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SPECIAL INVITED PAPER
WHAT IS AN ANALYSIS OF VARIANCE?

By T. P. SPEED
CSIRO, Canberra, Australia

The analysis of variance is usually regarded as being concerned with
sums of squares of numbers and independent quadratic forms of random
variables. In this paper, an alternative interpretation is discussed. For certain
classes of dispersion models for finite or infinite arrays of random variables, a
form of generalized spectral analysis is described and its intuitive meaning
explained. The analysis gives a spectral decomposition of each dispersion in
the class, incorporating an analysis of the common variance, and an associ-
ated orthogonal decomposition of each of the random variables. One by-prod-
uct of this approach is a clear understanding of the similarity between the
spectral decomposition for second-order stationary processes and the familiar
linear models with random effects.

“...the analysis of variance, which may perhaps be called a statistical
method, because the term is a very ambiguous one—is not a mathematical
theorem, but rather a convenient method of arranging the arithmetic.”

R. A. Fisher (1934)

1. Introduction. To most of us the expression analysis of variance or anova
conjures up a subset of the following: multiindexed arrays of numbers, sums of
squares, anova tables with lines; perhaps, somewhat more mathematically,
independent quadratic forms of random variables, chi-squared distributions, and
F-tests. We would also think of linear models and the associated notions of main
effects and interactions of various orders; indeed the standard text on the
subject, Scheffé (1959, page 5) essentially defines the analysis of variance to be
regression analysis where the regressor variables (x,;) take only the values 0 or 1,
although he mentions in a footnote that —1 and 2 have also arisen. What is
anova? Is there a variance being analysed? Is there a mathematical theorem,
contrary to Fisher’s assertion? Or is it just a body of techniques, a statistical
method, ..., a convenient method of arranging the arithmetic?

Signs that there might be an underlying mathematical structure began to
appear in the late 1950s and early 1960s. James (1957) emphasised the role of the
algebra of projectors in the analysis of experimental designs, Tukey (1961)
outlined the connection between anova and spectrum analysis [something which
was made more explicit by Hannan (1961, 1965), who focussed on the decomposi-
tion of permutation representations of groups], whilst Graybill and Hultquist
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(1961) gave a definition of anova (assuming joint normality of all random
variables concerned) which incorporated many of the same ideas as the others
mentioned: the commuting of projectors and the spectral decomposition of a
covariance matrix.

Of course, anova is just a word (or three) and people can give it any meaning
they wish, so there is no sense in which the definition I offer in the following text
has any greater claim to be the correct one than any other. What I do believe is
that it is a mathematically fruitful definition, that it covers most if not all
situations which statisticians would regard as being instances of anova and that
its generality and simplicity are both pedagogically and scientifically helpful.
And yes, I believe there are relevant mathematical theorems, although as we will
see it is perhaps unreasonable to expect a single theorem to cover all existing
cases.

2. Two simple examples. Let us begin with an array y = (y,;) of mn
random variables where i = 1,..., m and j = 1,..., n is nested within i, i.e., j
only has meaning within the values of i. The following decomposition of the sum
of squares is familiar to all who have met anova:

(2.1) Zkl Zl:ylfz = mny’ + nXhl(yh.— y.)+ Z Z(yij - yi-)2,

and we denote the three terms on the right by SS,, SS, and SS,. Here
Y. = n‘l}:jyij, y..=m 'L,y etc. It is not hard to derive (2.1) by the standard
juggling which many believe characterises anova. Of what interest or use is this
decomposition? To answer this question, we must make some assumptions about
the y,;, and one set—the ones Fisher (1934) probably had in mind when he made
the remark quoted—is the following: Ey;; = p;, where (p,) is a set of m
unknown parameters, the (y,;) are pairwise uncorrelated and they have a
common variance % i.e., the dispersion matrix Dy of y is just o2I. Under these
assumptions we can prove (see the following text) that E{SS,} = mnu®+ o2,
E{SS,} = (m — 1)a? + nZy(p; — p.)? and E{SS,} = m(n — 1)o2. It is here that
we can see the point of Fisher’s remark about “the arithmetic,” for when the
() are jointly normal, SS,/a?, SS,/0% and SS,/0* are mutually independent
with chi-squared distributions on 1, m — 1 and m(n — 1) degrees of freedom,
respectively, and the ratio F = m(n — 1)SS,/(m — 1)SS, permits a test of the
hypothesis H: p, = p, = -+ = p,, having a central F-distribution with (m — 1,
m(n — 1)) degrees of freedom when H is true. The F-test of this hypothesis has
many desirable properties [Hsu (1941, 1945), Wald (1942), Wolfowitz (1949),
Herbach (1959) and Gautschi (1959)] and the decomposition (2.1) is indeed a
convenient method of arranging the arithmetic.

But all of this is just sums of squares—quadratic forms in normal variates if
you wish; the only variance in sight is the common ¢2 and that does not appear
to be undergoing any analysis. However, let us look closely at the proof of some
of the foregoing assertions. How do we see that the quadratic forms SS,, SS; and
SS, are independent under the assumption Dy = ¢%I and joint normality? One
approach, owing to Tang (1938), uses the fact that their (unsquared and un-
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summed) components y.., ¥;.— .. and y,;; — . are uncorrelated, and hence, by
the joint normality, independent, and this property is retained when the compo-
nents are squared and summed.

How do we see that these components are uncorrelated? Each is a linear
combination of elements in the array y with easily calculated coefficients and,
with the assumption that Dy = oI, their covariances are simply o2 times the
sums of the products of these coefficients. For example, the coefficient of y,; in
Yp.—y..is —1/mn if k+ h and 1/n — 1/mn if k = h, whilst that of y,, in
Yij—Y.180if k+i —-1/nif k=iand [#jand1—-1/nif k=iand [ =]
Thus if A =1,

cov( yp. = Y., Yij — %)

1 1 1 1 1 1 1
S Y 1T L A
mn n  mn n n  mn n
which is zero as stated; the case h # i is dealt with similarly. Similar calcula-
tions prove that cov(y.., y,.— ».) = cov(y.., ¥;; —¥.) =0 and, further, that
E{y%} = p2 +(1/mn)o®, E{(y;.~ 3.0} = (m — 1)/mn)o”® + (p, — p)* and
E{(y; - %)’} = (m(n — 1)/mn)o>.
It has just been proved that the three components in the sum

(2.2) Y=Y * YiTy. T Y,
are uncorrelated; their variances thus add and we may write this as
1 m-—1 m(n —1
(2.3) 02= —o%+ o+ ( )02.
mn mn mn

Here at last is a variance being analysed! But before we examine this any further
let us see with a minimum of further algebra how the sums of squares of the
components in (2.2) must add up and give (2.1). Denoting the coefficients of y,,
in y., 3.— y..and y,; — ¥. by So(¥, kL), Si(¥, kl) and Sy(¥, kl), respectively, we
can easily check that the mn X mn matrices S,, S; and S, so defined are
symmetric, idempotent, pairwise orthogonal and sum to the mn X mn identity
matrix I. Symmetry is quickly apparent from their definition; orthogonality is
implicit in the calculation which proved the components in (2.2) uncorrelated,
whilst idempotence is proved by a similar calculation; and clearly they sum to
the identity. Thus we can write y = S;y + S,y + S,y as

(2.4) (3) = (. + (3.~ 2.) + (¥ — )

where the S, act on arrays u = (u;;) of real numbers as follows (S,u),; =
L.2S.(Y, kl)uy,, a = 0,1,2. But then (2.4) is a decomposition of the array into
component arrays which are orthogonal with respect to the inner product
(u, v) = L,X u,v;;, whilst (2.1) is simply the Pythagorean relationship

1912 = 1So21> + 1S151° + 1S:01%,

where |y|2 = (1, y) is the associated squared norm.
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An unexpected bonus. Without any further calculations we may assert that
(2.2) remains an orthogonal decomposition of y;; when the dispersion matrix
Dy =T has the form

(2.5) T = £S5, + £,S, + £,5,,
where the eigenvalues £, £, and £, are positive real numbers. A modified version
of (2.3) also holds, namely

m-—1 m(n —1)

1
(2'6) Var(yij) = %’go + mn &+ mn &.

These assertions are readily checked. For example,
cov( . = Yoy 3 — i) = (8i18,)(#, ) = 0,
and

m(n — 1)

var(y;; — 5.) = (S:IS)(¥, i) = £,8:(¥, ) = T£2_

The question this observation now raises is: How wide is the class of matrices of
the form (2.5)? Perhaps unexpectedly, it coincides with a class which arises
frequently, namely the set of all matrices I' having the form

(2.7) T'=v,A, + 1,4, + Y4,

where A, = I is the identity matrix, A,(7j, k) =1 if i = k, j # | and O other-
wise, Ay(y, kl) = 1if i # k and 0 otherwise, and v,, v, and y, are a variance and
two covariances constrained only to ensure that I' is positive definite. The
easiest way to see that I'’s of the form (2.5) and (2.7) coincide is to list the index
j lexicographically and write the matrices in tensor product form. We find that
A,=1,81, A =1,0(J,—1I,) and A,=(J,—-1,) ®J,, whilst S,=
1/m)d, @ (1/n)d,, 8, = (I, — (1/m)d,) ® (1/n)d, and S, =1L, ® (I, -
(1/n)dJ,), where I, and o, are the m X m identity and matrix of 1’s, respec-
tively. The eigenvalues ¢ and the entries y correspond in the following way:

I 1 n—-1 n(m—-1)]|y,
(2.8a) §i|=(1 n-1 -n "1
£, I -1 0 Yo
Y2 1 1 m—1 m(n-1)|[§
(2.8b) NWli=—|1 m-1 -m &1
mn
YO 1 _1 0 62

Where have we gotten to? We have exhibited a set of covariance matrices (2.7)
for a random array y = (;;) which are simultaneously diagonalisable, cf. (2.5);
their eigenvalues are invertible linear combinations (2.8) of their entries; their
common eigenspace projectors decompose the elements of the array into statisti-
cally orthogonal (i.e., uncorrelated) components (2.2) whilst also decomposing the
arrays themselves into geometrically orthogonal arrays (2.4). Pythagoras’ theo-
rem applied to the decomposition of array elements gives an analysis of variance
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qua variance (2.6), whilst it gives the sum of squares decomposition (2.1) of an
anova table when applied to the decomposition of arrays. We might also add
that these decompositions all make “statistical sense.”

Houw special is this example? Before answering this question let us look at a
second example, which is not normally regarded as being an instance of anova.

This time our array has a circular nature: A sequence y = (y,: t=0,1,...,n — 1)
of n=2m + 1 random variables with cov(y,, 5,) = v,y 0 < s, ¢ <n,ie, ' =
Dy is a symmetric circulant with first row (ysy; *** Y. ¥m *** ¥1)- To emphasize
the similarity with (2.7) we write it as

m
(2.9) I =274,

0

where A, is the symmetric circulant having first row (0---010---010---0)
with 1’s in the ath and (n — a)th position, 1 <a <m, and A;=1I,the n X n
identity matrix. It is well known that the class of all such matrices is simulta-
neously diagonalisable with common projectors S, = (1/n)J, and S(s, t) =
(2/n)cos2n(s — t)a/n), 0 <a <m, 0 <s, t<n, whilst their eigenvalues are
linear combinations of their entries

m 27
(2.10a) £.=Y + 2Zyacos(7aa), a=0,...,m,
1
with inverses
2.10b) L+ 25 cos| 2T 0
: = —fo+ — —aal, =0,...,m.
( Ya=dot 1 o8| ——-aa a m

Further, we have an orthogonal decomposition of the random variables similar to
(2.2):

(2~11) Y=yt Zsayt:
1

where S, y, = (2/n)L8 'ycos(27(s — t)a/n), 1 < a < m, cf. Hannan (1960, 1.2),
and the variances of each component add, corresponding to a = 0 in (2.10b).

Finally, we remark that a decomposition of the n-dimensional vector space
analogous to (2.4) and its associated sum of squares decomposition may also be
derived; it is just the (real form of the) discrete Fourier transform. The analogy
with the view of the classical anova we have just presented is complete.

3. Sums of squares. ‘Let y=(y: t€ T) be a finite array of random
variables with mean Ey = 0 and dispersion matrix Dy = I' € V, where V is a
family of positive definite matrices over T. The formal definition of anova given
by Graybill and Hultquist (1961) refers to a decomposition of |y|? into a sum of
quadratic forms under an assumption of joint normality of y. It had two aspects
which we will recall shortly: one which in essence refers to properties of the
individual matrices I' € V, and one which was clearly a property of the model as
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a whole. Later writers on the same topic include Albert (1976), Brown (1984) and
Harville (1984), and in all of these papers the role of anova as a property of a
model V has tended to get emphasised less than the consequences of the
definition for arrays y with Dy € V. In what follows we modify the Graybill and
Hultquist (1961) definition slightly, removing some details without, we hope,
losing its essence. We also express the definition solely in terms of the class V of
dispersion matrices, removing the joint normality assumption. Finally we argue
that the definition is most fruitful when applied to a particular parametrization
of V, one which is not usual in this context, although as we will see it coincides
with that used in developing the spectral theory of second-order stationary
processes over index sets of various kinds.

Initially we will suppose that V is a class of positive definite matrices having
the form

(3.1) r(6) = ¥ 6,4,

where the {A,} are known symmetric matrices and § = (6,) is an s-dimensional
real parameter belonging to ® C R®. It will be convenient to suppose that the
{A,} are linearly independent matrices over T and that V contains s linearly
independent elements. Dispersion models of this form have been studied by a
number of authors over the years including Anderson (1969, 1970, 1973) and
Jensen (1975), but our emphasis is quite different from theirs. Essentially
following Graybill and Hultquist (1961) we say that an anova exists for V if there
exists a family {S,} of s known pairwise orthogonal symmetric idempotent
matrices summing to the identity matrix I over T such that

(a) for every 6 € O and «a there exists £,(6) such that
(3.2) I(8)S, = £.(0)S,;
(b) the map 6 = (6,) — £(0) = (£,(0)) is linear and invertible.

Condition (a) replaces the condition that for each § € ® the s quadratic forms
(IS, y|?} are mutually independent scale multiples of chi-squares under the
assumption y ~ N(0, I'(8)) [see Albert (1976, Theorem 1(a))], whilst condition
(b) asserts that the multipliers £,(6) = E{d_'|S,y|*}, where d, = rank S,, are
independent linear functions of the {4,}.

It is clear from (a) that the matrices {S,} simultaneously reduce all T € V,
ie., that I' = ¥ _£.S,, where we omit the dependence on § if no confusion can
result, and thus every element of V commutes with every other. As long as V
contains s linearly independent elements, these conclusions extend to all matrices
of the form ¥ 6,A, with § € R° and in particular we deduce that the {A,}
commute. It also follows from (b) that, in general, I'(#) has s distinct eigenval-
ues.

Conversely, if the {A,} all commute, a well known theorem in linear algebra
tells us that there is a family {S,} of ¢ (say) pairwise orthogonal symmetric
idempotent matrices summing to I such that A,S, = p,,S, for constants p,,,

a

a=1,...,t, a=1,...,s. It follows that an element I' € V will have spectral
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decomposition I' = ¥ £,S,, where £, = ¥, p,.0,, and if, in general, such a T has
s distinct eigenvalues, then we deduce that ¢t =s and that P=(p,,) is an
invertible s X s matrix.

Where have we gotten to? Without giving full details we have seen the reason
why the preceding (a) and (b) are jointly equivalent to the two conditions

(c) the matrices {A,} commute,
(d) in general, I'(#) has s distinct eigenvalues.

This is in essence the content of Graybill and Hultquist (1961, Theorem 6). Note
that under (c¢) and (d) we can write A, = L,p,.S, and S, = (1/n)X,9,.44;
where we have inserted a scale factor n = |T'| for later convenience, and where
L oPuaQap = N85 and ¥,q,,P., = 185, 8 here being Kronecker’s delta. These
equations combine to give

(33) AaAb = AbAa = Z{(l/n)zpaapacha}Ac’

(4 a
implying that V may be extended to the linear algebra generated by the {A,}
without invalidating anything we have said to date.

If the {A,} all have the property that all their row (column) sums are the
same, i.e., if for each a there exists k£, such that ¥ A (s,t) = L, A(s,t) =k
then the matrix S, = (1/n)J, where J is the matrix of 1’s over T, is always one
of the {S,}.

Let us leave the matrices I' € V for a moment and turn to the elements y, of
random array y = (y,: t € T) with Dy = I' € V, still assuming that V satisfies
(¢) and (d). The prescription S,y, = X.S(s, t)y, defines a family of random
variables such that

(3.4) %= 28

Now cov(S,, Sp,) = (S,ISe)(¢, u) = §,S(t,u)ds =0 if a# B and so the
different terms on the R.H.S. of (3.4) are uncorrelated. Further var(S,y,) =
¢,S.(t, t). Next suppose that var(y,) = o? is the same for all ¢ € T, i.e., that the
matrices {A,} are all constant down their diagonals. Then Syt ¢) =n"'d,,
where d, = rank(S,) = trace(S,), and we can sum the variances in (3.4) obtain-
ing

(3.5) 0% =Y b,

where ¢, = n”!d ¢, = var(S,y,), independent of ¢ € T. Clearly this is an analy-
sis of variance. The connection between it and the sum of squares decomposition

(3.6) 171 = LIS.y1?

resulting from the geometric orthogonality of the terms in

(3.7) y=28Yy
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is clear: The eigenvalues £, are the expected mean squares:
(3.8) £, = E{d"|S,¥?}.

Is this the correct anova? Does it have all the properties one might hope for? I
would like to suggest that the answer to these questions is no, and that although
the definition is basically correct, it is really only appropriate for a particular
class {A,} of basis matrices and parameters {6,}, namely, when the entries of
the basis matrices are either 0 or 1 and the parameters are covariances. With this
class we will find that we have a notion that extends fruitfully far beyond sums
of squares.

4. Anova: Finite arrays. In this section we will sketch the most natural
framework within which the special properties of our examples hold generally.
The restriction to finite arrays is vital because there are many sorts of infinities
and, perhaps surprisingly, no single mathematical framework is yet available
which covers all the cases.

As before we begin with an array y = (y,: t € T') of random variables indexed
by a finite set T with Ey = 0 and we will consider a very special sort of
parametrization of its dispersion matrix I' = Dy, namely that defined by equality
constraints among the elements of I'. More fully, we will suppose that

(4.1) r=Yv,A,

where {A,: a € X} is a class of matrices over T whose elements are 0 and 1 only
satisfying (i) each matrix A, is symmetric; (i) ¥,A, = JJ, the matrix of 1’s over
T; (iii) one of these matrices, A, say, is the identity matrix I over T} and (iv)
there exist integers (n,,.), @, b,c € X such that A,A, =X n,,.A,. Finally,
{vs: @ € X} is a set of covariances which are such that I' given by (4.1) is
positive definite.

Such matrices {A,} are the adjacency matrices of the association scheme over
T defined by saying that s and ¢ are a-associates, a(s, t) = a,say,if A(s,t) =1,
s,t€T, a€ X; see MacWilliams and Sloane (1977, Chapter 21) for fuller
background and the theory which follows.

We proceed to analyse the class of all T of the form (4.1). From (i) all such T
are symmetric; .from (i) the {A,} are linearly independent and hence the
dimension of the vector space A of all such T (forgetting positive definiteness for
the moment) is s = |X|; from (iii) A contains the identity and from (iv) we
deduce that A is a commutative algebra. The theorem in linear algebra already
cited tells us that there exists a unique basis of A of primitive idempotents {S,:
a€Z}, where S,=82=8;, 5,5=5S,=0, a # B, LS, =1, containing
(1/n)dJ = S,, say. Further the transformation from this basis to the original one
consisting of the {A,} is linear and invertible:

1
(4'2a) Sa = ; anaAa’

(4.2b) A, =Y DuuS.
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where P = (p,,) and @ = (q,,) are matrices of coefficients satisfying PQ = .
QP = nl, n = |T| and I here is the identity matrix of order s = | X| = |Z|. Since
the eigenvalues of A, are (p,,) from (4.2b), those of I' = ¥ vy, A, = L £,S, are

(4.3a) 0= 2 Paa¥a

whilst the entries vy, of I''in (4.1) are recoverable from the eigenvalues via

(4.3b) Yo = (1/n) Lqucba-

Writing &, = |{t € T: A, (s,t) = 1}|, independent of s € T, and d, = rank(S,),
we summarise some basic facts concerning these numbers and the matrices P
and Q. Here 8 denotes the Kronecker delta.

THEOREM (cf. MacWilliams and Sloane 1977, Chapter 21, Section 2).

(l) Dye = QaO = 1; pOa = ka; Qea = da; dapaa = kaqaa'
(11) Zadapaapab = nkaag’ 2akaqao(qaﬁ = ndaalg'
(lll) PoaPob = chabcpac‘

All of these facts give us great insight into the structure of matrices of the
form (4.1) and many examples can be found in the literature; see MacWilliams
and Sloane (1977) and references therein. Speed and Bailey (1982) show that all
standard (“balanced complete,” “orthogonal”) anova models arise from such
schemes where X is a modular lattice of equivalence relations on T, and the
Mbobius function on X (together with the number of levels of each index)
determines the matrices P and Q. These results are summarized in Section 6. For
most but not all classical anova models, results equivalent to the preceding were
given by Nelder (1954, 1965) when I is induced by randomisation; see Speed
(1985) for more details concerning the connexions. Early forms of (3.4) and (3.6)
can be found in Kempthorne (1952, Chapter 8), again with a randomisation
distribution defining T.

Let us turn now to the elements y, of the array y. As in Section 3 we write
S,y = X,S(¢ u)y,, and find that (3.4) is a decomposition of y, into uncorrelated
components which in this context satisfies

(4‘4) E{(Sayt)(sﬂyu)} = n-lgaqa(t, u)aalg’

and in particular this equals n7'd ¢, = ¢, say, if t = u and a = . Here a(t, u)
is the unique a € X such that A, (¢, u) = 1. With this notation we may write
(4.3b) in the form

(4‘5) Ya = Z(dtzlqaa)‘ba’

a

noting that the special case a = e (the identity association) gives us the analysis
of variance (3.5) corresponding to the decomposition (3.4). The index « labels the
“lines” of the anova table—we call them strata—and the projectors S, will be
termed stratum projectors.
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Summarising, we have seen that if I' = Dy has the form (4.1) where the {A,}
satisfy conditions (i), (ii), (iii) and (iv) following (4.1), then, from Section 3, our
variants (a) and (b) [equivalently, (c) and (d)] of Graybill and Hultquist’s (1961)
definition are certainly satisfied. Do we get anything extra which might justify
our belief that it is only with these sorts of basis matrices and corresponding
parameters that the term anova is appropriate? I believe we do, and make the
following supporting observations:

(i) the present framework has a common variance (that to be analysed) as
part of its formulation;
(ii) the {A,} matrices already have the property that their row (column)
sums are the same, which implies that S; = (1/n)J is one of the {S,};
(iii) the {A,} matrices are all constant down their diagonal, a property which
combines with (i) to give the analysis of the common variance;
(iv) we have the compact and extremely useful formula (4.4).

In the more general discussion of Section 3 each of the preceding (i), (ii) and (iii)
had to be assumed in order to obtain the desired consequences, whilst (iv) shows
the great simplification which results from covariance parametrization: With it,
we need only know {A4,}, {d,}, {k,} and the function s (a) = k;'p., = d;'que
without it (cf. Section 3) we need the entries of the {A,}, the {S,} and the
change-of-basis matrices ( p,,) and (q,,)-

In a sense the reasons just given for selecting this formulation as the one
deserving the title anova are mere details; the real reason is the fact that almost
all examples and the natural generalisations and variants all derive from the
present and no other approach. This will become more apparent in the next
section, but first we give an example.

EXAMPLE. Suppose that T =TI{{1,..., n;} and that the indices are nested
in a hierarchical structure ¢, nesting ¢, which nests ¢;, etc. If we write ¢ =
(¢,...,t,) then there is an obvious way to define a set of matrices {A,:
a=0,...,r} satisfying (i), (ii), (iii) and (iv), namely, A (s,t) =1 if s, = ¢,
h=1,...,a, s,,, #t,.,, A s, t)=0 otherwise, 0 <a<r; A, =1 (=A4A)).
When working with this example it is helpful to introduce the equivalence
matrices {R,: a=0,...,r} defined by R (s,t)=11if s,=¢, h=1,..., a,
R (s, t) = 0 otherwise; clearly R, = A, + --- +A,,0<a <r,whileA, =R, —
R, ,,,0<a<r,and A, =R, = I This is because the primitive idempotents
{S,} are now readily defined by

So=(ny -+ nr)_lRO’
Sa=(na+1 nr)_lRa—(na nr)_lRa—li l<a<r,
S,=I-n;'R,_,.

It is easy to calculate that £, =1 =d, k, = (n,,; — Dng.y - n,,0<a<r,
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dy=n, -+ (n,—1),0<a<r,and
0, a=0,...,a — 2,
d'ea=1{ —(n,— 1), a=a-1,
1, a=a,...,r.

The decomposition of y, =y, ..., is totally straightforward:
ytlt2 byt = y.. e e + (ytl. e y.. ..)

o Oty ity ™ Yty oty )

and the other results follow immediately. This is one of the examples where X
(and hence Z) have a lattice structure, namely the (r + 1)-chain {¢, {1},
{1,2},...,{1,2,..., r}}; see Section 6.

5. Anova for infinite arrays. From the viewpoint presented in this paper
one of the earliest instances of anova in statistics was the spectral representation
of weakly stationary time series y = (y,;: ¢t € Z), essentially put in its modern
form by Cramér (1940) following earlier work by Khinchin (1934). Here
the covariance matrix I'(s, t) = cov(y,, ¥,) satisfies I'(s, t) = I'(u, v) whenever
t — s = v — u and so may, formally at least, be written

[e¢]
(5.1) r=3Yv,A,
0

where A, = I is the doubly infinite identity matrix and A, is the doubly infinite
symmetric circulant having zeroth row (---010---0---010 - - - ) with a 1 in the
ath and —ath position, @ = 1,2, ... . Because I’ is positive definite, a theorem of
Herglotz tells us that for such a matrix there exists a uniquely defined positive
measure on [ — =, 7) whose Fourier coefficients are the {y,}. Since y_, = v,,, this
measure must be symmetric about 0 and so we can obtain the real spectral
representation

(5.2) y, = / cos(aa)d(da), aci,
[0, m)

a formula which can readily be compared with (2.10b). The corresponding (real)
representation of y, with E{y,} = 0 takes the form

(5.3) Y=y +2/(0 ﬂ)[cos(ta)u(da) + sin(ta)v(da)],

where u and v are additive and mean-square continuous random set functions
defined on the Borel subsets of (0, 7), spanning the Hilbert space generated by
¥ = (¥, t € Z) having zero means and satisfying

E{u(A)u(B)} = E{v(A)v(B)} = ¢(A N B),
E{u(A)v(B)} =0,
for A, B Borel subsets of (0, 7). Finally y. is the mean-square limit of 7 'L7y, as

(5.4)
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T — oo, which is easily shown to exist. To compare (5.3) and (2.11) one simply
expands the cos(27(s — t)a/n) and separates out random variables from non-
random coefficients.

This is one kind of “infinite anova”; there are many similar ones in the
literature of stochastic processes; see Hannan (1970, Chapter 1) and references
therein.

At this point we do not stop to consider the method of proof of (5.3); in
essence it reduces to the spectral decomposition of a unitary operator in Hilbert
space and this will be covered by the discussion in Section 6. Rather we turn to
another kind of infinite array.

Our original example y = (y;: i=1,...,m; j= ,n) with j nested
within ¢ and having I' = Dy of the form (2. 7 ) makes perfect sense if m or n (or
both) is (are) countably infinite. Indeed one such example is the “random effects
model”

(5.5) Y=t tete

l]’

where (¢;) and (¢,;) are uncorrelated 1nﬁn1te sequences of uncorrelated random
variables with zero means and variances o? and o2, respectively, and ¢, is a zero
mean random variable uncorrelated with the ¢; and the ,; with variance o;. In
this case the parameters y,, v, and vy, of (2.7) are

(5.6) Yp=0; +ol +o5, yi=o05+0f, Y=0;

What is the analogue of (2.4), (2.5) and (2.6) for an array y = (y;;) with
T’ = Dy satisfying (2.7) for m = n = «? Clearly we can truncate i and j (within
i) to the ranges 1,...,m and 1,..., n, respectively, and see what results as
m, n - oo, and doing this leads to some simple and interesting conclusions.
Denoting the parameters and other objects associated with the truncated array
by a superscript (m, n), we can prove directly that ¢{™™ = (mn)~'d{™ »¢(m »
and [d{™™] 1g{™™ both converge as m and n — o to ¢, and s (a) say,
a=0,1,2 and a = 0,1,2. It follows that the terms ¢S, in the spectral represen-
tation (2.5) also converge as m and n — oo, since &£(™MS(™ (G kl) =
g™ (mn)~'q %"} . and we find that the limiting form of (2.5) is

(5.7) FT=¢pJ @J +¢,I®J +¢,I® I,

where I and o are the infinite identity matrix and matrix of all 1’s, respectively.
Although (5.7) is not a spectral representation in any obvious sense, it can be
proved that the most general positive definite matrix of the form

(5.8) T=vI@I+yvI®(J—I)+v(J—-I)®J

has a unique representation in the form (5.7) with ¢,, ¢, and ¢, all positive. The
relations between ¢’s and y’s are simple enough:

(593) Yo = ¢() + ¢1 + ¢2: Y1 = ¢0 + ¢1, Yo = ¢0

with inverse

(59b) b = Yy — Y15 b1 = Y1~ Yo P = Yo-
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In an obvious notation we can also prove that for m’ > m and n’ > n,

1 1 1 1
(m,n) _ (m',n)||* — - —
(5.10a) || ¢ k] %[mn — ] + 1| — m,],

(50~ 50 = (st i) |
(5.10b) 11 1 1/1 1 11
n n m n m m m m

(5.100)  [|(3g™ = ymm) = (35 =y )| = %[i - nl]
from which it follows that y(™™, y™m— y(™7) and y{™"™ — yi™"—the
components in (2.2)—all converge in mean square as m, n = 0. Denoting their
limits by €0» &; and ¢, ;, respectively, it can also be proved that not only are ¢, ¢,
and ¢;; pairwise orthogonal—they come from different strata in the limiting
form of (2.2)—but also ¢, and e, are orthogonal if & # i, and similarly ,; and ¢,
are orthogonal if i # 2 or i = k and j # [. But all this has proved that (5.5) is
(up to second order) the most general form for an array y = (y,;) with Dy =T
satisfying (5.8), and that (5.7) is the most general form for such I'. In this sense
the standard random effects models arise naturally as the spectral decomposi-
tions of infinite arrays of multiindexed random variables with the appropriate
dispersion models. For further details including a proof of this general result we
refer to Speed (1986).

For our final illustration of an anova for an infinite array we return to the
Example at the end of Section 4 and suppose that the repeated nesting goes on
ad infinitum, i.e., that T = T1°{1,..., n;} with each index of ¢ = (¢, ¢,,...) € T
nesting all subsequent ones. As with the finite version, we can define association
matrices {A,: a = 0,1,...} to which we must add A_ = I (= A, in our general
notation). The relationship matrices {R,: a =0,1,...,00} are defined in the
same way as we did earlier and the passage from A-matrices to R-matrices is as
before. We now look for a spectral representation for the positive definite
matrices of the form

a=oo
(5.11) =Y v,A,

a=0
As with our previous discussion, it is instructive to look at a truncated version of
T, and the obvious candidate here is 7" = (¢t € T: t,,, = t,,, = -+ =1}.

Denoting parameters and other expressions associated with the subarray

¥y = (y: te T") with a superscript (r), we note that s (a) = [d{"] 'q{D)
does not depend upon r as long as 0 < a, a < r. Furthermore, a straightforward
calculation proves that ¢{” = (n, - -+ n,)"'d{7¢{" satisfies

(512) o0 = otV = (L= ngtngh - n (= k) (= ),

which is nonnegative since v, < v, for all a. Since 0 < ¢{” < v, for all r > 1 and
a < r, we deduce that ¢{” converges, to ¢, say, as r — oo. Thus the elements of
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¢S also converge as r — oo and so we conjecture a unique representation for
I in (5.11) taking the form of an ordinary infinite series

(5.13) I'=Y¢,.,,

where the ¢, are positive (summing to y,—the anova) and the S, satisfy
S(s, t) = s (a(s, 1)), e,

a= oo
(5.14) S, = Y s a)A,.

a=0
These facts are readily proved and are perhaps most easily seen by using formal
infinite tensor products. In an obvious notation Sy = J = J, ® J, ® -- -, whilst
for @ > 0 we can use the expression for s (a) to get

Sa = Z Aa - (na - 1)_1Aa—1
az«a
n,
= I ® --®I ®

—_ n; Na-1
n,—1

ng Naty Nat2

1
I—n—Jna)®J ®J, ® .

This completes our discussion of the spectral decomposition of Dy and we turn
to that of y,, t € T. As with our previous example, its components are defined as
mean-square limits, and in this case it is perhaps no surprise to see that these
exist for

(r)y = -
Sa yt y,l...ta.. R ST AP ytl...ta_l.. RIS MUY SAPETD

as r > . Indeed ||S{"y, — S{y,|12 = ¢” — ¢{? for 1 < r < r’, and by (5.12)
this converges to zero as r,r’ — oo (assuming n, > 2 for all r). Of course the
mean-square limit S, y,, say, of S{"y,, satisfies ||S, y,/|2 = ¢,, and so the spectral
representation of y, is the infinite sum, defined as a mean-square limit

(5'15) yt = Zsayt,

with associated anova y, = ¥ ¢,. Note that (5.15) is not the same as the
expression
Yityty - = €0 T &y T &g, F &y +00e,

where (e}, (e, }, {¢,¢,} {€,4,2,)5--- are uncorrelated sets of uncorrelated effects
having variances ¢, ¢, ¢,, ¢5,...; to get such a representation we would also
need to let n, - oo, ny, = o0, n; — c0o,... in the preceding discussion.

These three examples of anovas for infinite arrays give a good idea of the
range of possibilities. With the finite cyclic structure going over to the infinite
one, we obtain a “continuous infinity” of strata; with the classical anova models
illustrated by our second example, we simply recover standard random effects
models, the number of strata remaining constant; whilst our final example shows
how limits can be taken along infinite chains in the partially-ordered subset
defining the nesting relationships on the set of indices, with the number of strata
going to a countable infinity.
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In none of these infinite examples does there appear to be a full analogue of
the geometrically orthogonal decomposition of arrays y of real numbers, nor any
associated sum of squares decompositions. Given that we never observe an
infinite array of real numbers, this is no real limitation of the theory, and for
many examples—most importantly the standard anova models in statistics—
these decompositions for finite subarrays give useful information concerning
aspects of the full array. Some details are sketched in Speed (1985) in a
discussion relating the anova of a subarray, where it exists, to the anova of a full
array.

The conclusion we come to after this discussion is that there is more to anova
than sums of squares. Our view, already stated in the previous section, is that
anova is a feature of certain models V which impose equality constraints on the
covariances between pairs of elements of arrays of random variables.

6. Classical anova: Factorial dispersion models. The historically im-
portant anovas with multiply indexed arrays are the random effects models,
dating back beyond Fisher (1925) to the last century, the randomization or
permutation models following those discussed by Neyman, Iwaskiewicz and
Kolodziejczyk (1935) and the more recent generalisations of de Finetti’s ex-
changeability, studied by Aldous (1981) and others. Because of the importance of
these ideas in statistics, I will sketch their common second-order theory.

We begin with a set F of factors f,, f,,..., and a partial order < on F where
f, < f, means that the factor f, is nested within the factor f,; cf. Nelder (1965).
A subset a C F issaid to be a filter if f, € a and f, < f, implies that f, € a, the
need for such subsets arising because it is frequently necessary, when referring to
the levels of a given factor f, to refer at the same time to all factors within which
f is nested. The set of all filters of the partially ordered set (F; <) forms a
distributive lattice L(F') under the operations of set union and intersection [see
Aigner (1979, page 33)] and we refer to this book for all other order-theoretic
terminology and results used in what follows. We remark in passing that our use
of partially ordered sets in this context is closely related to, but does not coincide
with, that of Throckmorton (1961), adopted by Kempthorne and Folks (1971,
Section 16.11).

Next we suppose that the set of levels of factor f is T;, f € F, and we write
T =TI;T; for the set of all combinations of levels of factors in F, denoting a
typical element by ¢ = (¢;: f € F). For any pair s, t € T we write a(s, t) for the
largest filter a € L(F) such that s;=¢; for all f €aq; eg, if s =yk and
t = i'j'k’, where we have three factors whose levels are denoted by the usual ijk
rather than (s,, s,, s3), and the second factor j is nested within the first 7, then
a(s,t)={1,2}if i=1i, j=j and k # k', whereas a(s, t) = (3} if i #¢', j=)
and k = k', for {2,3} is not a filter of the partially ordered set of factors.

With these preliminaries we turn to the definition of factorial dispersion
models. These are for arrays y = (y,: t € T) of real random variables indexed by
the set T of all combinations of levels of a set F of factors whose nesting
relationships are defined by the partially ordered set (F; <). The factorial
dispersion model V = V(F, T) is the class of all covariance matrices I' = Dy over
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T which satisfy
(6.1) cov(y,, ;) = cov(y,, ¥,)

whenever a(s, t) = a(u, v), s, t, u,v € T. Such classes are slightly more general
than ones introduced by Nelder (1965), and we note that it has not yet been
necessary to state whether or not the sets 7 are finite. For our summary of the
structure of these models, we consider the two cases |T;| < co for all f € F, and
|T;| = oo for all f € F.

Finite factorial dispersion models. 1f |Tj| = n; < co for all f € F, and we
write n =[1;n;, then V(F,T) is a class of n X n matrices whose structure is
readily exhibited; see Speed and Bailey (1982) for full details. First we define the
family {A,: @ € L(F)} of matrices over T by writing A (s, t) = 1if a(s, t) = a
and A/(s, t) = 0 otherwise, s, € T, a € L(F). Each element T € V(F,T)
satisfying (6.1) may then be represented uniquely in the form I' = ¥ y,A,, the
sum being over L(F'), with the parameters {y,: a € L(F')} being covariances.

It can be shown that the {A,} so defined form an association scheme, i.e., that
(i), (ii), (iii) and (iv) of Section 4 and hence the consequences of these conditions
hold, but here we can construct the structure constants {k,},{d,} and the
functions {s(a)} directly. To do this we introduce a second representation of
V(F, T) involving relationship matrices {R,: b € L(F)}, where R,(s,¢) =1 if
s;=1¢; forall f € band Ry(s,t) =0 otherwise, s,t € T and b € L(F). Clearly
R,=%,,,A, and the representation we refer to is

(62) r= Zbeb7
b

where the parameters { f,: b € L(F)} have been called canonical components of
variance by Fairfield-Smith (1955), Z-quantities by Wilk and Kempthorne (1956),
and f-quantities by Nelder (1965), although he later called them components of
excess variance [Nelder (1977)]. Unfortunately it would take us too far afield to
explain fully the frameworks of these other writers and the correspondence of
the different parameters.

Relating the {f,} to the {y,} requires the zeta function of the lattice L(F),
defined by {(a, b) = 1if a C b, {(a, b) = 0 otherwise, and the associated Mébius
function p defined by X{(a, b)u(b, ¢) = Lp(a, b)§(b,c) =8(a,c)=1if a=c
and O otherwise; here a, b and ¢ € L(F) and the sums are over all b € L(F);
see Aigner (1979, page 141) for further details. In this notation

(6.3a) fy=2n(a, b)y,
and
(6.3b) ' Yo = Zf(b, a)f, = bZ fo-

It can be shown that for all lattices of the form L(F') the Mébius function p
takes only the values 1, —1 or 0; indeed the following concise formula for p can
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be proved:

(6.4) p(a, b) = {(—l)lb\ai’ if bD>Daand b\acCb,,
0, otherwise,

where b, denotes the set of minimal elements of b C F.

The final representation of elements of V(F, T') we present is an explicit form
of their common spectral decomposition. If we write 7, = TI{n;: f & a} for an
element a € L(F'), then the formula

(6.5) S, =Yula,a)n;'R,, a€L(F)

defines a set of pairwise orthogonal symmetric idempotent matrices summing to
the identity matrix I over T. Further the formula

(6'6) £, = Zb:f(a,b)ﬁbfb

gives the eigenvalues of I' = L, f, R, and its spectral decomposition is then
I'=%.£.S,. Thus the eigenvalues {{,: a € L(F)} constitute a third set of
parameters whose positivity succinctly defines the parameter space, and there
are two related sets of parameters which also have been used: the specific
components of variance {02 a € L(F)} of Cornfield and Tukey (1956), given by
ol = 1, 't,, and the spectral components of variance {¢,: @ € L(F)}, cf. Daniels
(1939), given by ¢, = n~'d £, where d, = rank(S,).

If we combine the relationships between the {v,} and the {f,} with those
connecting the {f,} and the {{,} we can obtain (4.3a) and (4.3b) where a and
a € L(F) and the sums are over L(F'), and of course (4.2a) and (4.2b) also hold
with the same coefficients ( p,,) and (q,,)- The following formulas give expres-
sions for the key quantities:

(6.7) d,= I1 n;x IT (n;-1),

fea\a, fea,,

where a,, denotes the set of minimal elements of a,
(65) ko= T n T1 (n- 1),
ea™

fea\a™
where a™ denotes the set of maximal elements of @ = F \ a, and the common
value s (a) of d_'q,, = k,'p,, is

(6.9) s(a) = /eg\a{_l/(nf - 1)}’ if a\a, Ca,

0, otherwise,

where an empty product is defined to be unity.

The foregoing discussion enables a fairly complete analysis of finite factorial
dispersion models to be given and we now indicate the changes necessary when
|T;| = n; = co for all f € F. The main conclusion is the fact that the first two
representations, I' = ¥ y,A, and T'=X,f,R,, continue to apply because we
never need to multiply these matrices. After a suitable normalization and
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limiting argument, the third representation turns out to coincide with the
second. In particular the limiting forms of the two parametrizations, which are
essentially normalized eigenvalues {42} and {¢,}, coincide with the correspond-
ing { f,}. Finally, the limiting form of the function s (a) is just the zeta function
$(a,a) = 1if a C a and 0 otherwise.

We turn now to the spectral decompositions (3.4) and (3.6) in our classical
anova context. It is easy to see that for finite arrays the matrices {7,'R:
a € L(F)} act on y(t € T) by simply averaging out all indices ¢; with f & q,
and so by (6.4) the expression (6.5) for S, reduces to an alternating sum of
averaging operators starting with 7, 'R . For infinite arrays it all carries through
using mean-square limits; cf. Section 5. In the finite case this is just the familiar
anova decomposition of multi-indexed arrays into admissible main effects and
interactions termed the population identity by Kempthorne (1952, Chapter 8)
(his arrays having permutation or sampling distributions) and called the yield
identity by Nelder (1965). For infinite arrays we recover the standard random
effects linear models appropriate to the nesting structure on the indices: the
components S, y, are not only uncorrelated across strata but (when n; = o0) also,
when distinct, within strata. Again we refer to Speed (1986) for more details.

7. Anova and groups. In all the particular examples we have given so far,
and in the vast majority of those which occur in practice, there is an underlying
group G acting transitively on the index set T, denoted (g, t) — ¢4, in such a
way that the class of covariance matrices I' = Dy of y = (y,; t € T') which we
consider for our anovas coincides with the class of positive definite functions I'
on T X T which are G-invariant in the sense that

(7.1) I(s,t) =T(s%¢t8), (s,t)eTXT,gea.

It will follow from a few simple manipulations that the mathematical parts of
our anovas, getting the spectral representation of the matrices I' and the
corresponding orthogonal decompositions of the array elements y, (¢ € T), are
only a slightly disguised form of a standard problem in harmonic analysis. This
should hardly come as a surprise given the earlier discussion of finite and infinite
circular arrays (y,: t=0,1,...,n— 1) and (y,; t € Z).

We will only sketch the connexion here; the interested reader is referred to
Hannan (1965, Section 5) and Dieudonné (1978) for further details. Choosing and
fixing an arbitrary ¢, € T, we define the subgroup K = {g € G: tf = t,} of G
and observe that the homogeneous space G/K of cosets of G modulo K
corresponds naturally with T, gK corresponding to ¢ iff ¢ = ¢,. Now a function
® on T is said to be spherically symmetric (relative to K) if ®(t) = ®(t*),
t €T, k € K; similarly a function ¥ on G is said to be bi-invariant (relative to
K)if Y(kgk') = ¥(g), g € G, k, k' € K, whilst we have called a function I on
T X T G-invariant if it satisfied (7.1). The simple manipulations previously
referred to show that these three classes of functions are essentially the same
one, e.g., if T' is G-invariant on T X T, then ¥(g) = I'(¢§, t,) is bi-invariant on G
whilst ®(¢) = I'(¢, ;) is spherically symmetric on T. Conversely, if ¥ is bi-
invariant on G and g,, g, are elements g and h € G for which s& = ¢, t" = ¢,
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respectively, then I'(s, t) = ¥(g. 'g,) is G-invariant on T X T. Finally, we let Y
denote the space of all orbits of G over T X T, clearly functions y over Y
correspond in an obvious way to G-invariant functions I on 7' X T and hence to
the other classes previously mentioned. With this background our initial anova
problems take the form: Describe the class of all functions y on Y, in particular
those for which I'(s, t) = v, is positive definite over T, where b(s, t) is the
unique element of Y containing (s,¢) € T X T.

Solutions to the problem just posed exist for many group actions, the most
elegant case apparently being when (G, K) is a Gel’fand pair [Dieudonné (1978,
page 55)] usually discussed when G is a unimodular separable metrizable locally
compact group and K a compact subgroup. When (G, K) is a Gel’fand pair there
is a class Z of functions called zonal spherical functions which plays a prominent
role and in our terms these are the functions on Y defined by s (a) = d,q,.,
a € Y, a € Z. We note in passing that this class includes all characters of locally
compact abelian groups, so our anova decomposition of the matrix I is a form of
generalised Bochner-Godement theorem.

In his expositions Letac (1981, 1982) presents a wide range of applications of
the theory of Gel'fand pairs in probability theory and we can clearly add anova
to his list. The example in Letac (1982) which he calls the infinite symmetric tree
is just the third example we discussed in the previous section—the infinitely
nested hierarchical anova model—and so we have given an alternative approach
to its harmonic analysis. It is also of interest to note that the theory of discrete
Gel’fand pairs which Letac summarises in his paper is included within the theory
of association schemes: All of his formulas can be found in the theorem we cited
in Section 4, e.g., m(a) = k, is the measure on X induced by the uniform
measure on 7, the spherical functions are s (a) = dq,, as has already been
noted and the Plancherel measure on Z is v(a) = n"'d,.

What of the spectral decompositions for the elements y, (¢ € T) of the
arrays? These arise from the decomposition of the permutation representation
& — U, of G into its irreducible constituents, where U, is defined on the Hilbert
space H spanned by the (y,: ¢t € T') [using the inner product (y,, y,) = I'(s, t)]
by extending the assignment U,y, = ys, t € T, § € G to the whole of H. In
seeking to derive the decomposition in any particular case there are issues
concerning the compactness of K, separability and local compactness of G, the
nature of the representation {U,} and so on, which must be verified before
general theory can be applied; we refer to Dieudonné (1978, 1980) for details.
Perhaps surprisingly, none of the simple (infinite) classical anova models gives
rise to pairs (G, K ) for which these conditions hold, and so the ad hoc approach
adopted in Speed (1986) still seems to be necessary. Even defining the groups for
these classical anova models is a formidable task; see Bailey, Praeger, Rowley
and Speed (1983) for details of the finite cases and Speed (1986) for some remarks
on their infinite analogues.

8. Manova. The multivariate analysis of variance or manova does for arrays
of random vectors what anova does for arrays of (real-valued) random variables,
that is, gives suitable spectral decompositions of their dispersion matrices,
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orthogonal decompositions of both the elements of the arrays and the arrays
themselves; associated with these are analysis of the variances and covariances
and decompositions of the sums of squares and products. There are some twists,
however, which require us to generalise slightly our earlier formulation involving
association matrices. For example, suppose that w = (w,: ¢=0,...,n—1)is a
circular array of zero mean random vectors w, = (x,, y,)’ with dispersion matrix
x T*= Ty
= D[y] - [ryx ryy]’

We assume that I'** = Dx and T?” = Dy both have the form (2.9) whilst
I'*Y = cov(x, y) satisfies I'*(s, t) = I*(u,v) if t—s=v—u, ie, I'* is a
circulant, although not necessarily a symmetric one. Indeed cov(x,, y,) and
cov(y,, x,) are in general different. What is the decomposition of I'*? analogous
to the diagonalisation of I'** and I'*??

The solution in this case is easy enough because the structure of arbitrary
circulants is as transparent as that of symmetric circulants: Write I'*” =
Y2~ 'y£7B,, where B, is the n X n circulant having a single 1 in the bth position
and 0’s elsewhere in its first row. Assuming that n = 2m + 1 as before—the case
n = 2m is just as readily dealt with—we recover our earlier association matrices
by noting that A, = B, whilst A,=B,+ B/, a=1,...,m. The (m + 1) X
(m + 1) structural matrices P = (p,,) and @ = (q,,) are best described by the
equations

27

(8.1) k' Do = A2 Qe = cos(;aa),
where ky=d,=1, k,=d,=2, 1<a, a <m. We now need to introduce
another inverse pair of m X m matrices of structural constants, namely T = (t;,)
and L = (I,): ‘

) 27
(8.2) Ly =l = 2sin(7ba), l1<a,b<m.
It is not hard to prove that TL = LT = nl,,. With these constants defined, we
supplement the {S,} defined following (2.9) with T, defined by T.(s,t) =
(1/n)tys 1o Where b(s,t) = (¢ — s) (mod n). This is equivalent to
(8.3) T,=Q1/n)Yt,(By—B}), a=1,...,m.

1

In these terms we have
(8’4) Bb=SO+%E(pabSa+labTa)’ b= 1""’m’

1
which, incidentally, agrees with our earlier notation since

m m
A,=B,+B.=28+ Y. PuS.= YPS:» a=1,...,m.
1 0

Also we see that B, — B; = ¥"l, T, a consequence of the relation LT = TL =



WHAT IS AN ANALYSIS OF VARIANCE? 905

nl,. It is not hard to check that T/ = —T,, T> = —S,, a = 1,... m, and with
all these preliminaries we can write the real form of the spectral decomposition
of I'*7 as

m
(8.5) = =c®8, + Y. (%8, + ¢*°T,),
1
where c¢i” and ¢}’ are given by
m 2w
(8.6a) Y =yF+ Y, cos(;aa)[yjy +v:2.1,
a=1
m 27
(8.6b) =X sin(—aa)[v::z,, -],
a=1 n

with inverse

(8.6¢) Yy = ic{)‘y+ 2 5’3 cicos 2—Wba + qXsin ?—’zba .
n n il n “ n

In fact c¢f” = Re(¢]”) and ¢}” = —Im({;”), a = 0,1,..., m, where £%7, a =
0,..., n, are the eigenvalues of I'*?, in general complex, although they do satisfy
the reality constraint £ = £57 .

The element y;” can be viewed as the bth entry in I'*” or as the xy entry in

I, the lag b cross covariance matrix of the two sequences (x,) and (y,):

Y:© v
F b= - y |
/R4
Grouping the ¢, and g, into matrices we may combine (8.6¢c) with the corre-
sponding results for y;* and yg” to get

8.7 r= 2+ 2% |ceos 2t i
. =—(C, + — —_— + sin| — .
( ) b n 0 n< aCOS( n a) Qa n( n (X)
This is the real spectral representation of I'y with {C,} and {Q,} being termed
the cospectral and quadrature spectral matrices, respectively. The former are
positive definite and the latter antisymmetric, as we will see in due course.
Either (8.5) (together with the corresponding result for I'** or I'*”) or (8.7) leads
to the real spectral representation of a I' having the form

(8.8) I‘=Ae®re+ E[Bb®rb+Bn_b® Fn—b]’
1
which is
(8.9) r=8®C,+[S,®C +T,®Q,].
1

Now that we have the equivalent of the relations (4.2a) and (4.3a) for this
class of cavariance matrices, we can consider the corresponding decomposition of
the elements w, and the arrays w. The orthogonal decomposition of elements is
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just what one would expect, namely

(8.10) B:] = g[s“x‘],

Sayt

where S x, = £,S,(¢, u)x, are similar for S, y,; cf. (2.11). The terms are of course
orthogonal across strata and obey the following rules within strata:
(8.11)  cov(S,x,, S,y,) = n"d c*” cov(T,x,, S,5,) = n~'d g*.

a“a )

We can combine (8.11) with the corresponding results for x, and y, alone and
obtain the formulas

S
(8.12) D[S“’;‘]=n-ldac,,, D[[

aJt

Taxt] I:Saxt
Tayt ’ S y

aJt

|-

from which it is clear that C, is positive definite; since T = —T,, T,x, is
orthogonal to S x, and so @, is antisymmetric.

The preceding discussion gives a good illustration of the extra difficulties
encountered when nonsymmetric elements B, appear in the class of basis
matrices describing the cross covariances between different components of a
vector element of a random array. How general can the class of {B,} of matrices
be and still permit a satisfactory manova? Condition (i) of symmetry on our
family of adjacency matrices can be modified—the matrices would then be
described as the adjacency matrices of a homogeneous coherent configuration
[Higman (1975, 1976)], but more is needed to give a reasonable theory. The
appropriate conditions on a class {B,: b € Y} of matrices over a set T with
entries 0 and 1 only are the following:

(i) the transpose B} belongs to the class { B,}, i.e., there exists " such that
B I,J =B bYs
(ii) X, B, = J, the matrix of 1’s over T;
(iii) one of the matrices, B, say, is the identity matrix over T}
(iv) B,B, = L n,. 4B, for suitable integers (n,.,);
(v) the symmetric elements of the algebra B of all linear combinations of the
{B,} commute, i.e., (B, + B;)(B, + B!) = (B, + B!)(B, + B}).

The last condition was introduced in a similar context by McLaren (1963).
Some of the B, may already be symmetric: Let us list them first and write
them as A,; the remaining A-matrices are the symmetrized B-matrices A, =
B, + B/, and we can list the remaining B-matrices in transpose pairs.
A dispersion model for an array w = (w,: t € T') of random vectors which has
the form

(8.13) r=A,9Tl,+Y[B,®T,+ B, .®T,],
a b §
where the first sum is over the symmetric relations and the second over the

appropriate half of the nonsymmetric relations will have a manova decomposi-
tion provided that (v) is satisfied as well as (i), (ii), (iii) and (iv). The general
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spectral decomposition of such a I then takes the form
r=Yy0s,®C +Y?[S,®C +T,®Q,]

(8.14)
+Y®[S, ®C,+T,®Q,+U,®D,+V,® E_],

where the sums ¥V, ¥® and ©® are over what we term the real, complex and
quaternionic types of strata, respectively; T, = —-T,, U/ = -U,, V)= -V,
T?=U2=V:=-S,T,U =V,UV, =T, and V,T, = U,. In the representa-
tion (8.14) the parameter matrices {C,} are positive definite whilst {@,}, {D,}
and {E,} are all antisymmetric; cf. (8.12). There are further sets of structure
matrices beyond P = (p,,) and @ = (q,,) which continue to relate the {S,} and
the {A,}; where complex strata occur we need matrices T = (t,,) and L = ({,;,)
to pass from the {B,} to the {T,} as we did in the cyclic example; and where
quaternionic strata arise we also need two further pairs of mutually inverse
structure matrices to permit the passage between the {B,} and the {U,} and
{V,}. The details are straightforward but lengthy and will not be given here;
they will appear in Chapter 11 of Bailey, Praeger, Speed and Taylor (1987).

When the structure of the vector space B spanned by the {B,} is fully
exhibited, the decompositions of w, and (w,) follow as before. We have the
familiar expression

(8.15) w, = Y. S,w,

where, as usual, S,w, = ¥ ,S(¢, v)w, (i.e., S, effectively acts componentwise) and
the terms in (8.15) are orthogonal across strata and satisfy relations similar to
(8.12) within complex or quaternionic strata. For example, if « is quaternionic we
have

Q

d,
Ca’ D(Tawt’ Sawt) = —f_l-Q

a

D(S,w,) =

a?

Q.;I

d
D(U“wt’ Sawt) = aDa’ D(‘/awt’ Sawt) = fEa’

3 |

whereas D(U,w,, V,w,) must be worked out from (8.14) using the formulas given
after it. The anova in this context is simply

(8.16) r,=Ya,

where &, = n~'d_C, is the (matrix) spectral component of variance of stratum
ac X.

9. What is an anova? It must be abundantly clear by now that we regard
anova as a property of certain special classes of dispersion models for arrays of
random variables, or vectors, namely, for certain models defined by equality
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constraints amongst (co)variances. There should be an appropriate (real) spectral
decomposition for all the dispersion matrices in the model, and a corresponding
orthogonal decomposition for elements of the array. The components in these
decompositions have interpretations which range from the notions of (random)
main effects and interactions, in the classical anovas, through to harmonics at
different wavelengths, wave numbers, etc., in the more classical harmonic
analyses. For finite arrays there are also decompositions of sums of squares.

All of this is in marked contrast to the current use of the term in regression
analysis and variance component analysis, where analysis of variance decomposi-
tions is more-or-less arbitrary orthogonal decomposition of sums of squares
relating to “fixed” or “random” effects in assumed linear models. At this point it
is worth explaining why our theory concerns only those structures described as
“balanced” or “orthogonal.” The reason is simple: Arrays with an anova as we
use the term—one might add unique and complete—all have a high degree of
symmetry, and in a sense the underlying index set is “complete.” By comparison,
the so-called “unbalanced” or “nonorthogonal” (random effects) anova models
are in general rather messy subarrays of arrays with anova, and do not have an
anova in their own right. For some further discussion of these points, see Speed
(1985).

Although the vast majority of anova decompositions—of the matrices (or
functions) and the random variables—are associated with a group action, and
hence could be viewed as a part of a theory of generalised harmonic analysis, this
line of thinking is by no means the best or the most general approach. For many
arrays of random variables, including the standard multi-indexed ones of classi-
cal anova, the permutation groups are extremely complicated, whilst a direct
combinatorial approach by-passing all representation theory is quite efficient;
see Speed and Bailey (1982). Also in the reference just cited, an example of an
association scheme which is not induced by a group action is given which shows
that there are cases without an underlying group action.

Is there a single general theorem? It is hard to believe that one theorem will
ever be formulated which covers all the examples mentioned so far. It would
have to include all homogeneous coherent configurations satisfying condition (v)
of Section 8, all limits of finite association schemes such as those illustrated in
Section 5, the theory of Gel’fand pairs mentioned in Section 7, and much more.
For example James (1982) has discussed the classical diallel cross in genetics from
essentially our viewpoint; the triallel, double cross and other genetic structures
give further interesting examples.

In closing we state what must be quite obvious to the reader: This paper has
concentrated on the question, “What is an anova?” We have not discussed any
of the many questions, which are both mathematically and statistically interest-
ing, which arise when the array of random variables has an anova.
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