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FINITE STOPPING IN SEQUENTIAL SAMPLING WITHOUT
RECALL FROM A DIRICHLET PROCESS

BY RONALD CHRISTENSEN
Montana State University

This paper shows that for sequential sampling without recall from a
Dirichlet process, there exists a finite bound beyond which one will cease
sampling with probability 1. The result is valid for Dirichlet processes defined
on closed bounded intervals of the real line.

1. Introduction. This paper shows that for sequential sampling without
recall from a Dirichlet process on a bounded interval of the real line, there exists
a finite constant that is an almost sure upper bound to the sample size of an
optimal procedure. As a referee has stated, “[This] shows that not even God can
fool a Bayesian forever.” This section introduces the problem and notation.
Section 2 contains the result. Christensen (1983) contains additional results on
sampling without recall from Dirichlet processes.

A shopper must buy an item. He can elicit price quotations sequentially, but
must pay for each quotation. A price obtained is valid only at the time of the
quotation. The shopper can buy the item at the current price but is not allowed
to return to previous prices to buy the item. The shopper seeks to minimize his
total cost, i.e., the price paid plus the cost of the price quotations obtained.

Suppose a sequential random sample X,, X,,... is available from a possibly
random distribution, say F. Without loss of generality, the first variable X is
observed at no cost. The observer (shopper) can choose to stop sampling and
accept the observation X, or pay a cost, say C, and take another observation.
For any j > 1, after X, X,,..., X; have been obtained the observer can either
accept X; and make no further observations, or pay C and observe X, ,. If X, is
accepted, the observer’s total cost is X; plus the sampling costs up to that point,
(J — 1C. The observer’s goal is to find a way to minimize his total payments.
Clearly, the observer’s problem is to find the best method of determining when to
stop taking observations. If N is any stopping rule, the observer seeks a stopping
rule N’ so that

E(Xy + (N’ = 1)C) = min E(Xy + (N = 1)C).

This problem is known as sequential sampling without recall.

The distribution F has not yet been discussed. Most of the literature on this
problem deals with the special case where X,, X,,... are independent and
identically distributed (i.i.d.) from the fixed distribution F. DeGroot (1968, 1970)
considered the problem where F is a normal distribution with unknown mean W
and variance 1. Prior beliefs about F are incorporated by putting a normal
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distribution with known mean p and known variance o2 on the parameter W.
Rothschild (1974) restricted F' to the class of multinomial distributions with a
fixed number of categories, say n. The probabilities for each category were
unknown but prior beliefs were modeled with an n-dimensional Dirichlet distri-
bution. Rothschild suggested generalizing his work by taking the random prob-
ability measure F to have a Dirichlet process.

In related work, Ferguson (1974) briefly considers the problem of sampling
with recall from a Dirichlet process. Clayton (1985) has found a similar bound on
sampling in a sequential testing problem using Dirichlet processes.

The notation follows Ferguson (1973) and Rothschild (1974). For a Dirichlet
process defined on a subset of the real line, say ', with parametric measure a(-),
the notation F ~ 9(a) is used to indicate that F is a random observation from
the Dirichlet process. The parameter a is assumed to be a finite measure. The
weight of the measure a is denoted W = a(Z’). When F ~ 9(a), F is used to
denote both the Dirichlet process and a realization of the process.

The marginal distribution of an observation, p, from F is a(-)/W. This
marginal distribution is also denoted as E(F) and EF, because the marginal
distribution of p, can be used to define the expected value of F' when considering
F as a distribution function.

When p has been observed from a Dirichlet process F, the posterior distribu-
tion of F given p is denoted F|p. F|p ~ 9(a(-) + 8,()), where 5,(1) is a
measure that gives point mass 1 to p. If p’ is an observation from F|p, the
marginal distribution of p’ can be written as

E(F|p) = [a(-) + 8,()]/[W + 1].

Some additional notation: p;, = (p,,..., p,;), p without a subscript is used for
D> Ej(-) denotes expectation with respect to the distribution of p, Ex(-) denotes
expectation with respect to the joint distribution of a sample p,, p,,... from F,
and Pg(-) denotes the probability measure of sets depending on p,, p,,... .

The observer’s problem is deciding when to stop sampling. Let T be a stopping
time for sequences p,, p,,..., of observations on F. The terms stopping time,
stopping rule, strategy, and procedure will be used interchangably. Following
DeGroot (1970), without loss of generality attention can be restricted to strate-
gies in A = {7|Pp(7 < 00) = 1}. For the expected payment under the strategy ,
the notation

V(F,1)=Eg(p, + (7 — 1)C)
is used. The minimal expected payment is also known as the value of the search
problem. It is denoted
V(F) = inf V(F, 7).
TEA

’

A strategy 7, in A is optimal if
V(F,1,) = V(F).

The following theorem shows that an optimal strategy exists under a regular-
ity condition.
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THEOREM. Letp,, p,, P3,-.. be a sequence of identically distributed random
variables whose common distribution function is A. If Var,(p,) < oo then there
exists 7, € A such that V(F, 1)) = V(F).

ProoF. See DeGroot (1970, page 352). O

In particular, if the set 2, on which A is defined, is a bounded set, then an
optimal stopping rule will exist.

Henceforth, any Dirichlet process referred to will be assumed to have a
parameter a that gives a finite variance for the distribution of prices, ensuring
the existence of an optimal rule.

Unfortunately, the class of optimal rules is a very broad one. Let = be a
stopping rule, we say that 7’ is a version of 7 if 1 = 7’ almost surely (a.s.).

It is convenient when describing optimal procedures to think of p as the
current observation and F as the process updated by all observations except the
current one. The function V(F|p) is the function V(-) evaluated at the process
F|p. Any optimal procedure dictates stopping, a.s., if

(1.1) p<V(F|p)+C
and dictates continued sampling, a.s., if
(1.2) p>V(F|p) +C.

With this convention, we say that it is uniquely optimal to accept p if (1.1) holds
and it is uniquely optimal to reject p if (1.2) holds. We say that it is optimal to
accept p if

p<V(F|p)+C
and it is optimal to reject p if

p=>V(F|p) + C.

The discussion above implies that V satisfies the functional equation V(F) =
[ min[ p, V(F|p) + C]dEF.

A truncated version of the search problem is one in which the number of price
quotations the observer is allowed to elicit is bounded. If the values of truncated
problems converge to the value of the untruncated problem as the number of
price quotations increases, the results proven for the truncated problem can be
extended to the untruncated problem.

We need notation for the value of a truncated problem. The value of a problem
truncated at the initial step is

Vi(F) = [pdEF(p).

The value of a problem truncated so that an observer is allowed no more than
T > 2 price quotations is

Vo(F) = [min[p, V;_((Flp) + C] dEF(p).
Yahav (1966) has shown that if [p?> dE F(p) < oo then V. —» V(F).
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In Section 2, an example and a corollary refer to the reservation price
property. This property is simply that if it is optimal at any stage to accept a
price p,, then it is also optimal at that stage to accept any price p < p,. It is by
no means clear that this property holds for sequential sampling without recall
from a Dirichlet process. Rothschild (1974) proved that this property holds for
the Dirichlet multinomial sampling problem. Unfortunately, his proof does not
seem to extend to the Dirichlet process problem. Christensen (1983) contains a
proof valid for Dirichlet processes.

2. Finiteness of search. The result is that, when £'=[—-M, M], an opti-
mal strategy is a truncated strategy, i.e., there exists some number, say N, such
that an optimal procedure will not continue sampling past the Nth stage. The
crucial result needed is a bound on the cost of continued sampling. The cost of
continued sampling is the cost of another observation, C, plus the expected cost
for proceeding with an optimal strategy after determining to take another
observation. Lemma 2.1 considers the interval [ —M, — M + kC/2) for an arbi-
trary positive integer k. If one samples for a sufficiently long time and never gets
an observation less than — M + kC/2, one becomes convinced that such observa-
tions are unlikely to occur. One essentially concludes that the best observation
one can get is —M + kC/2. The cost of taking another observation and then
following an optimal rule is at least (—M + 2C/2) + C. In fact, one cannot do
quite that well because one is not absolutely sure that observations less than
—M + kC/2 cannot occur. In the following theorem we obtain a lower bound of
—M + (k + 1)C/2 for the cost of continued sampling.

LEMMA 2.1. Suppose that F ~ 9(a), and p, = (p,,---, D,) is observed. For
a positive integer k assume thatp, > —M + kC/2 fori = 1,2,..., n; then there
exists an n, finite such that if n > n, then the cost of continued sampling at the
nth stage is at least —M + (k + 1)C/2. The n,’s can be chosen to form a
nondecreasing sequence for k = 1,2,... withn, = 1.

ProOOF. The proof is by induction on k.

(a) The initial step: Let n, = 1. At any stage (the nth stage is where p, has
been observed) the cost of continued sampling is at least — M + C, the cost of an
observation plus the best price that can be obtained. Since —M + C/2 <
—M + C, the theorem holds for £ = 1.

(b) The inductive step: Assume that the theorem is true for £ and show that
it is true for £ + 1. The hypothesis of the theorem for 2 + 1is that p, > —M +
(k+1C/2 i=1,2,...,n. Clearly, it is glso true that p, > —~M + kC/2, i =
1,2,..., n. Using the induction hypothesis, there exists n, such that if n > n,,
the cost of continued sampling is at least — M + (k& + 1)C/2.

A better bound is needed. Let B, ,., be the probability that the (n + 1)st
observation is in the interval [-M, — M + (k + 1)C/2) given that none of the
first n observations were in the interval. Since sampling is from a Dirichlet
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10))/(W+n).

When sampling is continued, the cost of an observation, C, is always incurred.
Having obtained the observation p, . ,, two cases are considered. First, if p,., is
less than —M + (k + 1)C/2, the least additional cost possible (regardless of
whether p,_ | is accepted or not) is — M. The second case is when p, ., is at least
—M + (k + 1)/2. If sampling stops, the cost is at least —M + (k& + 1)C/2. If
sampling continues, the induction hypothesis applies because p;,> —M +
(k+1)C/2> —-M+ kC/2 for i =1,2,...,n,n+ 1 and n + 1 is greater than
n,. Since the induction hypothesis applies, the cost of continued sampling is at
least —M + (k + 1)C/2. Thus, in this case, regardless of whether or not we
accept p, ., the cost is at least —M + (k& + 1)C/2.

Since the probability that p, ., is less than —M + (k + 1)C/2, is B, ;. ,, the
cost of taking the (n + 1)st observation is at least

k+1
2 C)(l - .Bn,k+1) .
Rewriting (2.1) gives the lower bound for the cost of continued sampling as
+1 kE+1

C+ (1 - Bn,k+1T)C~

Since B, ., = 0 as n > co we can pick n,,, > n, such that if n >n,,,
then (1 — B, ..(k +1)/2) > 3. Thus for n > n;,,,

k+2 k+1 C

process,

k+
an,k+l = a([_M, _M+

(2.1) C+

_MBn,k+l + (_M+

k
-M+

-M + — =-M+ +—=
2 ¢ ¢ 2
k+1 k+1
<-M+ C+(1_Bn,k+lT)
and so the lower bound, — M + (k + 2)C/2, is established, proving the theorem.

]

Lemma 2.1 is not as strong a result as it may at first appear. There are many

sequences of observations for which it does not apply. The following example

produces one sequence of observations about which the lemma has nothing to
say.

EXAMPLE. Suppose a[—M, M]) = 100 and a(—M, —M + C/2)) = 75. n,
can be defined so that if n > n, then [1 - B, ,(k/2)] = ; or equivalently
B, r<1/k. Recall B, ,=a(—M,-M+ Ck/2))/(W + n), so in particular,
B, 2 =75/(100 + n) and n, > 50.

From Lemma 2.1 if k=1, n>n, = 1, and p;>2-M+C/2fori=1,...,n
then any value of p, between —M + C/2 and —M + C will be accepted. By the
reservation price property any value of p, < —M + C will be accepted. Simi-
larly, if k=2, n>n,>50, and p,> —-M + C for i =1,...,n — 1 then any
p, < —M + 3C/2 will be accepted.
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Choose ¢, ¢, with, 0 <¢; < C/2. Let p,= —M + C + ¢, and take p, >
—M+ 3C/2fori=2,...,n where n > n,. Lemma 2.1 has nothing to say about
such a sequence of observations. The lemma applies with 2 = 1 but all the p,’s
are too large to say anything about. For 2 = 2, the lemma has nothing to say
about p,,..., p,,_; (n, — 1> 49) and for i > 50 the p,’s are too large to say
anything about. For k = 3,4,5,... the lemma does not apply because p, <
—-M + kC/2.

Since at the nth stage the cost of continued sampling is V(F|p,) + C, Lemma
2.1 implies that if p, > —-M + kC/2,i=1,...,n and n > n, then

k+
-M+

1
C < V(F|p,) + C.

If p,< —M + (k + 1)C/2, it is optimal to accept p,.

The following corollary establishes that for any price, say p, if enough price
quotations greater than p have been obtained then p would be accepted if
observed.

COROLLARY 2.2. Let p=p, and assume p,>p, i=1,...,n— 1. There
exists an n* = n*(p) such that if n > n* then it is optimal to accept p,,.

ProoF. For some k wehave p € [-M + kC/2, — M + (k + 1)C/2). Clearly
the conditions of Lemma 2.1 are satisfied. Let n* = n,. If n > n*, the cost of
continued sampling is at least - M + (k + 1)C/2 > p =p,. O

The corollary can be strengthened as follows.

COROLLARY 23. Letp,>p,i=1,...,n— 1 and p, < p. There exists n* =
n*(p) such that if n > n*, then it is optimal to accept p,,.

Proor. Take n* asin Corollary 2.2. If p, = p then it is optimal to stop. The
reservation price property indicates that if p, < p it is optimal to accept p,. O

We now show that all optimal search procedures are bounded with probabil-
ity 1.

THEOREM 2.4. Let F ~ 9(a). There exists an integer N such that any
optimal procedure stops sampling no later than the Nth stage of the search with
probability 1.

PROOF. Since every optimal procedure has a version that stops sampling
whenever p, < V(F|p,) + C, it is enough to show the result for such procedures.

Suppose that no such N exists; then for any S there exists an optimal strategy,
7, and observations p,, p,, ..., pg for which 7(p,, py, ..., pg) > S. That is,

> V(F|p) +C, i=1,2,...,8.
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It will be shown that for large enough S, ps > M, which is a contradiction to
Z=[—M, M]. An inductive argument is used to show that in order to have a
sequence of prices that avoids stopping, the prices must get systematically larger.
Eventually they exceed M. An upper bound N is found as a number such that if
S > N, the contradiction results.

(a) The initial step. —M + C is always a lower bound for the cost of
continued sampling, so any price less than —M + C would be accepted. There-
fore, we can assume p, > - M + C,i=1,2,...,8S.

(b) The inductive step. We want to show that if the sequence p,, ..., pg never
stops and if the observations are eventually above some constant, then the
observations must eventually be larger than another, larger, constant. In particu-
lar, suppose that p,> —M + kC/2 for i = N,, N, + 1,..., S; then there exists
N,,, >N, so that p,> -M+ (k+1)C/2 for i=N,,, N,,, +1,...,8 if
S > N,.,. Note that for k =1, N, = 1.

After N, — 1 observations have been obtained, the updated Dirichlet process
is

FlBy,: ~ 9(a<~> + z s,,,(-)).

Lemma 2.1 can be applied to the updated Dirichlet process. The lemma says that
since p;. y, - —-M+ kC/2 for i =1,2,...,8S — N, + 1 there exists n, (de-
pending on a( ) + TNes '8, (+)) such that 1f n > n, the cost of continued sam-
pling when B, y, _, has been observed is at least — M + (& + 1)C/2.

Ignoring, for the moment, that n, depends on p,,..., py, _,, we complete the
inductive argument. If S — N, + 1 > n, thenfori=n,,n,,,,...,S — N, + 1it
is optimal to stop for any p,,n,_, < —M + (k + 1)C/2. Since P1s---, Dg does
not stop, it must be that p;,n _, > —M + (k + 1)C/2 for i = n,, Rpirreeos
S — N, + 1. Rewriting, we must have p,>—-M+ (k+1)C/2 for i=N, +

¢ — 1, N, + n,,..., S Letting N,,, = N, + n, — 1 theinductive step is proven.

Since N will later be chosen as a function of the N,’s it will not do to have
N, ., depend on p,,..., py,_;. In the proof of Lemma 2.1, n, was taken so that
for n > n,, (1 — kB, ,/2) = §; where

a([-M,-M + kC/2))
ok W+ n ’
This condition is equivalent to picking n, so that for n > n,, B8, , < 1/k. In the

current instance we are applying the theorem to F|(py, _,). If we pick n, so that
forn > n,

al[-M, M+kC/2))+Nk—1 1
W+N,—-1+n k
then we automatically have ‘

a([-M, —-M + kC/2)) + Z18, ([- M, M+kC/2)) 1
W+ N,—1+n

and now n, does not depend on p;;,..., py,_;.

Rﬁ" |
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(c) The contradiction. Let N = N, where k,=[4M/C]+ 1. ([a] is the
greatest integer of a.) By the induction result, if S > N and stopping has not
occurred for p,,..., pg then

p;i> —M+ (ky2)C fori=N,N+1,...,8.

Thus pg> —M + (4M/C]1+ 1)C/2 > —M + (4M/C)C/2 = M, but pg> M,
a contradiction; therefore p,,..., ps must have stopped previous to the Nth
stage. O

Although a closed form solution for N is not available, computation of N is
easy: N, =1, N,, = N, + n, — 1, and n, can be taken as the greatest integer
in

(k)a([—M, -M+ gc)) +(B-1)(N,- 1)+ W+1.
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