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FURTHER CHARACTERIZATIONS OF DESIGN OPTIMALITY
AND ADMISSIBILITY FOR PARTIAL PARAMETER
ESTIMATION IN LINEAR REGRESSION

By NORBERT GAFFKE
University of Augsburg

The paper gives a contribution to the problem of finding optimal linear
regression designs, when only s out of k regression parameters are to be
estimated. Also, a treatment of design admissibility for the parameters of
interest is included. Previous results of Kiefer and Wolfowitz (1959), Karlin
and Studden (1966) and Atwood (1969) are generalized. In particular, a
connection to Tchebycheff-type approximation of R®-valued functions is
found, which has been known in case s = 1. Strengthened versions of the
results are obtained for invariant designs in situations, when invariance
properties of the regression setup are available. Applications are given to
multiple quadratic regression and to one-dimensional polynomial regression.

1. Introduction. Consider a linear regression y(x) = a’f(x), x € &, with
an unknown coefficient vector a € R*, and a known R*-valued function f on the
experimental region Z. The range f(Z') is assumed to be compact. As usual,
observations Y}, ..., Y, on the dependent variable y, taken at points x,,..., x, €
%, respectively, are assumed to have expectations y(x;), 1 <i < n, common
variance o2 > 0 and to be pairwise uncorrelated. Suppose that the experiment
aims at estimating Ka, where K is a given (s X k)-matrix of rank s. For
example, when the first s components of a are to be estimated, one has
K =[1,,0], where I, denotes the unit matrix of order s. We will study design
optimality and admissibility for estimating Ka, within the approximate design
theory. An approximate design £ is a probability measure on Z with finite
support. The information matrix (per observation and unit of variance) of ¢ is

M(§) = [f()f(x)de(x) = L F(x)H(x)E(x),
¥ x€supp($)
where supp(£) denotes the support of £. The reduced information matrix of ¢ for
Ka will be denoted by J(£), which has usually been considered only for those £
under which Ka is estimable, i.e., range(K’) C range(M(§)). In this case

1) J(£) = (KM~ (£)K") ™,
where M~ (§) is any g-inverse of M(£¢). We will use another representation of
J(£), which also provides an extension of J(§) to the set of all designs £,

(2) J(£) = min LM(£)L,
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DESIGN OPTIMALITY AND ADMISSIBILITY 943

where the minimum in (2) is taken over all left inverses L of K’ (i.e.,, LK’ = I,)
and refers to the Lowner semiordering of symmetric matrices (C < D iff D — C
is nonnegative definite). The minimum in (2) was shown to exist by Krafft (1983).
If Ka is estimable under £, then (1) and (2) coincide, which was shown by Sibson
(1974), page 682, for K = [I,0], and by Gaffke and Krafft (1982), Theorem 2.4,
for general K. Also, for any §, (2) coincides with the closure of the matrix
function (1), as considered by Miiller-Funk, Pukelsheim and Witting (1985), page
23. As far as design optimality is concerned, only those designs will be consid-
ered, under which Ka is estimable, or, equivalently, for which J(§) is nonsingu-
lar. An optimality criterion is a real function ¢ on the set PD(s) of all positive
definite (s X s)-matrices. Throughout we assume, that ¢ is convex and decreas-
ing, where the latter means that C, D € PD(s), C < D, imply ¢(C) = ¢(D).
Well-known examples are Kiefer’s ¢,-criteria, —1 < p < oo,

$,(C) = {s7'te(CP)}"",  Ce PD(s)

[cf. Kiefer (1974), (4.18) and Kiefer (1975), page 337]. The class of information
functionals considered by Pukelsheim (1980) and Pukelsheim and Titterington
(1983) is included by taking ¢ = —log j on PD(s) (or ¢ = 1/j, or simply
¢ = —J), when j is an information functional. A design §,, is called ¢-optimal for
Ka, iff Ka is estimable under £, and £, minimizes ¢(J(§)) over the set of all &,
under which Ka is estimable. A new equivalence theorem to this minimization
problem is presented in Section 2, and a strengthened version for invariant
designs is proved. Design admissibility for Ka will be studied in Section 3. In
analogy to the full parameter case, an admissible design £, for Ka is one, whose
reduced information matrix J(§,) is a maximal element in the set of all J(§),
w.r.t. the Lowner semiordering. A necessary condition and a sufficient condition
for a design to be admissible for Ka are established, and special attention is
given to invariant designs. As applications of the results, three examples are
treated in Section 4. Two of them deal with multiple quadratic regression on the
cube [—1,1]9, where either the linear or the quadratic coefficients are to be
estimated. The other is devoted to a one-dimensional polynomial regression of
degree m > 2 on [—1,1] and to the estimation of the two highest coefficients.
¢,-optimal designs and admissible invariant designs are constructed.

2. Design optimality. Let ¢ be a given convex and decreasing optimality
criterion. The set of all designs £, under which Ka is estimable, is assumed to be
nonempty. By (2), for any ¢ from this set,

8(J(§)) = maxg(LM(£)L)).

So, the problem of minimizing ¢(J(£)) may be viewed as a minimax problem. It
was shown in Gaffke (1985b), Theorem 3.2, that if there exists a ¢-optimal design
for Ka, then

®3) min max¢(LM(§)L') = max ilgfqb(LM(ﬁ)L’),

where ¢ ranges over the set of all designs, L ranges over the set of all left
inverses of K’ and ¢(C) is defined to be oo, if C is nonnegative definite and
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singular. Note, that for any fixed L the infimum on the right-hand side of (3)
would be the ¢-optimum value for designing a fictitious regression y;(x) =
a'f(x), x € X, where f, = Lf, and the full parameter vector « € R® is to be
estimated. A maximin solution L, of (3) makes this value as bad as possible, so
L, may be called a “least favourable” left inverse of K'. The result we will state
next is, in essence, the interplay between a minimax solution £, and a maximin
solution L, of (3). The notioh of subgradients will be used, as in Pukelsheim and
'I‘1tter1ngton (1983) and Gaffke (1985a, 1985b). A symmetric (s X s) matrix E is
called a subgradient of ¢ at C, € PD(s), iff

6(C) - #(C,) = tr{E(C — C,)} forall C & PD(s).

By convexity of ¢, there exists a subgradient E of ¢ at C, € PD(s), and E is
unique iff ¢ is differentiable at C,, in which case E is the gradient of ¢ at C,,.
Since ¢ is decreasing, we have that — E is nonnegative definite for any subgradi-
ent E. If C, is nonnegative definite and singular, then no subgradient of ¢ at C,
exists, accordlng to the definition ¢(C;) = . For ¢ =¢,, —1 < p < o0, the
gradient at C, € PD(s) is a negative scalar multiple of C0 P=1 For ¢ = ¢, the
set of subgradients at C, € PD(s) is a negative scalar multiple of the convex hull
of the set of all zz’, where z is any normalized eigenvector for the minimum
eigenvalue of C, [cf. Gaffke (1985a), Example 2].

THEOREM 1. For any design &, the following conditions (i), (ii) and (iii) are
equivalent.

(i) &, is ¢-optimal for Ka.
(ii) There exists a left inverse L, of K’, such that

(4) ¢(LoM(&0)L;) = mmqb(L M(§)L5),

and the components of L,f are orthogonal to {b'f: b € nullspace(K)} in
L2(&,)-space, i.e.,

(5) f Lof(x)(¥'f(x)) d&o(x) =0, forall b € nullspace(K ).
x
(iii) There exist a left inverse L, of K’ and a subgradient E of ¢ at
Cy, = LoM(&,)L}, such that
(4a) each support point of £, maximizes (Lof(x))'(—E)Lyf(x), =x€Z,
and (5) from above holds true.
PrROOF. Assume (i). As in the proof of Theorem 3.2 in Gaffke (1985b) one

concludes, that there exists a g-inverse M~(§,), such that, taking L, =
J(§0)KM™(§,), condition (4) holds true. For this L,, we have

LoM(¢,)b=dJ(£))Kb =0, forall b€ nullspace(K ),

and hence (5).
Conversely, assume (ii). Since we have assumed that there exists a design
¢ with nonsingular J(§), and hence, by (2), with nonsingular L,M(£)Ly,
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we have by (4) that LyM({,)L{ is nonsingular. It can easily be seen, that
nullspace( K ) = range(I, — L, K ), and hence, by (5), LyM(¢o)X(I, — L{K) =0
and K = (LyM(%,)Ly) 'LoM(%,). In particular, range(K’) C range(M(£,))
and J(&,) = (KM(¢,) K')™ ' = LyM(¢,)L). If ¢ is any design with
range( K') C range(M(£)), then, by (2) and (4),

o(J(8)) = ¢(LeM(£)LG) = o(LoM(&,)L5) = (J(&)),
and hence (i).

Thus, we have proved the equivalence of (i) and (ii). Now, the existence of a
subgradient E of ¢ at C, = L,M(&,)L;, satisfying (4a) is equivalent to (4) [see,
e.g., Gaffke (1985b), Theorem 3.1, or, for a differentiable ¢, see Kiefer (1974),
Theorem 1]. So (ii) and (iii) are equivalent. O

REMARK 1. The equivalence of (i) and (ii) of Theorem 1 strengthens and
generalizes Theorem 3.4 of Atwood (1969), who gave a sufficient condition for
D-optimality for Ka in the case K = [I,,0] (D,-optimality). A special case of his
result was rediscovered by Nather and Reinsch (1981), Theorem 5. For K =
[1,, 0] a left inverse L, of K’ has the form L,=[I,, B,], with some s X
(k — s)-matrix B,. Hence Lof =f® + B,f®, where f® and f® consist of
the first s and the last 2 — s components of f, respectively, and the space
{b’f: b € nullspace(K )} is generated by the components of f®. In Atwood’s
theorem our condition (5) is replaced by the stronger condition that

(5) f@®(x) =0, forall x € supp(£,),

and (4), with the D-criterion ¢, and (5’) together were proved to be sufficient for
D_-optimality of £,. Actually, Atwood gave a slightly more general version of
this, employing a matrix L, =[A,, B,], where A, is a nonsingular (s X s)-
matrix, but for the D-criterion this is a straightforward extension.

REMARK 2. The equivalence of (i) and (iii) of Theorem 1 gives an analogue
for s > 1 to the result of Kiefer and Wolfowitz (1959) for s = 1, [Theorem 1 of
their paper; see also, Kiefer (1959), page 301]. For s =1 and K = ¢/, where
c € R*, ¢ # 0, there is essentially one optimality criterion, ¢(y) = 1/y, v > 0,
and ¢-optimality of a design for ¢’a is simply called c-optimality. In this case,
the subgradient E occurring in (iii) of our Theorem 1 is merely a negative real
number, which can be ignored in (4a), and one gets back the Kiefer—Wolfowitz
result on c-optimality. Moreover, Kiefer and Wolfowitz (1959) pointed out, that
for s = 1 the (s X k) = matrix L, occurring in (iii) is a T'chebycheff coefficient
vector. This has an analogue for s > 1. For, if L, and E are as in (iii), then for
any left inverse L of K’ we have

max (Lo f(x)) (= E)Lof (x) = [(Lof(x))(~E)Lof(x) dto(x)

< fg{(Lf(x))’(-E)Lf(x) dto(x)
< mgX(Lf(x))’(—E)Lf(x)-
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Hence L, is a Tchebycheff coefficient matrix in the sense that
(6) max (Lof(x))' (= E)Lof(x) = min max (Lf(x)) (- E)Lf(x),

where the maximum in (6) is taken over all x € &, and the minimum on the
right-hand side of (6) is taken over all left inverses L of K’. Writing each left
inverse L = (K’)~ — D, where (K’)™ is any fixed left inverse of K’, and D is an
(s X k)-matrix, depending on L, with DK’ = 0, (6) becomes a Tchebycheff type
approximation problem: Find a best approximation of the R®%-valued function
(K)"f by an element from the space {Df: DK’ = 0} with respect to the
Tchebycheff type seminorm

1)) = max (A(x) (= E)h(x)}",

where A is an R®-valued function on & with compact range. However, in case
s > 1 the approximation problem (6) depends on the subgradient E from (iii),
which is not known in advance. This prevents a direct use of (6) for finding the
correct left inverse L, for (iii) and constructing an optimal design £, from (4a)
and (5). This is in contrast to the case s = 1. A study of Tchebycheff-type
approximation problems as in (6) will be done elsewhere. A related problem has
been considered by Studden (1980b).

REMARK 3. The equivalence of (i) and (iii) of Theorem 1 is closely related to
Corollary 7.2 of Pukelsheim (1980). In fact, our result can be derived from
Corollary 7.2 of his paper, when the optimality criterion is given by an informa-
tion functional, but it does require some steps.

Now we will consider the case, that there are invariance (or equivariance)
properties of the regression setup y(x) = a’f(x), of the parametric function Ka,
and of the optimality criterion ¢. Let G be a group of one-to-one transforma-
tions g from the experimental region on itself, let 2 be a compact group of
nonsingular (k X k)-matrixes @, and let there be given a surjective mapping Q,,
g€ @, from G on 2. As in Pukelsheim (1987), Section 3.1, we assume the
following (a), (B8) and (v):

(@) f(g(x)) = Q f(x)forall x €%, g € G.
(B) range(QK’) = range(K’), or, equivalently, QK'Q ' = K’, where

@ = (KK) 'KQK’, forall @ € 2.
(v) $(QC(Q)) = #(C) for all Q € 9, C € PD(s).

A design ¢ will be called 2-invariant, iff its information matrix M(§) is
invariant under the group of congruence transformations given by 2, i.e.,
QM($)Q = M(§) for all @ € 2. Of course, Z-invariance is a weaker property
than G-invariance, which would mean that ¢ = ¢ for all g € G, where ¢2
denotes the image of ¢ under g [£# is supported by the image of supp(¢) under
8, with weights £8(g(x)) = &(x)]. If G is a finite group, as in most applications,
then a design ¢ is 2-invariant iff there exists a G-invariant design £, such that
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M(¢) = M(£). For finding a ¢-optimal design for Ka, we may restrict to
2-invariant designs. In fact, if § is any design, under which Ka is estimable, then
by taking the average of QM(§)Q  over @ €2 with respect to the Haar
probability measure on 2, we get an M, which is an element of the convex hull of
the orbit {QM(£)Q": @ € 2}. This orbit is contained in the set of all information
matrices, and so is its convex hull. Hence there exists a design £, with M(¢,) = M,
and, clearly, §; is Z-invariant. As in Pukelsheim (1987), Section 3.2, one con-
cludes that ¢(J(£;)) < ¢(J(£)). So, if there exists a ¢-optimal design for Ka,
then there exists a Z-invariant design, which is ¢-optimal for Ka. For finding a
Z-invariant, ¢-optimal design for Ka, the following complement to Theorem 1
will be useful, which reduces the variability of the unknown quantities L, and E
of Theorem 1, in that it is shown that these can be chosen to be invariant.

THEOREM 1(a). Under assumptions (a), (B) and (v), let £, be a Z-invariant,
¢-optimal design for Ka. Then there exist a left inverse L, of K' and a
subgradient E of ¢ at Cy = L,M(&,)L{, which are invariant in the sense that

Q LQ@=L, and (QYEQ=E, foralQec2,
and which satisfy (4), (4a) and (5) of Theorem 1.

ProoF. Consider the function ®(M) = ¢((KM~K’)™'), which is defined
on the convex cone of all nonnegative definite (k& X k)-matrices M with
range( K’) C range(M). By Theorem 3.1 and Lemma 3.2 of Gaffke (1985b), there
exists a subgradient B of ® at M(&,), such that

(7) f(x)(-B)f(x) < tr{ ~BM(§,)), forallx € .

For any @ € 2, the matrix B(Q) = QB again is a subgradient of ® at M(¢,)
and satisfies (7), and so does the average B, of all B(Q) (w.r.t. the Haar
probability measure on 2). By Lemma 3.2 of Gaffke (1985b), there exist a
g-inverse M~ (§,), a subgradient E of ¢ at J(£,) and a nonnegative definite
(k X k)-matrix D with DM(§,) = 0, such that

By = (M~ (£,))'K'J(§0) EJ(£0) KM~ (£,) — D.

The subgradient E = KB,K' is invariant, i.e., (QYEQ = E for all @ € 2. Take
L = J(§,) KM~ (§,). We have thus found an invariant subgradient E of ¢ at
J(&,), and a left inverse L of K’, such that

(8) (Lf(x))(—E)Lf(x) < tr{ —EJ(&,)}, forallx €%,
and
9) LM(&,)b =0, forall b€ nullspace(K).

Now, (8) and (9) hold true with L replaced by L(Q) = @ L@, for any Q € 2,
and hence for the average L, of all L(Q). From (9) one gets J(&,) = Lo,M(&,)L}.
So, L, and E are the invariant quantities satisfying (4a) and (5) of Theorem 1.
Equation (4) is a consequence of (4a). O
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3. Design admissibility. Admissibility of approximate designs for linear
unbiased estimation in linear regression was considered by Kiefer (1959), Section
3, Karlin and Studden (1966), Section 7, and Pukelsheim (1980), pages 359-360.
A design £* is said to be better than a design £, iff M(§) < M(£*) and
M(§) + M(£*). A design £, is said to be admissible, iff there does not exist a
design which is better than £,. Another formulation for this in terms of variances
of Gauss—Markov estimators is the following. For a design § and a coefficient
vector ¢ € R* let V(¢,¢) = c’M~(§)c, if ¢ € range(M(¢)), and V(¢ c) = oo,
otherwise. If £ corresponds to an exact n point design, then (0%/n)V(¢, c) is the
variance of the Gauss—Markov estimator for ¢’a under £, which we define to be
infinity, if ¢’a is not estimable under £. By Lemma 2 of Stepniak, Wang and Wu
(1984), a design £* is better than a design ¢, iff V(£*, ¢) < V(&, ¢) for all ¢ € R*,
with strict inequality for at least one ¢, € R*. For partial parameter estimation,
when the parameters of interest are given by the R*-valued function Ka, we will
restrict to linear parametric functions ¢t’Ka, where ¢t € R®. This suggests the
following definition.

DEFINITION. A design £* is said to be better than a design ¢ for Ka, iff
V(¢ ,K't) < V(& K't) for all t € R®, with strict inequality for at least one
t, € R A design §, is said to be admissible for Ka, iff there does not exist a
design which is better than £, for Ka.

In analogy to the full parameter case mentioned above, a reformulation can be
given in terms of the reduced information matrices from (2). The proof of the
following lemma is omitted.

LEMMA. A design £* is better than a design ¢ for Ka, if and only if
J(§) < J(§*) and J(§) # J(£%).

The following result provides an extension of Theorem 7.1 of Karlin and
Studden (1966) to the partial parameter case.

THEOREM 2. Let £, be a given design. Then:

(a) If &, is admissible for Ka, then there exist a nonnegative definite, nonzero
(s X s)-matrix A and a left inverse L, of K’, such that

(10) each support point of ¢, maximizes (L,f(x))ALyf(x), x€&,
and

(11) L Lof(x)(b'f(x)) d&o(x) = 0, forall b € nullspace(K ).

(b) If there exist a positive definite (s X s)-matrix A and a left inverse L, of
K'’, such that (10) and (11) from above hold true, then &, is admissible for Ka.
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ProoF. (a) Consider the set of all nonnegative definite (s X s)-matrices B
with tr B = 1. By (2), for any B from this set, and any design &,

t(B(J(¢) - J(§))) = mintr{ BLM()L ~ J(50))),

and this is a concave and upper semicontinuous function of M(£). So we can
conclude as Karlin and Studden (1966), page 808. Admissibility of §, for Ka
implies

(12) 0> max mgntr{B(J(g) - J(&))},

and by a well-known minimax result [see, e.g., Parthasarathy and Raghavan
(1971), Theorem 5.3.6], the maximum and the minimum on the right-hand side of
(12) can be interchanged. Hence there exists a nonnegative definite (s X s)-matrix
A with tr A = 1, such that

tr{AJ(£&,)} = m?xtr{AJ(g)} .

Again, by (2) and by the general minimax result,
méntr{ALM(&O)L’} ~ max mgntr{ALM(g)L'}

ilzf m?xtr{ALM(g)L'}.

The last infimum is attained at some left inverse L, of K’, since the function

n(L) = max [tr{ALM(£)L}]"*

is a seminorm on the space of all (s X k)-matrices L, and the set of all left
inverses of K’ is an affine subset of this space. So, the two-person zero-sum game
with payoff for player 1

k(¢, L) = tr{ ALM(¢)L'},
where player 1 chooses a design £ and player 2 chooses a left inverse L of K’, is

definite, £, is a maximin strategy for player 1, and there exists a minimax
strategy L, for player 2. Hence

(138) tr{ AL, M(&,)L}} = m?xtr{ALlM(.f)L’l},
and
(14) tr{ AL ,M(&,)L;} = mgntr{ALM(go)L’}.

It can easily be seen, that (14) implies AL, M(£,)P = 0, where P denotes the
orthogonal projector from R* on nullspace(K ). Consider the system of matrix
equations

AX = AL,, XK' =1, XM(£¢,)P = 0.
By Theorem 2.3.3 of Rao and Mitra (1971), this system has a solution for X,
since, as it can readily be checked, range(AL,) C range( A) (trivially),

nullspace([ K", M(¢,)P]) < nullspace([Z,,0])
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and
A[I,0] = AL,[K’, M(&,)P].
Taking L, = X, one gets a left inverse of K’, such that, by (13),
tr{ AL M(&,)Ly} = m?xtr{ALOM(g)L{)},
which is the same as (10), and L,M(§,)P = 0, which is the same as (11).

(b) Let & be a design with J(§,) < J(£). By (11) LyM(¢,)Ly = J(§,), and
hence, by (10) and (2),

tr{AJ(&y)} = tr{ AL,M(&,) L)
> tr{AL,M(¢)Ly} > tr{AJ(£)}.

Since A is positive definite, this implies J(£,) = J(§), and hence §, is admissible
for Ka. O

REMARK 4. Our previous remark on the Tchebycheff approximation (Section
2, Remark 2), applies to the present situation as well. If §{;,, A and L, are such
that (10) and (11) hold true, then L, is a Tchebycheff coefficient matrix, in the
sense that it minimizes

max (Lf (x)) ALf(x),
over the set of all left inverses L of K’.

Under the invariance assumptions (a) and (8) from Section 2, the class of
2-invariant designs, which are admissible for Ka, may be of interest. For finding
this class, the following result complementing Theorem 2 will be useful.

THEOREM 2(a). Under the assumptions (a) and (B) from Section 2, let &,
be a 2-invariant design, which is admissible for Ka. Then there exist a
nonnegative definite, nonzero (s X s)-matrix A and a left inverse L, of K’,
which are invariant in the sense that

()AQ=A and Q 'LyQ=1L,, forallQe2,
and such that (10) and (11) of Theorem 2 hold true.
Proor. First, as in the proof of Theorem 2, one concludes that there exists a
nonnegative definite, nonzero (s X s)-matrix A, such that
(15) tr{AJ(&y)} = tr{AJ(£)}, forall £

Formula (15) holds true with A replaced by A(Q) = (Q)AQ, for any @ € 2, and
hence for the average of all A(Q) (w.r.t. the Haar probability measure on 2). So
we can assume A from (15) to be invariant. Now, proceeding further as in the
proof of Theorem 2, one gets a left inverse L, of K’, such that

(16) tr{ AL M(&,)Ly} = tr{ALoM(¢)Ly}, forall £,
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and

(17) L,M(¢,)b =0, forall b € nullspace(K).

Again, (16) and (17) hold true with L, replaced by Ly(Q) = Q@ 'L,Q, for
any @ € 2, and hence for the average of all Ly(Q) [note that (17) implies
LoM(¢,)L; = J(§,), and hence the left-hand side of (16) is not affected, when
replacing L, by L,(Q) or by their average]. In this way, one obtains an invariant
left inverse of K’, which, together with the invariant A, satisfies (10) and (11) of
Theorem 2. O

4. Examples.

ExampLE 1. Consider multiple quadratic regression on the cube ' =[—-1,1]9,

q
(18) yx)=af(x)=ag+ Lax;+ 2 a; X, x;,
i=1 1<i<j<gq
x =(x,,...,x,). Suppose that the constant term a, and the first-order coeffi-

cients a,,..., a, are to be estimated, i.e, K =[I ,,,0]. Let G be the group of
all permutations and the sign changes of coordinates, G = {g = (7, ¢)}, where 7
is a permutation of the indices 1,..., q, e = (¢, ..., &,), with ¢, € {—1, +1}, and
(7, 8)(x) = (81X, -+ +» EgXqy)- Conditions (a) and (B) from Section 2 are
satisfied, where 2 = (@

m, e)?

_|R.. O o -R
Qw,e - 0 Sﬂ,e > er,e — flae
and the quadratic matrices R, . and S, , are of order ¢ + 1 and q(q + 1)/2,
respectively, which are defined by

R, (to,ty,. s ty) = (to, &1tuqys-- s Egtuie) s
S, (tyl<i<j<gq)= (et (mimiiny: L <E<J < q)"

The notation (w(i), #(j)) means (7 (i), #(J)), if #(i) < w(j), and (7()), 7(2)),
otherwise. For convenience, we have indexed the components of ¢(g + 1)/2-
dimensional vectors by pairs (i, j), 1 <i<j < q, arranged in lexicographic
order, say. Below, we will employ ¢,-criteria, —1 < p < oo, which satisfy condi-
tion (y) from Section 2, since the matrices R, , are orthogonal. Let A be a
nonnegative definite, nonzero matrix of order ¢ + 1, and let L, be a left inverse
of K’, hence L, = [I,,,, B], with B = (b,, ; ;) having ¢ + 1 rows [indexed by
h=0,1,...,q9] and g(q + 1)/2 columns [indexed by (i, j), 1 <i <j < q]. The
invariance conditions from Theorem 2(a) mean that A is diagonal with elements

ay>20and @, = -+ =a, >0 in the diagonal, where ay + a;, > 0, and L, is
such that b, ; ,, = — B, say, and all the other b, ; ; are zero. For such matrices
A and L, we have

Lyf(x) = (1 — Bri(x), xl,...,xq)’,

(Lof(x))'ALf(x) = ag(1 = Br*(x))" + ar’(x),
where r¥(x) = L7 x2

(19)
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We will determine 2-invariant, ¢,-optimal designs for (a,, a,,..., a,)’. These
turn out to be those 2-invariant designs, which give total weight A, to the set of
vertices of the cube, and weight 1 — A, to the origin, where

A, =gV /(1 + q/P*D), if -1 <p < oo,

and A, = 1/2. For p = —1-no ¢_;-optimal design exists, unless ¢ = 1, in which
case £, with support —1,0,1 and weights 1/4,1/2,1/4 is ¢,-optimal for all
p €[—1, oo] [see also Pukelsheim (1980), page 361]. These results are obtained
by Theorems 1 and 1(a) as follows. By our theorems, a 2-invariant design £, is
¢p-optimal for (ay, a,,...,a,), if and only if there exist invariant matrices A
and L, as above, such that

(20) — A is a subgradient of ¢, at C, = LLof(x)(Lof(x))’dgo(x),
(21) each support point of ¢, maximizes (19) over x € [ —1,1]7,
(22) f (1 — Br(x))r¥(x) déy(x) = 0.

T

Equations (21) and (22) imply that each support point of £, is either the origin
or a vertex of the cube, and 8 = 1/q, a, = qa,. So, if A is the total weight of £,
assigned to the set of vertices, we have C, = diag(1 — A, A,...,A). For —1 <
P < oo, the gradient of ¢, at C, is a negative multiple of C;”~', and hence, by
(20), {(A =M)/A} P '=¢q ', and A=A, if p> -1 If p= -1 and ¢ > 2,
then no solution for A exists, and hence no ¢_,-optimal design. If p = —1 and
q =1, then A may be chosen arbitrarily from (0,1). Let p = . The set of
subgradients of ¢, at C, is a negative multiple of the convex hull of {zz'}, where
z ranges over the set of all normalized eigenvectors for the minimum eigenvalue
of C,. Since A is nonsingular, we have from (20) that the multiplicity of the
minimum eigenvalue of C, is ¢ + 1, and hence A, = 1/2.

It can easily be checked, that the designs §,, thus obtained, indeed satisfy
conditions (20), (21) and (22), with 8 = 1/q, a, = qa; and an appropriate «; > 0,
and hence, by Theorem 1, they are ¢,-optimal.

Next, we will show that the class of all 2-invariant, admissible designs for
(ag,ay,--.,a,) consists of all §,, which are Z-invariant and supp(§,) C S, where
S denotes the set of the vertices and the origin of the cube. If £, is Z-invariant
and admissible, then, by Theorem 2(a), there exist ay > 0, a; = 0, ag+ a; > 0
and B € R, such that (21) and (22) hold true. These imply supp({,) € S.
Conversely, let £, be 2-invariant and supp({,) C S. Take ay =1, a; = 1/q and
B =1/q. Then (21) and (22) hold true, and, since A = diag(1,q¢"%,...,q7}) is
positive definite, £, is admissible by Theorem 2.

EXAMPLE 2. Again, we consider regression (18) on the cube &'=[-1,1]9,
and let ¢ > 2. Suppose now, that the second-order coefficients a;,, 1 <i <j < g,
are to be estimated, i.e., K = [0, I, )] With the groups G = {(7, ¢)} and
2= {Q, .} from Example 1, conditions («) and (B) are satisfied, where now
Q . =38, .. Let A be anonnegative definite, nonzero matrix of order g(q + 1)/2,

ks
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the elements of which we denote by a; j, x,1,1 <i<j<gq,1<k<Il<gq,and
let L, be a left inverse of K’, hence Ly =[B, I ,.1)2], with B = (b ; p),
1<i<j<q,0<h<q.Invariance of A and L,, as explained in Theorems 1(a)
and 2(a), means that a; ;) ;) = &, Qg i) = Qs L F Ty Qi gy, ) = %o L <J,
and all the other elements of A are zero, and b, ; o= —f and all the other
elements of B are zero. For such matrices A and L, we have L,f(x) = (g;(x):
1 <i<j<q), where g;(x) = x? - B, &,(x) = xx;, i <J, and

(Lof(x))/ALof(x) =a i (x? - .B)2

(23) i=1
+agy, (x,2 - ,B)(xf - ,B) +a, Y, (xfxf)
i) i<j

The matrix A is nonnegative definite and nonzero, which means that a, > 0,
@, >0, a; + @, >0 and —(q — 1)a, < ay < a;. By Theorems 2 and 2(a), for
finding admissible Z-invariant designs £, for Ka, we have to evaluate the
following conditions:

(24) each support point of £, maximizes (23) overx € [-1,1]7,
(25) B=q 'E(r?),

where, for short, E(-) means expectation w.r.t. £, and r%(x) = L_x2
It is easy to see that any x maximizing (23) is from the lattice {—1,0,1}%. On
this lattice, (23) is a quadratic function of % = r?(x) € {0,1,..., ¢}, namely,

h(r?) = (% + ao)r“ + {al - 2B8(a; + (g — 1)ag) — (% + ao)}r2

+qB%(a, + (g — 1)ay)
= y,r*+ y,r2+vy,, say.

Considering the maximum of A(r?), conditions (24) and (25) lead to the
following:

Case1: vy, > 0. Then r%(x) € {0, q} on supp(£,) and E(r?) > q/2.

Case 2: v, = 0, which implies y, > 0. If y, > 0, then r*(x) = g on supp(§,).
If y, = 0, then supp(¢,) C {—1,0,1}7 arbitrary, but E(r?) > q/2.

Case 3: vy, <0. Then r*(x) e {¢,t+ 1} on supp(£,), where t€ {1,...,
g-1}, t>(¢g—-1/2

So, if &, is Z-invariant and admissible for Ka, then supp({,) ¢ {—1,0,1}9,
and E(r%) > q/2 or r¥(x) € {(¢ — 1)/2,(g + 1)/2}, in which case g is odd.
Conversely, if &, is Z-invariant, if supp(¢,) € {—1,0,1}7 and if E(r?) > q/2,
then ¢, is admissible for Ka. For, we can choose ay, a;, a,, such that A from
above is positive definite, and such that (24) holds true with 8 from (25) [e.g.,
take ao = —1/(q — 1), @, = 28/(28 — 1) and a, = 2/(q — D)},
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The question remains open, whether 2-invariant designs are admissible for
Ka, which are supported by a subset of the lattice and such that E(r?) = q/2 or
r’(x) € {(¢ — 1)/2,(q + 1)/2} on the support.

ExampLE 3. Consider polynomial regression of degree m > 2 on the interval
Z= [ - 17 1]7

(26) y(x)=a'f(x) =ay+ ax + ax®+ -+ +a,x™

m

Suppose that the two highest coefficients a,,_, and a,, are to be estimated, i.e.,
K = {0, I,]. The group G consists of two elements, the identity and the reflec-
tion at zero. Obviously, conditions (a), (B) are satisfied, and for ¢,-criteria,
—1 < p < oo, (y) is satisfied, where 2 = {@,,Q,}, @, = I,,.,, @, is diagonal
with elements (— 1)}, i = 0,1,..., m, and @, = I,, @, = diag((—1)""},(=1)"). A
design ¢ is Z-invariant, iff the odd moments of ¢ up to the order 2m — 1 are
zero. Let A be a nonnegative definite, nonzero (2 X 2)-matrix and let L, be a left
inverse of K’. Clearly,

Lyf(x) = (xm—l — Py(x),x™ — Qo(x))',

where P, and @, are polynomials of degree at most m — 2. Invariance of A and
L, as explained in Theorems 1(a) and 2(a), means that A is diagonal, and one of
the components of L,f is an even polynomial and the other is odd. By our
results, the problems of finding optimal or admissible 2-invariant designs for
(a,,_y, a,,) lead to the following. For given a; > 0 and a, > 0, with a; + a, > 0,
find a design ¢ and a pair of polynomials Py, @, each of degree at most m — 2,
such that

(27) each support point of £ maximizes a;(x™ ! — 0(x))2 + ay(x™ — Qp(x))”

overx € [—1,1],

and

‘/[‘_1 1](x'"_1 — Py(x))x'dt(x) =0,
(28) ’
f (x™— Qy(x))x'dt(x)=0, i=0,1,...,m— 2.
[-1,1]

As pointed out in Remarks 2 and 4, any such pair (P, @,) provides a Tchebycheff
approximation of the monomials x™! and x™, namely

(P,, Q,) minimizes
(29) _max {ay(x"! = P(x))" + ap(x” - Q(x))°)

over the set of all pairs (P, @) of polynomials of degree at
most m — 2.
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If one of aj, a, is zero, then (29) is a special case of ordinary Tchebycheff
approximation, the solution of which is well known.

—If a; = 0, then x™ — Qy(x) = 2~ (™ VT, (x), (and P, arbitrary).
—If @y, = 0, then x™ ! — Py(x) =2~ (""IT, _.(x) (and Q, arbitrary),

where T, denotes the rth Tchebycheff polynomial of the first kind. In case that
a, > 0 and a, > 0 it can be shown that the unique solution of (29) is given by

a7l = Py(x) = 27T, _\(x),

x™ = Qulx) = 27" N(T,(x) — BT,,_o(x)),

where B = a;/a,, if a; <a,, and B =1, otherwise. So, if a; =0 or a, =0,
then (27) and (28) yield designs £, or £, which are the optimal designs for
estimating a,, or a,,_,, respectively [see Kiefer and Wolfowitz (1959), Theorem
1]. &, is supported by the points cos(jm/m), j=0,1,..., m, with weights
1/m, if 1<j<m-1, and 1/2m), if j=0 or m. £ is supported by
cos(jr/(m — 1)), j=0,1,...,m — 1, with weights 1 /(m — 1),if 1l <j<m— 2,
and 1/{2(m — 1)}, if j =0 or m — 1. Now, let «; > 0 and a, > 0. ThHen, ¢ is
supported by the maximum points of 4a,T.2_(x) + ay(T,(x) — BT, _(x))?
x € [—1,1], with weights given implicitly by (28). Calculations, too long to be
reported here, lead to the following. If a; < a,, then the support points of ¢ are
the m + 1 zeros of

(1 - xz)(Um—l(x) + BUm—-3(x))’
where U, r = 0,1,..., denotes the rth Tchebycheff polynomial of the second
kind, and U_, = 0. The weights are

£(x;) = (1= B2)/{(m=1)(1 = B?) + (1 + B)" - 4BT2_(x,)},

for j=1,...,m — 1, where x,, ..., x,,_; denote the support points in the inter-
ior of [—1,1], and

£(1) = £(-1) =30 - B2)/{(m - D1 - B*) - (1 - B)*}.

Let us denote this design by £, [where 8 = a,/a, € (0,1)]. If @, > a5, then one
obtains § = £,. From Theorems 2 and 2(a) we conclude, that the family of designs
§3, 0 < B <1, constitutes the class of all 2-invariant, admissible designs for
(a,,_1, a,,)- Note that £, and £, are admissible for (a,,_,, a,,), since they are the
unique designs which are optimal for estimating a,, or a,,_,, respectively. Next,
we will find ¢,-optimal designs for (a,,_,, @,), —1 < p < oo. By Theorems 1
and 1(a), and by the above, a Z-invariant design is ¢,-optimal, if and only if
§=14£5, 0<B<1, B=aqa,/a, and —diag(a,, @,) is a subgradient of ¢, at
C = diag(c,(B), cx(B)), where

c(B) = / {2-(m_2)Tm—1}2d§3,

[-1,1]

B = [ (27T, - BT, o)) d
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Calculations yield

e(B) =273 (1 + B),  e(B) =27PmE(1 - B,

If p < oo, then the gradient of ¢, at C is a negative multiple of
diag(c,(B) P c(B) P 1), and hence the ¢,-optimal design is £, with g =
{ei(B)/c(B)} P, or, equivalently,
1-— B ptl
(—2—) -B8=0, 0<pB<1.

There is a unique solution g = f,, if p > —1, and no solution, if p = —1 (and
hence no ¢_,-optimal design). Now let p = oo. Since ¢(8) > cy(B) for all
B € [0,1), the gradient of ¢ at C exists, and is a negative multiple of diag(0, 1).
Hence B, = 0, and £, is E-optimal for (a,,_,, a,,)"

Two cases of the above were solved in previous work. For m = 2, the
¢,-optimal designs, —1 < p < oo, were given by Pukelsheim (1980), Examples
6.2.4 and 6.2.5, which are supported by —1,0,1 with weights (1 + 8,)/4, (1 —
B,)/2, (1 + B,)/4. For p=0 and m arbitrary, Studden (1980a) found the
D-optimal designs for the s highest coefficients of (26). In case s =2, as
considered in our example, we have B, = 1/3, and our D-optimal design £,
coincides with that of Studden (Theorems 4.1 and 4.2 of his paper), which can be
seen by using some identities on Tchebycheff polynomials [formulas 22.7.5, 22.5.8
and 22.7.27 in Abramowitz and Stegun (1964)].

REMARK 5. Nonexistence of ¢_;-optimal designs, as in Examples 1 and 3, is
due to our requirement, that under an optimal design £, the parameters of
interest should be estimable [or, equivalently, J(£,) from (2) is nonsingular]. If
we drop this requirement, then a ¢_,-optimal design would be any design £,
which minimizes

¢_1(J(§)) = s/{tr(J(£))},
over the set of all designs £ (where s/0 is defined to be o). By (2),

$_1(J(8) = max (s/x(LM(£)L)),

which is a lower semicontinuous function of M(§). By compactness of the set of
all M(¢) a ¢_,-optimal design &, with possibly singular J(£,) exists.
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