The Annals of Statistics
1986, Vol. 14, No. 1, 283-297

BAYESIAN MULTISTAGE DECISION PROBLEMS

BY JEFFREY A. WITMER
University of Florida

Two treatments that yield Bernoulli outcomes are available in a clinical
trial. One success probability is known. A probability distribution reflects
opinion about the other success rate. N patients are to be treated, with N
possibly unknown, in a multistage trial. The goal is to maximize the total
number of successes on the N patients.

Optimal lengths for each stage and optimal treatment allocations are
found for two-stage trials with N known.

When N is unknown the problem is shown to be equivalent to that of
discounting future observations. Optimal stage lengths and treatment alloc-
ations are characterized for distributions on N that yield regular discount
sequences. This class of distributions includes the geometric family, which is
given special consideration.

It is shown that if the number of stages in the trial is fixed and if the
distribution on N yields a regular discount sequence, then it is optimal to use
the known treatment in the last stage only. This extends the work of Berry
and Fristedt (1979).

1. Introduction. Experimenters are often interested in comparing two treat-
ments that yield dichotomous response. For convenience, we consider the setting
of a clinical trial in which patients receive one of two medical treatments. The
results obtained herein apply to other types of trials as well.

Within the clinical trial, application of a treatment results in either recovery
(success) or no recovery (failure). The goal of the trial is to maximize the total
number of successes in N patients, where N may be unknown. This is equivalent
to maximizing the total utility of the experiment when a success has utility 1 and
a failure has utility 0.

For each of the N patients in the trial the experimenter must choose one of
two treatments to be applied. Treatment 1 has success probability 8, and
treatment 2 has unknown success rate 6,. We assume that treatment 1 is a
well-known standard already in use. We may wish to model 8, as being unknown,
as the “well-known” standard may produce surprises in the current trial. How-
ever, for simplicity we assume throughout that 4, is known.

Opinion about treatment 2 available separate from the trial is expressed by a
prior distribution on 6,. The outcomes are assumed to be Bernoulli random
variables. When treatment 1 is applied the random variables are indexed by 6,
and are independent. When treatment 2 is applied the random variables are
indexed by 6,, are exchangeable, and are independent of the variables indexed by
6,. The patients are viewed as being exchangable for the purpose of the trial.

The outcome for a patient is frequently assumed to be known before the next
patient is treated. Petkau (1978), Upton and Lee (1976), and Berry (1972, 1978),
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among others, have considered sequential allocation of Bernoulli processes. Of
particular interest is Berry and Fristedt (1979).

While mathematically appealing, these procedures may be too cumbersome to
be used in practice. They require that the patients respond almost immediately
to treatment and, often, that the experimenter make a continuing series of
calculations and decisions as the trial progresses. Of course, the availability of
microcomputers lessens the second obstacle.

A more realistic assumption is that the data are collected at intervals
throughout the trial. Calculations can be made at these times and the future
course of the trial can be altered. Such a trial consists of several stages. While it
is possible that only partial information is available from one stage to the next,
the setting considered here is that in which all of the patients from the previous
stage respond before the experimenter decides on an allocation scheme for the
next stage. If the number of patients in each stage is 1 then we are in the classical
sequential setting.

The problem of maximizing the total number of successes when an experiment
takes place in two or more stages has received little attention. Cornfield, Halperin,
and Greenhouse (1969), Colton (1963), and Donner (1979) discussed this problem
when the outcomes are normal random variables. Canner (1970) considered
Bernoulli processes in a multistage setting with both treatments unknown, as did
Pearson (1980). Pearson (1980) also considered the case in which one treatment is
known. However, he required N to be fixed.

We now discuss the notion of a strategy. The number of stages in the trial is
chosen before the trial begins and is not part of a strategy. A strategy, often
denoted by 7, specifies K(7), the length of the first stage. Denote by K,(7) the
number of planned first-stage observations on treatment i, i = 1 or 2. Often we
abbreviate K;(7) to Ki and K(7) to K. Then K = K1 + K2. As well, 7 specifies
t, ty,..., g, where ¢; is 1 or 2 according as treatment 1 or 2 is assigned to the ith
patient. Then it specifies the length and treatment allocation scheme for the
second stage, in the same manner as for the first stage, for each possible outcome
of the first stage, and so on.

The length and treatment allocation scheme for a particular stage are func-
tions of the success rate #,, the number of stages remaining, and the current
distributions on 8, and N. The results from previous stages are reflected in the
current distribution of 6,. The quantities N and 6, are assumed to be indepen-
dent.

The utility of a strategy is the average utility of the histories possible when
following that strategy; the average is with respect to 8, and the initial distribu-
tions of 8, and N. An optimal strategy is one that yields maximal expected
utility. ’

An example of a two-stage strategy can be described as follows. Take exactly
one first-stage observation on treatment 2: Thus K = 1 and ¢, = 2. If a success is
obtained use only treatment 2 for the second stage. That is, set t, = ¢, = --- = 2.
If a failure is observed use only treatment 1 in the second stage (¢, = ¢, --- = 1).

For each ordered pair (K1, K2) there are various possible allocation vectors
(t,,..., tg). Also, there are many continuations for each possible outcome of the
first stage. Thus, many strategies share a common (K1, K2).
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For fixed 6,, II, and @, let U((K1, K2), §,, I1, @) denote the maximal expected

utility over all strategies with given (K1, K2). Let
U*(9,,11,Q) = sup U((K1, K2),6,,11,Q).
(K1,K?2)

Optimal strategies have utility U*(6,, I1, @).

It may be that more than one ordered pair (K1, K2) is optimal. Let K1*
denote the smallest value of K1 that is optimal. That is, K1* is the least value of
K1 among all (K1, K2) that satisfy

(1) U((K1,K2),6,,11,Q) = U*(6,,11, Q).

Similarly, denote by K* the smallest value of K1* + K2 among all (K1*, K2)
that satisfy (1). Of course, K* may sometimes be zero, in which case the first
stage contains no observations. Let K2* = K* — K1*.

Throughout the remainder of the discussion we denote E(8,|I1) by p and the
number of successes form the K2 first-stage observations on treatment 2 by S. In
Section 2 we consider two-stage trials in which the total number of patients, N, is
known. In Section 3 we discuss distributions on N and develop their relation to
the discounting of future observations. Special attention is given to a class of
discount sequences that are called regular. The main results, which extend the
work of Berry and Fristedt (1979), are in Section 3, where we consider two-stage
and higher-stage trials in which N is unknown.

2. Known trial length with two stages. In this section we consider the
case in which N, the total number of patients to be treated, is known and the
trial has two stages. We modify our notation by writing U((K 1, K2), §,, I, N) in
place of U((K1, K2),6,,11, Q).

Our goal is to maximize the total number of successes on the N patients. Given
the results of the first stage, the optimal conditional strategy for the second stage
clearly is to use the treatment with larger posterior mean on all remaining
patients. Thus, our problem is to choose K and to assign treatments to each of
the first K patients. ‘

When N is known we may, without loss, take all observations on treatment 1
before any observations on treatment 2, i.e., (¢;,...,%x) is of the form
1,1,...,1,2,2,...,2). Thus, the ordered pair (K1,K2) uniquely identifies a
strategy. It is understood that an optimal continuation will be used for the
second stage.

The advantage of a two-stage procedure over a one-stage procedure is that
with a two-stage procedure we can learn about the treatments during the first
stage and apply our knowledge during the second. Since 6, is known it seems that
no first-stage observations on treatment 1 should be necessary. Theorem 1, which
is similar to a result by Pearson (1980), confirms this.

THEOREM 1. Let N be known. For,‘ all 8, and for any prior, 11, on 6,,
K1* = 0.

CoMMENT. K1 =0 may not be uniquely optimal. For example, if
P(8, < 6,) = 1 then treatment 2 should never be used, and any value of K1 such
that 0 < K1 < N is optimal.
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Proor. Note that
. . _[K2 ; K2-j
P(S =j) = EP(S=ji6,) = | "7 | [eX1 — 6)** 7 a11 (9)

and that the support of Sis 0,1,2,..., K2. Let K1 + K2 < N. Then
U((K1,K2),0,,II,N)=K1-0, + K2-p+ (N - K1 - K2)

K2
X( ; max{8,, E(6,|S =j)}P(S =j)),
Kf max{0,, E(8,|S=j)}P(S=j) = U((0, K2),6,,1I, N) + K1 -6,

Jj=0

—Kl( Y. max{8,, E(8,|S =j)}P(S =j))

Jj=0

< U((0, K2),6,,TI, N) + K1- 6,

K2
—Kl( Y 6,P(S =j)

Jj=0

= U((0, K2),6,,11, N).O

Consider the case in which II is a uniform distribution on the interval (0, 1).
Here P(S = j|II) =1/(K + 1) for j = 0,1,..., K. Also,

1 . J+1
E(6,/11) =§§ E(6,|S =j,11) = K+
Thus
. K N-K|[ KX J+1
(2) U(K,ﬂl,H,N) = §+ K+1 (j=0max{01,m} .

Pearson (1980) derived the approximation

K*=[(N+1)(6; - 1)]"" -1
as follows:
Let [|x|] denote the greatest integer less than or equal to x.

N — K [U6(K+2)~1] K ; '
01+ Z J+1 )
K+1 Jj=0 =tk +2p K +2
K N-K( K+2 6 K+1
= 4+ -1
KTl )

K
U(K,§,,II,N) é3+

b2 2 T 2
= {N-4(N-K)K+1)"
+0XK +2)(N-K)K+1)"'}
=1f(K,8,,N), say.
Setting d/dK f(K, 6,, N) = 0 gives the desired result.
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3. Distributions on N and discounted future. In section 4 we consider
trials in which N is unknown. The purpose of this section is to explore the
relationship between distributions on N and the commonly considered approach
of discounting future observations.

It is often for computational convenience that N is assumed to be known. In
applications it is unlikely that N is known precisely: patients may drop out of
the trial, new treatments may be discovered, etc. We model the case in which N
is unknown by assuming that it is a random variable with known distribution @
on the positive integers.

Let 7,, denote the observation on patient m when following strategy 7. When
N is known, the utility, u(7|N), of strategy 7 is the expected sum of the
observations:

N
(3) u(7/|N)=E ¥ =,.

m=1

Suppose that N has distribution @, under which P(N = i) = p,. Let «, =
I® . D; the probability that N is greater than or equal to n. We assume that all
a; are independent of all 7,. That is, the probability that the trial ends at a given
time is independent of the results obtained on the patients. A more realistic,
although more difficult to model, assumption is that the results obtained during
the trial affect the decision of when to terminate the trial by, for example,
affecting the rate of development of other treatments.

THEOREM 2. The sequence A = (ay, a,,...), which is nonincreasing, is
discount sequence for the trial.

Proor. For any strategy =, with N distributed as @,
u(7|Q) = Lu(7|N = n,Q)P(N = n|Q)

n

= LP(N=niQ)| L E(1aN =1,Q)|.
The strategy T depends on @. Thus E(7,|N = n, Q) depends on @ but not on
N = n. Hence
u(r|Q) + pE(1|Q) + -+ +p,E(r + -+ +7,|Q@) + -
=E(n|Q)(pi+py+ ) + E(n@)(py+ps+ -0 ) + -+
+E(1,)@) (P + Py + 00 ) + - ’
=E(7|Q)a; + -+ +E(7,|Q)a,, + ---.
Thus

(4) u(11Q) = E ¥ a1, = L anEr,,
m=1 m=1

suppressing the dependence of 7 on @. O
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The discount sequence A assigns to each potential observation in the trial
weight equal to the chance that it is indeed observed.

ExAMPLE 1. Suppose @ is a one-point distribution at N, i.e., N is known to
be N,. Then ¢y = -+ =ay =1land ay ,; = --- =0.50
(5) A=(1,1,...,1,0,0,...)

and for any strategy 7,

T+
1

ﬁ[\’]z

o0
u(r)=E ) a,r,=E
m=1

All discount sequences generated by distributions on N can be expressed as
mixtures of discount sequences of form (5).

Only the first N patients in a sequence of possible patients are treated in the
trial. Note that observations are not actually discounted as they are observed. N,
however, is unknown (before the trial begins) and, hence, in finding an optimal
strategy we discount future observations by fixed factors a,, a,,... .

Although we learn about N as the trial progresses, this learning does not
change the nature of the problem. The conditional distribution of N at any given
time is proportional to @, the original distribution. Given that N > m, our goal
at time m is to maximize

E Z BnTn >

n=m+1
where

P(N>2nQ) «
ﬁn=P(N2n|N>m,Q)=p(N>mIQ)="‘ .

n

But this is equivalent to maximizing
o0
E Y ar,.
n=m+1

The problem of finding optimal strategies can be greatly simplified for a large
class of distributions on N. This is the class of distributions that are regular. We
define a distribution @ to be regular if it yields a regular discount sequence, as
defined by Berry and Fristedt (1979).

DEFINITION. A discount sequence A = (@, a,,...) is regular if, for each m,
2
Ym¥m+2 < ;/m+l’

where v, = £%  a;.

Note that all geometric discount sequences are regular, but just barely:
YE .1 = YmYmaso for all m.
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4. Trials with unknown N. In this section we consider the case in which N
is unknown. We consider the special case of a geometric distribution on N
separately before developing several theorems that lead to the main result on
regular distributions. This main result (Theorem 7) extends the sequential work
of Berry and Fristedt (1979).

If 8, > Ef, we are faced with two conflicting goals. We wish to maximize the
probability of success on the current patient. This requires that we use treatment
1. On the other hand, we want to explore the possibility that 8, > 6,. To gather
information about 8, we can assign treatment 2 to the current patient.

Although it may benefit future patients, use of treatment 2 when 6, > E6,
may be inconsistent with medical ethics. We shall avoid the issue of medical
ethics and proceed with the understanding that some combination of “the good
of the current patient” and “the good of the whole” is appropriate. Such a
combination is consistent with, and can be reflected in, the discount sequence A
discussed in the previous section.

Each distribution @ yields a unique discount sequence A(Q). If A(Q) is of the
form (ay,...,«,,0,0,...), then only a finite number of strategies are possible;
hence there exists an optimal strategy. Theorem 3 shows that there exists an
optimal strategy for any discount sequence.

THEOREM 3. For any distributions 11 and @, for any 0,, and for any (fixed)
number of stages there exists an optimal strategy.

Note. This result is very similar to Lemma 1.1 in Berry and Fristedt (1979).
We adapt their proof.

Proor. Let D denote the number of stages in the trial. As always, D is fixed
before the trial begins.

Suppose that @ yields discount sequence (a;, a,,...). Further, suppose that,
for each n, 7" is an optimal D-stage strategy for 6,, II, and the discount
sequence (ay, ..., a,,0,...). There is a strategy 7 that through any term m agrees
with at least one 7”. We construct 7 recursively as follows: At term m define 7 so
that it agrees with infinitely many of the 7" through term m. The utility of 7 is

o0 m
u(71Q) = Y. a,Er,= lim ) a,Er
i=1

m=o o

m
lim Y o«E7™

m=o g

Let 7 be any other strategy. Then

m

u(7|Q) = Y. a,Ef,= lim ) a,E#
i=1 m= oo

=1

< lim Y o,E7™ = u(7|Q)

m=eo =1
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since

M3
3

a7 <
1 i

QT
1

'™ 3
I

l

by the definition of ™. Thus  is an optimal strategy for 4,, I, and @. O

In Section 2 we considered N to be known and concluded that K1* = 0. This
is not the case when N is unknown, as the following example shows.

ExamMPLE 2. Suppose Q(1) = 0.9, Q(10) = 0.1, 6, = 0.6, and 6, ~
uniform(0, 1). Further suppose that when K1 > 0 we take all K1 observations on
treatment 1 before any of the K2 observations on treatment 2; i.e., (¢,,..., tx)is
of the form (1,...,1,2,...,2). This will be shown in Theorem 5 to charac-
terize optimal strategies. Then U(K1,0) = (0.9)[(0.6)(1)] + (0.1)[(0.6)(10)] = 1.14
for K1=0,1,...,10, and U(1,1) = 1.156. Similar calculations show that
U(K1, K2) < U(1,1) for all (K1, K2) # (1,1). Thus, the ordered pair (1,1) is
optimal and K1* > 0.

Nevertheless, we can often set K1 equal to zero.

THEOREM 4. For any prior distributions II on 0, and Q on N, if 6, < u then
Ki1* =0.

PRrROOF. Suppose K1(7) > 0 for some strategy 7. Consider an alternative
strategy 7’ derived from 7 as follows: Set K(7') = K(7), K1(7") =0, and
K2(7') = K(7'). Then under strategy 7/, ¢, = 2 for i < K(7').

The expected utility from the first stage when following 7’ is no less than the
expected utility from the first stage when following 7, since 8, < u. The same
relationship holds for the second stage, as may be seen by noting that

Ey  [max{8,, E(6,X,,,)}X;] = max{6,, E(6,X,)},

where X; is the random vector of responses for the first ;j observations on
treatment 2. Thus u(7) < u(7’) and the result follows. O

Clearly, when K1 = 0 the order of treatment assignments in the first stage is
not an issue. When N is unknown and both K1 > 0 and K2 > 0, however, the
order of the ﬁrst-stage observations can be important.

When 6, < p, K1* = 0 by Theorem 4. When 6§, > u we want all first-stage
observatlons on treatment 1 to precede any first- stage observations on treatment
2. Theorem 5, which was used in Example 1, makes this idea precise. This
theorem states that for any prior distributions IT on 6, and @ on N, if 6§, > p
then it is optimal to take any first-stage observations on treatment 1 before any
and all first-stage observations on treatment 2.
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THEOREM 5. For any prior distributions 11 on 6, and @ on N, if 8, > p then
there is an optimal strategy of the form: t, = -+ =tg, =1, tg, 1= "+ =
te = 2.

PROOF. Suppose strategy 7 issuch that ¢, = 2 and ¢,, ; = 1 for some i, j with
i +j < K(1). Modify 7 to 7’ only as follows Set ¢, =1 and ¢,,; = 2 under 7'.
Then u(7’) — u(7) = (a; — a;,;)(0, — p) = 0. Proceed to exchange all such de-
viant pairs. O

Suppose that N has a geometric distribution with mean 1/p ( p is known). As
noted earlier, geometric distributions are regular. We will see that the case
N ~ G( p) behaves much like that in which N is known and equal to [1/p], the
greatest integer in 1/p, provided 1/p is large (1/p > 20, say).

THEOREM 6. Let N ~ G(p) with 0 < p < 1. Then for any prior 11 on 8, and
for any 6,, K1*(0,,I1,G) = 0

Proor. If 6, < p then K1* = 0 by Theorem 4. Assume that 6, > p. Let
g =1 — p. We now derive a closed form expression for the utility function. We
have

U((K1,K,),8,,11,G) = UK1,K2) = ¥ ¢""'pU(K1, K2|N = i).
i=1

By Theorem 5 we can, without loss, consider only those strategies for which all
K1 observations on treatment 1 precede any of the K2 observations on treatment
2. Thus,

K1 K1+K2
U(K1,K,)= Y ¢ 'pbii+ Y ¢ 'p[6,K1+ p(i - K1)]
i=1 i=K1+1
o0
+ Y q¢"'p[6,K1+pK2+ (i—-K1-K2)H(K2,6,,11)],
i=K1+K2+1

where H = H(K2,60,,I1) = ):;‘fomax{&, E(6,|S = j)}P(S = j). This reduces to

®) U((K1,K2),6,,11,G) = 0,1 + gp™") + ¢¥'up~'(1 — 6,u7")

+qK K2y o1 (H~t — 1),
Thus, U(K1, K2) is of the form
U(K1, K2) = q¥'f(K2) + C.
So

max U(K1, K2) = max max {¢¥'f(K2) + C}.
(K1, K2) K1 K2

If max,,f(K2) is nonnegative then U(K1, K2) is maximized by setting
K1 = 0, which maximizes ¢*'. If max, f(K2) is negative then U(K1, K2) is
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maximized by setting K1 = co, which minimizes g *'. But this yields utility C, as
does (K1, K2) = (0,0). Thus K1* is always zero. O

Since K1* = 0, we can set K2 = K and simplify (6) to
(7) U(K,8,,I1,G) = pp~' + ¢¥up '(Hp™' - 1).
Expanding ¢¥ = (1 — p)¥ and deleting terms involving p?, p?,..., p¥ yields

®) UK,0,T1,G) =pup~' +p(p™' = K)(Hp™' - 1)
—uK+(p~' - K)H.

In particular, if §, ~ uniform(0,1) then
U(K,0,G) = 4K + (p~' - K)(K + 1) "'[M(K,0,)],

where M(K, 6,) = X  max{6,, E(6,|S = j)}.
When compared with the results from Section 2, we see that this is the same as
(2) with N replaced by p~!, the mean of the geometric distribution. Thus

K*G(p) = [(p7 ' +1)(6; - 1)]* - 1.

We now present a generalization of Theorem 6: If @ yields a discount sequence
A that is regular then K1*(@) = 0. The presence of this condition greatly
simplifies the design problem.

To prove this result we need several lemmas. This first lemma follows im-
mediately from the definition of regularity and is presented without proof.

LEMMA 1. If the discount sequence A is regular then a;y,,., < a,¥;,, for
i< m.

LEMMA 2. Suppose that Q is regular and that p. < 8,. Then

9) &(K2) = [H(K2)_I-L]YK1+K2+1+ [F_01]YK1+1 >0
implies
(10) g(K2) = [H(K2) —plag ke + [ - 0,Jax, > 0.

ProOF. Inequality (9) implies vk, k2.1 > 0, which implies

agiige > 0, Yk141> 0
and, hence, ay, > 0. Thus
YK1+1 ~
[H(K2) - p] + [pn - 6,]———>0,
YK1+K2+1

which implies
[H(K2) - "“]aK1+K2 + [p— 01]"‘1{1 >0,
since, by Lemma 1,

YK1+1%K1+ K2
—_—>1.0

Y1+ K2+1%K1
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The next lemma makes use of the following fact. Suppose p < 8,. Let @, be
the conditional distribution of N given that N > K1. Let K2' = K2'(Qg,, K1)
maximize U(K1, K2) over K2 with K1 fixed. That is, K2’ is the smallest
optimal value of K2, for distribution @, given K1. Then, in view of Theorem 5,
K2’ is also the value of K2 that maximizes U(0, K2), 0, I, Q,). This holds
because the K1 observations on treatment 1 do not change II, they only modify
Q to Qk,. Thus

(11) n}(a;{ U((Or K2)’ 01: H’ QKI) = U((07 K2’)7 017 H, QKI)'

Lemma 3 shows that when @ is regular the maximal utility, U*(K1), for K1
fixed is no greater than the utility of using the ordered pair (K1 — 1,
K2'(Q,, K1)). This fact is crucial to the proof of Theorem 7 and will be used in
an obvious way.

LEMMA 3. Let Q be regular, let 8, > p, and let K1 > 0 be fixed. Then

U*(Kl) = U((Kl’ K2,(QK1: Kl))’ 01’ H’ Q)
< U((K1 -1, K2(Qx,, K1)),6,,11, Q).

PROOF.
K1 K1+K2 0
U*(K1) = U(K1,K2)=6,Y a,+p Y a;+ H(K2) > a;.
i=1 i=K1+1 i=K1+K2+1
Thus

U(K1-1,K2(Qg,, K1)) — U(K1, K2(Qk,, K1))
= [p—0,]ag, + [H(K2) — plag, ko = 8(K2),
where g(K2) is defined by (10).

Define
0
U'(K2)= Y U(K2IN=i)P(N=iQ)
i=K1+1
K1+K2 00
=p Y a;+H(K2) Y
i=K1+1 i=K1+K2+1
For convenience, consider
K1+K2 0
U'(K2)-U'0)=[p-6] ¥ o+[HK2-8] ¥ «
i=K1+1 i=K1+K2+1
0 0
=[H(K2)-p]” X et+t[p-6] X q
i=K1+K2+1 i=K1+1

= g,(K2) asdefined by (9).
Since, in view of (11), K2’ maximizes U (K 2) and since g,(0) = 0,
K2(Q,, K1) > 0 implies g,(K2(Qg,, K1)) > 0.
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Now, if K2’ > 0 then g,(K2') > 0, which implies g(K2') > 0 by Lemma 2. If
K2 =0 then g(K2') = g(0) = 0, since H(0) = 6,. Thus g(K2') > 0 for all K2'.
O

We are now ready to prove the main two-stage result. Theorem 7 is similar to
Theorem 2.1 of Berry and Fristedt (1979), who consider sequential allocation of
treatments.

THEOREM 7. If Q is regular then K1*(Q) = 0 for all 6, and 1II.

ProOOF. If u > 6, then K1* = 0 by Theorem 4. Suppose p < 6,.

K1 K1+K2 )
U(K1,K2) =0, a;+p Y a,+H(K2) > a;.
i=1 i=K1+1 i=K1+K2+1
K2'(Q,, K1) maximizes
K1+K2 0
p Y o+ H(K2) )y Q;
i=K1+1 i=K1+K2+1

in view of (11). That is, U¥(K1) = U(K1, K2/(Qg,, K1)).
Suppose K1 > 0.

(12) U(K1,K2(Qg,, K,)) < U(K1 -1, K2(Qg,, K1))
by Lemma 3. But

(13) U(K1-1,K2(Qy,, K1)) < U(K1-1,K2(Qg,_,, K1 — 1))

- U*(K1-1),

where the equality holds by (11).
Combining (12) and (13), we see that

U*(K1) < U*(K1-1) forall K1> 0.
Since K1 must be at least zero, K1* = 0. O

There are settings in which K1 = 0 is not uniquely optimal. For some @, 4,
and II it is optimal to never use treatment 2. In such a case any value of K1 is
optimal.

The converse of the Berry and Fristedt result is true, while the converse of
Theorem 7 is false. The following example shows that regularity is not a
necessary condition for K1* to be zero.

ExXAMPLE 3. Suppose @ is of the form (0, a,0, ,0,0,0,...) where @ + b = 1
and 0 < b < ;. Since A = (1,1, b, ,0,0,0,...), no distribution @ in this class is
regular, yet K1*(Q) = 0 for all 6, and for all II. This may be shown by process
of elimination, noting that K1 + K2 < 4 since N < 4 with probability 1.
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We have now established that for two-stage trials with regular discount
sequences it is optimal to take no observations from the known treatment in the
first stage (K1* = 0). This result holds for any (fixed) number of stages.

THEOREM 8. Let a trial consist of D stages, where D > 2 is fixed before the
trial begins. If the discount sequence generated by Q is regular then K1*(Q) = 0
for all 8, and II.

Proor. We establish this by considering two cases. For each case we use an
induction argument on the number of stages. We shall implicitly use the fact that
a regular discount sequence modified by the fact that N > ¢ (a constant) is in
turn regular. We will use a subscript to keep track of the number of remaining
stages. For example, K1% is the smallest optimal number of first-stage observa-
tions on treatment 1 when there are two stages remaining.

CASE 1. 6, < p. By Theorem 4, K1} = 0. Assume that K1} = 0. We now
show that K1%_., = 0. This requires the examination of three subcases. Note
that

Up.1(K1, K2) = X Up, (K1, K2|N = i)P(N = i|Q).

Consider U, (K1, K2|N = i) and let L denote the number of observations on
treatment 1 in the first i observations.

SUBCASE 1.1. i< K2 Here0<L <Klandi—- L < K2. Thus
Up,(K1,K2IN=i)=L0,+ (i—L)p<ip
= Up,,(0, K2|N = i).

SUBCASE 1.2. K2 <i < K1 + K2. In this subcase
Up,(K1,K2I[N=i)=L68,+ (i — L)
<(i—- K2)8, + K2(p)
= Up,,(0, K2|N =i).

SuBcAaSE 1.3. K1 + K2 < i. Here
UD+1(K1’ K2|N = i) = K1(01) + K2(#) + EH’[UD*(H'r QK1+K2)|N = i],

where IT’ is the posterior distribution of 8, after the first K1 + K2 observations
and @, . k. is the conditional distribution of N given that N > K1 + K2.
When K1 = 0 we have

Up..(0, K2|N = i) = K2(p) + EH’[UD*(le Qx2)IN = i]-
The induction hypothesis implies that
En'[UB‘(H': Qx2)IN = i] > K1(6,) + EH'[UB‘(H': Qx1+x2)IN = i]-

That is, with D stages remaining, it is optimal to take no observations on
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treatment 1 in the first of the remaining stages. Hence
Up..(K,, K2|N =1i) < Up,,(0, K2|N = i).
For all three subcases we have shown that
Up..(K1,K2|N =1i) < Uy, (0, K2|N = i).

Thus Uy, (K1, K2) < Up, (0, K2), which implies that K1%_, = 0. This com-
pletes the induction argument for Case 1.

CASE 2. 8, > p. The proof of Theorem 5 generalizes easily. Thus, it is clear in
this case that, for any number of stages, it is optimal to take all first-stage
observations on treatment 1 before any first-stage observations on treatment 2.
We adopt this convention.

By Theorem 7, K1% = 0. Assume that K1} = 0. Let 7 denote the best
strategy among those that dictate that K1 first-stage observations be taken on
treatment 1. Then Up, (K1) = up, (7). We shall show that Uz (K1) <
Ug. (K1 — 1). To do this, we shall employ the same ideas used in the two-stage
setting of Theorem 7. As in the two-stage setting, let K2’ = K2'(Q,, K1) be the
smallest optimal value of K2, for distribution @, given K1. Then Uj, (K1) =
Up. (K1, K2').

Consider a strategy 7’ that differs from 7 in only one respect: Let 7’ begin by
taking K1 — 1 first-stage observations on treatment 1. From observation K1 on,
let 7’ assign to patient i that treatment that 7 assigns to patient i + 1. Further,
let 7’ dictate the same stage lengths as those of 7 for all stages subsequent to the
first.

The induction hypothesis guarantees that all observations taken in stages
other than the first and the last will be on treatment 2. The total number of
observations on treatment 2 during stages one through D will, in general, be a
random variable depending on K2; call it oJ.

Let R(X;) = E[max{0,, E(6,]X,)}|J]. Generalizing the ideas in the proof of
Lemma 3, we have

Upii(7) = Upei(7) = [1 — 6, ]ag, + E[R(XJ) - M]ax1+J
= h(K2'), say.
We wish to show that A(K2’) > 0 for all K2'. Now, K2 maximizes U}, ,(K2)

where

Ub(K2) = S Up.i(K2IN = i)P(N = i).

i=K1+1
Thus
Ki1+dJ , 00
Ul;+1(K2) - Ul;+1(0) =E Z ai[l‘ - 01] +E Z ai[R(XJ) - 01]
i=K1+1 i=K1+dJ+1

=E[R(X,) — plvkriusr + [ = 0,]vk1 41
= h,(K2), say.
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When necessary we have taken expectation with respect to the random vari-
able oJ.

Now, h,(0) =0. Hence K2' >0 implies A, (K2)> 0. If K2' =0, then
h(K2)= h(K2)=0.1If K2 > 0, then h,(K2) > 0, which implies A(K2') > 0.
This follows from Lemma 2 with J in place of K2.

Thus A(K2') > 0 for all K2, which implies U, ,(7") = Up, (7). Clearly
Ug, (K1 - 1) > U(’). So we have

Upii(K1) = Up, (1) < Up, (7)) < Up, (K1 — 1).

This holds for all K1 > 0. Thus K1%,, = 0, which was to be shown. This
completes the induction argument for Case 2.
We have now shown that for either possible case K1%,, = 0. O

COROLLARY. For any (fixed) number of stages, for any 8,, and for any 11, if
the discount sequence generated by Q is regular then it is optimal to use
treatment 1 in the last stage only.
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