space © of all
decreasing densities on the interval [a; a + L] satisfying f(a*) < H from n
independent observations. We prove that a suitable histogram fn with
unequal bin widths will achieve the following risk:

sup E; [ﬂ f(x) - f(x)]dx] < 1.89(S/n)1/3 + 0.20(S/n)2/3,
fe®

with S = Log(HL + 1). If n > 39S, this is only ten times the lower bound
given in Birgé (1987). An adaptive procedure is suggested when a, L, H are
unknown. It is almost as good as the original one.

1. Introduction. The problem of estimating decreasing densities has been
studied by Grenander (1956, 1980), Barlow, Bartholomew, Bremner and Brunk
(1972), Prakasa Rao (1969) and others but essentially from a local asymptotic
point of view. Only recently, the global error in estimation (using variation
distance as loss function) was considered by Groeneboom (1985) and the present
author. The results of Groeneboom are very precise asymptotics while Birgé
(1987) gives nonasymptotic lower bounds for the minimax risk together with
upper bounds for estimation of unimodal densities. These bounds are obviously
valid for decreasing densities but they are of no practical use because the
estimators which reach the bounds are not computable. Groeneboom deals with
a very practical estimator, but his results are truly asymptotic. Classical estima-
tors like kernel estimators or histograms could also be used in this context; they
would not lead to the right bounds [Birgé (1987)]. Therefore, our purpose in this
paper is to design a simple estimator and derive upper bounds for its risk that
are within a factor ten of the lower bound of Birgé (1987).

To be more precise, denote by ©(a, H, L) the set of all decreasing densities on
[a; a + L] which are bounded by H. Given such a density f(x) and an estimator
fn(x) depending on 7 i.i.d. random variables, we define the risk of f:, at f by

Rn(fmf)='E/[f|f,,(x)—f(x)|dx .

By translation and scale invariance, the minimax risk over the class 0(a, H, L)
only depends on the product HL. This motivates the introduction of the
parameter S = Log(HL + 1) and the minimax risk

R, (S)=inf sup R,(f,f).
fn fe®(a,H, L)

Received May 1984; revised May 1986.
AMS 1980 subject classifications. Primary 62G05; secondary 62C20.
Key words and phrases. Histograms, minimax risk, decreasing densities.

1013

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to |

The Annals of Statistics. MIKGIS ®
www.jstor.org



1014 L. BIRGE

Birgé (1987) proved that the following universal lower bound holds for S > 1.3
and n > 39S:

(1.1) R,(S) > 0.195(S/n)">.

We shall design an estimator fn(x) and derive the bound

(1.2) sup  R,(f,f,) <1.89(S/n)""° +0.20(S/n)*"?,
fe®(a,H, L)

which implies
(1.3) R,(S) <1.95(S/n)"? forn > 39S.

The estimator fn is a histogram with unequal bin widths and is therefore very
easy to implement. The choice of the bin widths is motivated by the study of the
metric structure and entropy properties of the classes ®(a, H, L) as described in
Birgé (1987).

Unfortunately, f depends on the values of @, H, L which are usually un-
known. Therefore, we also give an adaptive version h of f , using estimates of
a, H and L instead of the true values. This estlmator also makes sense when S
is infinite. When 8 is finite, we shall be able to give upper bounds for the risk of
fzn which are very similar to the right-hand side of (1.2) and asymptotically
equivalent. The bounds are given in terms of some rough estimates S, of S.
When S is finite, S, is bounded by S; otherwise S, will grow with n. This is a
kind of a posteriori justification to the introduction of classes like O(a, H, L).
Actually the true justification is (1.1), which shows that no uniform conver-
gence of estimators can be expected without some restrictions on the behavior
of f in the tails and near a [Birgé (1987)]. The parameter S gives a very rough
indicator of how “peaked” the density is: The larger S is, the more difficult it
is to estimate f.

2. Performance of histograms with unequal bin widths. In this section
a, H, L are assumed known and S = Log(HL + 1). Define the numbers ¢, y and
the integer p by

(2.1) ¢t=(28)"°n3+28/3, y=exp(S/t)—-1, p-1<t<p.
Then
(2.2) (1+vy)”-1>HL.

The construction of our histogram starts with a partition of [a; @ + L] into p
contiguous intervals Iy; I;...;I,_, of increasing lengths such that if I, =
[x;x;.1) (xp=aand x,=a + L)

Ly(1 +v)’
(2.3) lj=m—=xj+l—xj,

and ¥2_7 I, = L as required. Given n observatlons we denote by N; the number
of them Wthh belong to I; (n = L22} N,). The histogram correspondmg to this

0<j<p-1,
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partition is given by
r—1
fu(x) = X (nl;)" N1, (x)

Jj=0
and satisfies

THEOREM 1. If p and vy satisfy (2.1) the risk of the estimator fn(x) can be
bounded as follows:

E, [f| f(x) - f(x)|dx] < 1.89(S/n)"? + 0.20(S/n)*">.

ProoF. Let us define

F=1G), G5 i) d.

xj

By assumption, f is decreasing. Therefore,
- p p_— 1 -
(2.4) iz 6= Yl X fl=
j=1 j=0
The estimation error, measured by the L' -distance between f and f;, is

Jlie) = o)l ae = T []15) = )]s

Zflf(x)—fldx+ Z/|f(x) fildx=B+R.

Jj=0

The error splits into a bias term B and a random term R, and we shall bound
each of these. The monotonicity of f implies that

flf(x)—fldx<(f fr41)L/2,

which in turn implies the bound for the bias term,

Zl(f fi1)

J=0

1 p-1 HL
<3 folo + YEI fili-1f < [1 + (—1+—')7>——] <v,

using (2.3), (2.4), the fact that f; < H and (2.2).
In order to bound R we notice that N is a binomial random variable with

parameters n and fl The definition of fn(x) then implies that

E, [];’ fulx) = f; |dx] < [0 - 1))

(2.5)
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Finally,
1P S 12
E;(R) SP"_I/Z[; (F4(1 - 14))
Jj=0
(2.6) b1 st \J2 p_qy
<pn VA p VY flL{1-pt X fi = (—‘———) )
j=0 j=0

from the concavity of the function x — (x(1 — x))/2
From (2.5), (2.6) and (2.1) we get the following bound for the risk:

@7) IE,[ﬂ f(x) - f(x)|dx] <B+E;(R) <exp(S/t) -1+ (t/n)"?

< 3/2(28/n)"? + 1/8(28/n)*">.
The last inequality is a consequence of our choice of ¢ and Lemma A.2 of Birgé
(1987). O

REMARKS.

(i) These computations are valid for all values of S and n but the bound is
trivial when n < 1.28.

(ii) The choice of y in (2.1) was made for simplicity. For large values of S, a
larger value of y could reduce the bias term. Numerical optimization using (2.5)
and (2.7) would be convenient in this case and ¢ should also be modified.

(ili) An unpleasant feature of fn(x) is that it is supposed to estimate a
decreasing density but is not likely to be itself decreasing. A decreasing density
can be constructed using the pool adjacent violators algorithm [Barlow,
Bartholomew, Bremner and Brunk (1972)]. If fn is increasing on two consecutive
bins, replace it by its mean value and pool the bins together, then repeat the
procedure. Whatever the order of pooling, this leads to a unique decreasing step
function f(x) with R (f(x), f) < R ( fn(x), f). This bound follows from the
next proposition. The proof is easy and will be omitted.

PROPOSITION 1. Suppose that we are given a decreasing function f and an
increasing function f on some interval [a; b). Fix f = (b — a)™Y[? f(x) dx. Then

[17=i)lds s [1f(x) - f(2)] .

3. Adaptive estimation. The preceding section was based on the assump-
tion that we want to estimate an unknown density with support on [a; a + L],
bounded by H. In practical situations we have no a priori knowledge of a, L
and H and we do not even know if they are finite. Without such knowledge, the
construction of Section 2 is impossible. To obtain estimates we substitute
estimators of the unknown parameters. As we shall see from the formulas, we do
not lose much in doing so and our procedure will lead to computable bounds for
the risk even when S is infinite.
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To begin the construction we fix some integer ! with 4 <! < n/2 and define
A=((-1)/I)n/(n—1-1)).Let X,,..., X, be the n ordered observations,

’ ’ >\l -
I=(Xp; X)),  L'=Xpy =Xy, H =—[Xp = Xp)]

The o-algebra generated by X, ay X and X, is denoted by #. Obviously,
n’ =n —1—1 observations lie in I and they have a decreasing conditional
density given #. Therefore, the algorithm of the preceding section with a’ = X ;,
L', H' and n’ replacing a, L, H and n, respectively, leads to a decreasing
estimator g2, on I = (a’;a’ + L’). Formulas (2.1) with n’ and S =
Log(H'L’ + 1) in place of n and S define the numbers y’, p’ used in the
construction of g,. Our adaptive estimator will then be

o on=2 [+1
h,= n+ 1én’ + [X(l) X(l)] I[X(n Xl

which is a density. The estimator hn is not necessarily decreasing but we could
modify it as described earlier in Proposition 1.

THEOREM 2. If

5 = Lo[l_l . ] nd S, = E|Log| — Ko
Blisen—1-1] ™ ST T Xy - Xy, |
then
. 1 (n—=0)(1+1)]2
+1 ——
Ralish) s o [ 2220
2(S,+8)\* 1/2(8,+8)\¥?
. +(n - — = ——=
(3-1) (n l)[ (n—l—l (n—l—l
20+ 0% 9 3(2(S,+8)\® 1(2(8,+8)\¥?
<—+t —+ | ——] | ——
n 4n 2 n ) 8( n

REMARK. The expected values S, are always well defined, but possibly
infinite, and increasing in n, for fixed . They are finite whenever [|Log x|f(x) dx
is finite.

Proor. Define
M, = fX(i)f(x) dx, 1<i<n, Hy={f(X})

and let us first recall some well-known facts which we shall use repeatedly: If
{U(,)}1 <i<n are the order statistics from n uniform random variables on [0; 1],
the joint law of the {M;},_,;_, is the same as the law of the (U, }, o<,
Moreover, if we put Uy =0 and U,,,) =1, for 0 <k <l<n+1 the law of
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Uy — Uy is B(I — k,n + k — 1 + 1). Recall that

E(Y) l Var(Y) l(ln—1+1) E(L/Y) n
=", ar = ) =T

n+1 (n+1)%(n+2) -1
when Y has (I, n — I + 1) distribution. The conditional distribution of U,, —
U, given U,),U,, is the distribution of [U,, — U,] X Y, where Y has a
B(n — 1,1 — 1) distribution. Let g be the conditional density of observations
falling in I. Then

1 Ho
M - M, M, -M,
The computations of Section 2 applied to g and its estimator g, show that
£ f12.(x) - o) i |
1

[ELVIG E—.
<y + p + = ;

n 2| (M, - M) +v)" - 1]

the prime indicating that everything was constructed using H', L' [H,/(M,, —
M,) being the true upper bound of g instead of H’]. As we have already seen, a
good choice of p’ allows us to bound the first two terms by

3/2(28' /n)" + 1/8(28' /n')*>.
Let us now consider the last term. Since (1 + y)? — 1 > H'L/,

g and g(X7)

-1,

H,L’ . H, _ Hpn Xy - X,
(32) (M, - M| +y)” -1| T H(M,-M,) N M,-M,
n M,— M,
SNM M

because f is decreasing. From (2.1) we can check that y’ is an increasing function
of S’ and consequently of H'L’ = (Al/n)(X,, — X)/(X, — X)), which
implies that y’ is decreasing with X, for fixed X;, and X,,. On the contrary,
(n/AY(M, — M,)/(M,, — M;)) — 1 increases with M, or X,. Because vy’ is
positive, if

3.3 gl MM
( ’ ) Al Mn - Ml

then
! M-M
oY R el e S
2 (A M,-M,

and, consequently, by (3.2)

Y H,L ]
E|— - -1{{<0.
2| (M, -M)1+y) -1 |

Xy X(n)] <0,

X(l), Xl =<0
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This means that (3.3) implies
(3.4) nz[ fl |8, (x) - g(x)|dx] < 2E[(28/n)" + LE[(28' /).

In order to check (3.3), we notice that conditionally on X, and X,
(M, — M)/(M, — M,)) has a B(n — [, I — 1) distribution. Therefore,

M,—- M, n—2
E M—M,X“)’X(") T h-l-1’
gl MMy x il A Sy B
A M, — M, W “Hm _Al(n—l—l ) S

Let us come back to (3.4). For 0 < a < 1, Jensen’s inequality implies that

[ o1 X=Xy n-2|])
T\ m 1 X, - Xy n-i-1

1-2 X, — X, «
sIE8+Log( ) “+1” =(8+8,)"
[[ n X = Xg

Finally,

J11) = hy()|ds = M+ 7] 1(x) = o) de

b 0| 2o () - g(x)(M, - M) de + (1 - 1)
X n+1
L+ M, = M+ (M- M) +
< p— —
= 1 n+ l 1)+n+1
n—1 n—1
+n+1_/;|g(x)_én’(x)|dx+Mn_Ml_n+ll‘

Taking expectations and using the fact that
E [

e[ f11x) - b2 s <

n—-1
M, - M- —— ] < Var'2(M, - M,),

we get

I+1 ) 1
+ +

n+1 n+1 n+1

n-—1 n-0(1+1) \"?
E+(< X )),

nt1” {(n+1)%(n+2)

+
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where
3(2(8,+8)\V* 1/2(S,+8)\¥?
= - —— + —_ —_—_—_—_—,_ -
2\n-1-1 8\n-1-1
The first inequality follows. The second inequality follows from our bounds on /.

O

The last problem is the choice of I which would be easy if S, were known, but
S, depends on f. We shall, therefore, give some heuristics for a reasonable choice
of I, based on the following corollary. Define

k,(S) = 3(2S/n)"* + {(2S/n)*"?,

20+ 02 9
R, S) = | ==+ = + k(S + 8) [k, X(S).

COROLLARY 1.

(i) For fixed n and l, r,(l, S) is a decreasing function of S.
(i) If I(n) is any sequence diverging to infinity with l(n) = o(n?/®), then
r,(I(rn), S) converges to 1 uniformly for S = a > 0.
(iii) If f belongs to some class ®(a, H, L), then S, < S = Log(HL + 1).
Proor. Claims (i) and (ii) are easy and (iii) follows from
Xy — Xy . nLH
E| ———— | < LHE|(M,- M = —
[Xw‘X(l) [( l ) ] [-2

and Jensen’s inequality. O

Claim (iii) means that in the case of f in O(a, H, L),
R,(f, [,) <k S),  R,(f,h,)<r(l S)k,(S).

From (ii), we see that the two bounds are asymptotically equivalent if [ is
conveniently chosen. The first result implies

R,(f,h,) <r(l,8)k,(S), forS=S5,.

This suggests a heuristic choice for I: Minimize r(l, S,) for some value S, which
is supposed to be smaller than the true S. Possibilities include S, = Log2 or 1 or
a statistic very likely to underestimate S. One possible statistic is

m-—2 X(n) - X(l)
n X = Xg

Log +1],

with m between 10 and 20. Even if f or its support is unbounded this last
statistic seems to be reasonable because of (i) and also because numerical
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investigations show that r,(/, S) varies rather slowly with S. Various computa-
tions performed with n between 200 and 1000 and S > 1 indicate that the
optimal / is between 4 and 6 and in this range of values of n, I =5 always
appears as a very reasonable choice. In this case, r,(/, S) is smaller than 1.33
(smaller than 1.22 if S > 2). This indicates that even with small n and S, the
ratio r,(/, S) is not much larger than one.

4. Concluding remarks.

— The main problem for adaptation comes from H. In the case of known a and
L, it is natural to replace X, by a and X, by L but it leads to little
improvement.

— Groeneboom (1985) studied some asymptotics for the Grenander estimator IAen
[see Barlow, Bartholomew, Bremner and Brunk (1972)] and proved for smooth
f that

n)

1/3

(4.1) limn'*R (,, ) = o.sz/lf(x—);'(—x—) dx.

Birgé (1987) points out that the supremum of the right-hand side over the
class ©(a, H, L) is larger than 0.65S'/3, This is then comparable with
lim, n'/3k,(S) at least from a minimax point of view, apart from a better
constant for the Grenander estimator. But this comparison is not really
meaningful: The limit in (4.1) cannot be uniform since the right-hand side of
(4.1) is a badly discontinuous function of f (with respect to the L!-norm) and
the risk function is necessarily continuous. Secondly, (4.1) holds for smooth
functions, whereas our results use no such assumptions. In particular, smooth-
ness would asymptotically reduce our bias term and improve our bounds in
the limit.

— Our estimator is constructed to get a low value of the minimax risk. The risk
should depend on the whole shape of the density, not only on S. However, the
risk of our estimator always is of the order (S/n)!/2 even for nice densities
(like piecewise linear with two pieces) while it is intuitively clear that it
should be possible to do better.

Acknowledgment. I have benefitted from numerous suggestions of referees
concerning my English grammar and style.

REFERENCES

BarLow, R. E., BARTHOLOMEW, D. J., BREMNER, J. M. and BRUNK, H. D. (1972). Statistical
Inference Under Order Restrictions. Wiley, New York.

BIRGE, L. (1987). Estimating a density under order restrictions: Nonasymptotic minimax risk. Ann.
Statist. 15 995-1012.

GRENANDER, U. (1956). On the theory of mortality measurement. Skand. Aktuarietidskr. 39
125-153.

GRENANDER, U. (1980). Abstract Inference. Wiley, New York.



1022 L. BIRGE

GROENEBOOM, P. (1985). Estimating a monotone density. In Proc. of the Berkeley Conference in
Honor of Jerzy Neyman and Jack Kiefer (L. M. Le Cam and R. A. Olshen, eds.) 2
539-555. Wadsworth, Belmont, Calif.

KIEFER, J. (1982). Optimum rates for non-parametric density and regression estimates, under order
restrictions. In Statistics and Probability: Essays in Honor of C. R. Rao (G. Kallianpur,
P. R. Krishnaiah and J. K. Ghosh, eds.) 419-428. North-Holland, Amsterdam.

Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhya Ser. A 31 23-36.

U.E.R. DE SCIENCES ECONOMIQUES
UNIVERSITE PARIS X, NANTERRE
200 AVENUE DE LA REPUBLIQUE
92001 NANTERRE, CEDEX

FRANCE



