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PSEUDO MAXIMUM LIKELIHOOD ESTIMATION:
THE ASYMPTOTIC DISTRIBUTION

By WILLIAM R. PARKE

University of California, Santa Barbara

Gong and Samaniego (1981) define pseudo maximum likelihood estima-

tion and derive the asymptotic distribution of the resulting estimates. This

" note gives a simpler and more elegant expression for the asymptotic variance
of a pseudo maximum likelihood estimate.

1. Introduction. In the presence of computational and algebraic obstacles to
computing maximum likelihood estimates for a given model, the following pseudo
maximum likelihood estimation procedure may be of some value. Let the likeli-
hood function L,(6, 7) for a sample of size n be defined over two parameter
vectors, § and «. Suppose that maximizing L,(6, 7) over both § and = is
difficult, but that some alternative procedure (other than maximizing L (8, 7))
yields an estimate 7,. A pseudo MLE 9n(7”rn) can then be computed by maximiz-
ing L,(0,#,) over 6. Gong and Samaniego (1981) discuss this general procedure
and derive the asymptotic distribution of the pseudo MLE 6,(7,).

This note improves upon the expression that Gong and Samaniego give for the
asymptotic variance-covariance matrix of the pseudo MLE 9n( #,). Their expres-
sion contains a term that is shown here to equal zero for all pseudo maximum
likelihood estimation problems satisfying the standard regularity conditions that
they specified. While this point could be established for each particular applica-
tion (as Gong and Samaniego do for their signal plus noise application), the
present proof covers the general case.

The possible practical advantages of pseudo maximum likelihood estimation
are realized for a diverse range of estimation problems. Gong and Samaniego use
the technique to simplify the calculations for a signal plus noise problem. Other
applications include estimating a linear reduction of an otherwise nonlinear least
squares estimation problem [Durbin (1960), Wallis (1967)], pooling time series
and cross section data [Maddala (1971)], and avoiding likelihood function singu-
larities in estimating large economic forecasting models [Fair and Parke (1980)
and Parke (1985)].

2. Asymptotic theory. The information matrix 4 for the vector (8, 7)’ can
be partitioned as
0 _ I:ﬁll ﬂ12]

021 022

Let 1,(8,,7,) denote log(L,(6,, 7)), let I,(6,, m,) denote n~'dl (8, m)/36
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evaluated at (6,, m,), and let the matrix 2 be defined by

Jﬁ[i”~(0°’w°)} 5 dN(o, s = [E” 212])'

T — Ty 2y 2y
Gong and Samaniego show that, for the case of scalars § and ,
Vn(8,(7,) = 6,) > 4N(0, 0®),
where
o’ =1/9, + (012/011)2222 - 2('912/0%1)212
In fact, 2,, = 0, and

(2.1) ‘/—[0 (7)) — ]_’dN ’ I+ 9010152005, 9 — 9001220 ’
Tn — Mo = 25050 299

The proof of this result is given in Section 3.

The simplicity of this result arises from the surprising fact that Z,, equals zero
for any consistent estimate #,. In general, statistics computed using the same
data, as are 1,(6,, m,) and #,, will be asymptotically correlated. A general result
that this correlation is zero eliminates the potentially difficult task of deriving an
expression for =, for a particular estimation problem

The asymptotic distributions of the pseudo MLE 6,(#,) and the MLE 6.(#,)
can be compared by inverting the information matrix 4 to obtain

(2.2) ‘/»[0 (7)) — ] - ,Nlo '9;11 + 0?1:01223‘31?21'9;11 _01_111?.(122;2 ’
Tn = Mo =250, 2%

where %, = (9, — #,97,'%,,) ! is the asymptotic variance of the MLE #,. The
expression (2.1) can in fact be obtained algebraically from (2.2) by simply
substituting the asymptotic variance =,, of the alternative estimate 7, for the
asymptotic variance of the MLE #,. In both (2.1) and (2.2), the term 19111 is the
asymptotic variance of the estimate ]  (m,) that could be computed if 7, were
known. The term 9,'%,,2% 9,9, in (2.2) is the minimum possible additional
asymptotic variance in an estimate of 6, if 7, is not known. This minimum is
attained for the MLE 9,,( #,) computed jointly with the MLE 4. For the pseudo
MLE 8 (#,), the corresponding term 01‘1 B 5290, 37; in (2.1) is the asymptotic
variance that can be attributed to using the estimate 7, of m,. The asymptotic
inefficiency of the pseudo MLE 4 .(7,) relative to the MLE )  (7,) is thus given
by 33,'%15(Zg — Z%)9, 97", The pseudo MLE ) ( ) is asymptotically efficient
if ¢, equals zero (because the MLEs 6,(#,) and #, are asymptotically uncorre-
lated) or if #, is asymptotically as efficient as the MLE e

3. Proof of (2.1). Consider the hypothetical estimate 9,,( m,) that could be
computed if 7, were known. Under the regularity conditions given in Gong and
Samaniego (1981), the equation

1-0(05 770) =0
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has a consistent root 9n( 7). Expanding i,,(én(wo), m,) about 6, yields
Vn (8,(my) — 6,) = —Vnd3,y(8y, 75) + 0,(1).
Differentiating with respect to 7 yields
(3.1) Vn 86,(m) /97 = Vn 97,19 ,, + 0,(1),

where 36,(7)/dm is evaluated at To-_
The asymptotic distribution of 6,(#,) then follows from the Taylor series
approximation:

‘/ﬁ(én(ﬁn) - 0) = ‘/E(én(WO) - 00) + ‘/E aén(w)/aw(ﬁn - 7’0) + Op(l)'
Using (3.1),
(3'2) ‘/ﬁ(én(ﬁn) - 00) = ‘/"l(én(wo) - 00) + ‘/;"—01_11012(77"; - 7’0) + Op(l)'

Pierce (1982) shows that vn (9n( m,) — 6,) and Vn (7, — my) must be asymptoti-
cally independent because 9,,( m,) is asymptotically efficient and vn (%, — m,) has
asymptotic mean zero. (Hausman (1978) gives a similar application of asymptotic
efficiency to establish asymptotic independence.) The conclusion (2.1) follows
from this last result and (3.2). O
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